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Section 2 [Solutions] P1-1

Section 2 Stochastic Models

1. (a) The deterministic part pt+1 = pt models a population which does not change in size (a dead
lion is immediately replaced by another lion). The stochastic term It represents a possible influx of 6
new lions per year. There is a 50% chance that the influx (and thus an increase in population) occurs
in any given year. To make a prediction, it is reasonable to assume that in a period of 10 years, an
influx of 6 new lions will occur in 5 years. Thus, the most likely value for p10 is 100 + 5 · 6 = 130.
The most likely values are those close to the 50-50 split: 5 or 7 years with an influx of 6 new lions per
year. So, the three most likely values for p10 are 125, 130 and 135.
(b) Assume that heads (H) means influx of 6 new lions, and tails (T) represents no influx.

First simulation: HTHTHHHTTT; the corresponding values of pt, starting with p0 = 100 are 100,
106, 106, 112, 112, 118, 124, 130, 130, 130, 130.

Second simulation: HTTTHTHHHT; the corresponding values of pt, starting with p0 = 100 are
100, 106, 106, 106, 106, 112, 112, 118, 124, 130, 130.

Third simulation: TTTHHTTTHT; the corresponding values of pt, starting with p0 = 100 are
100, 100, 100, 100, 106, 112, 112, 112, 112, 118, 118.

(c) The two extreme cases are: no immigration in any of the 10 years (in which case p10 = 100)
and immigration in every year (in which case p10 = 160). In-between are the cases of immigration
occurring anywhere from once in 10 years to nine times in 10 years. Thus, the values of p10 (and thus
the sample space) are 100, 106, 112, 118, 124, 130, 136, 142, 148, 152, 156, 160.

3. (a) There is a 50% chance that m1 = 2 and a 50% chance that m1 = −1. If m1 = 2, then there is
a 50% chance that m2 = 4 and a 50% chance that m1 = −2. If m1 = −1, then there is a 50% chance
that m2 = −2 and a 50% chance that m1 = 1. Thus, there are three outcomes for m2: −4, −2 and
1. The value m2 = −4 can happen in only one way; m2 = −2 can happen in two ways; m2 = 1 can
happen in one way. Thus, the chance that m2 = 1 is 1/4. (For the record: the chance that m2 = −4
is 1/4, and the chance that m2 = −2 is 2/4 = 1/2.)

(b) To get m4, we have to multiply m0 = 1 the total of four times by a combination of the
two factors 2 or −1. If we multiply 1 by 2 four times, we get m4 = 16. If we multiply 1 by 2 three
times, then the fourth multiplication is by −1; we get m4 = −8. If we multiply 1 by 2 two times, the
remaining two multiplications are by −1; we get m4 = 4. If we multiply 1 by 2 once, the remaining
three factors are −1 and we get m4 = −2. Finally, if we multiply 1 by −1 four times, we get m4 = 1.
Thus, the sample space for m4 is the set {1,−2, 4,−8, 16}.

5. (a) The deterministic part pt+1 = pt models a population which does not change in size (a dead
leopard is immediately replaced by another leopard). The stochastic term It represents the change in
the number of leopards. There is a 75% chance that the influx (i.e., an increase in the population by
3 leopards) occurs in any given year. With a 25% chance, 3 leopards leave in any given year.
(b) Take a four-year interval. In three of the four years, we expect an influx of 3 leopards per year. In
one of the four years, we expect that 3 leopards will leave. Thus, the total change in population in the
four years is 3 · 3 − 3 = 6 leopards; equivalently, the increase in population is, on average, 6/4 = 1.5
leopards per year. Thus, we predict that in 10 years the population will increase by 15 leopards.

In the long term, the population of leopards will increase (at an average of 1.5 leopards per year).
(c) We declare that diamonds (D for decrease) represent 3 leopards leaving in a given year, and the
remaining three suits (spades, hearts, and clubs; call them I for increase) represent an influx of 3
leopards in a given year. Assuming that the deck of cards is complete and fair, the chance of picking
a diamonds card is 1/4 = 25%.

First simulation: DIIIDIIIII; the corresponding values of pt, starting with p0 = 100 are 100, 97,
100, 103, 106, 103, 106, 109, 112, 115, 118.

Second simulation: DIDDIIIDII; the corresponding values of pt, starting with p0 = 100 are 100,
97, 100, 97, 94, 97, 100, 103, 100, 103, 106.

Thurd simulation: IIIDDDDDID; the corresponding values of pt, starting with p0 = 100 are 100,
103, 106, 109, 106, 103, 100, 97, 94, 97, 94.
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7. (a) We use a deck of cards and declare that one suit (say, diamonds) represents the no-immigration
year, and the remaining three suits (spades, hearts, and clubs) represent immigration of 12 new lions
in a year. Assuming that the four suits are equally likely to be drawn, the chance of one suit (say,
diamonds) to be picked is 1/4 = 25%.

An alternative is to use a mechanism capable of randomly generating numbers between 0 and
99 (there are 100 outcomes). We declare any number between 0 and 24 (total of 25 numbers) to
represent no-immigration, and the remaining 75 numbers (from 25 to 99) to represent immigration.
(This mechanism could be software or home-made: we could write the numbers on pieces of paper,
place them in a bowl and randomly pick a number, keeping in mind that we have to return the number
back into the bowl before picking another number.)
(b) In our simulation, we obtained the following: ♦ ♣ ♥ ♠ ♦ ♥. The corresponding number of lions
is, starting with p0 = 160 (we perform calculations using decimal numbers, and round off when we
are done):

p1 = 0.95p0 + I0 = 0.95(160) + 0 = 152
p2 = 0.95p1 + I1 = 0.95(152) + 12 = 156.40
p3 = 0.95p2 + I2 = 0.95(156.40) + 12 = 160.58
p4 = 0.95p3 + I3 = 0.95(160.58) + 12 = 164.55
p5 = 0.95p4 + I4 = 0.95(164.55) + 0 = 156.32
p6 = 0.95p5 + I5 = 0.95(156.32) + 12 = 160.50

Thus, p6 = 160 (or p6 = 161). We expect p6 to be larger than the values in Figure 2.1, since the
chance of immigration is higher (75%, compared to 50%).

9. (a) The distribution of genotypes among the first generation is: 1/4 of all offspring are AA, 1/2 of
all offspring are AB, and 1/4 of all offspring are BB.
(b) The ratio of genotype BB offspring in the second generation is: 1/4 (since all offspring of a
genotype BB plant are of genotype BB) + (1/4) · (1/2) (since one quarter of offspring of genotype AB
parents are of genotype BB). Thus, in the second generation: 1/4 + (1/4) · (1/2) = 3/8 of all offspring
are BB. For AA offspring, we use exactly the same reasoning; the ratio is 3/8 as well. The ratio of AB
offspring is 1 minus the sum of the ratios of AA and BB offspring, which is 1−3/8−3/8 = 2/8 = 1/4.

(c) We continue in the same way: All BB plants and 1/4 of AB plants from the second generation will
produce BB offspring. Thus, the ratio of BB offspring in the third generation is 3/8 + (1/4)(1/4) =
7/16.

11. (a) All offspring of AA and BB parents are of genotype AB, and so have long ears. Thus the
chance that an offspring of AA and BB parents has short ears is 0%.
(b) Making all possible combinations, we get AB, AB, BB, BB. Thus, an offspring of AB and BB
parents is of genotype AB (with a chance of 50%) or of genotype BB (with a chance of 50%). Thus,
the chance that an offspring of AB and BB parents is BB, i.e., has short ears, is 50%.

13. Denote by pt the chance that the molecule is still inside the region during the time interval
t. Thus, p0 = 1 (initially, the molecule is inside the region). After one hour, the molecule is still
inside the region with a chance of 75%. Thus, p1 = 0.75. After two hours, the molecule is still
inside the region if it was inside the region during the first hour and during the second hour. Thus,
p2 = 0.75 · 0.75 = 0.75p1 Continuing in the same way, we obtain the dynamical system pt+1 = 0.75pt

whose solution is pt = 0.75t. From

0.75t < 0.1
t ln 0.75 < ln 0.1

t >
ln 0.1
ln 0.75

t > 8.0039

we conclude that the chance the molecule is still inside the region falls below 10% after 8 hours.
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15. The chance that the molecule is inside the region after 2 minutes is 0.25 · 0.25 = 0.625 (the
molecule needs to be inside the region during the first minute and during the second minute). The
the chance that the molecule is inside the region after 3 minutes is 0.25 · 0.25 · 0.25 = 0.015625, i.e.,
about 1.56%.

17. (a) By adding 1 and −1 to all elements of the sample space at time t we obtain the sample space
at time t + 1. When t = 0, the sample space is {0}. When t = 1, the sample space is {−1, 1}. When
t = 2, the sample space is {−2, 0, 2}. When t = 3, the sample space is {−3,−1, 1, 3}. When t = 4, the
sample space is {−4,−2, 0, 2, 4}. When t = 5, the sample space is {−5,−3,−1, 1, 3, 5}.
(b) Continuing part (a), we find the sample space at time t = 6 to be {−6,−4,−2, 0, 2, 4, 6}.
(c) Looking at the pattern in (a) and (b), we see that the sample space at time t (i.e., after t steps
have been completed) is the set {−t,−t + 2,−t + 4, . . . , t − 4, t − 2, t}.
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Section 3 Basics of Probability Theory

1. Examples of experiments whose sample space consists of three simple events that are not equally
likely: (1) Modify the random walk routine: assume that a particle moves from its present position to
the left for one unit of distance with a 70% chance, to the right for one unit of distance with a 20%
chance, and remains where it is with a 10% chance. Declare the outcome of the experiment to be the
location of the particle starting at x = 0 after one step of this modified random walk. The sample set
is S = {−1, 0, 1}, and the three simple events occur with different probability. (2) Only one of three
molecules diffuses out of a cell. Molecule A diffuses out with probability 0.4, molecule B diffuses out
with probability 0.1, and molecule C diffuses out with probability 0.5. (3) A wolf is hunting for food.
It catches a rabbit with probability 0.4, a mouse with probability 0.5 and does not catch anything
with probability 0.1.

Examples of experiments whose sample space consists of three simple events that are equally likely:
(1) Modify the random walk routine: with equal probability (1/3) the particle moves to the right, to
the left, or stays where it is. Declare the outcome of the experiment to be the location of the particle
starting at x = 0 after one step of this modified random walk. The sample set is S = {−1, 0, 1}, and
the three outcomes have equal chance of occurring. (2) Only one of three molecules diffuses out of a
cell. Each molecule diffuses with the probability of 1/3. (3) A person randomly picks one of the three
flights available from Toronto to Vancouver.

3. The sample space S consists of all mutual products of numbers 1, 2, 3, 4, 5 and 6: Multiplying this
sequence by 1, we get 1, 2, 3, 4, 5, 6; multiplying by 2, we get 2, 4, 6, 8, 10, 12; multiplying by 3, we get
3, 6, 9, 12, 15, 18; multiplying by 4, we get 4, 8, 12, 16, 20, 24; multiplying by 5, we get 5, 10, 15, 20, 25, 30;
multiplying by 6, we get 6, 12, 18, 24, 30, 36. Listing each number once, we write the sample space as
S = {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 30, 36}. Counting the number of elements in S, we
see that |S| = 18.

5. The sample space S consists of all numbers from 0 to 8. Its size is |S| = 9.

7. Let’s look at a small value for n first, say n = 3. To construct the sample space, we think of forming
three-letter sequences where each letter is either H or T; for instance, HTH, TTH, and so on. We
have two choices for the first letter (H or T), two choices for the second letter, and two choices for the
third letter. Thus, the total number of three-letter sequences is 2 · 2 · 2 = 23 = 8. By reasoning in the
same way, we conclude that the sample space for the experiment of tossing a coin n times consists of
2n elements.

9. Four years: the sample space consists of all four-letter sequences of letters, where each letter is either
I or N. Because we have two choices for each letter, the total number of sequences is 2·2·2·2 = 24 = 16.
Its elements are: IIII, IIIN, IINI, INII, IINN, INNI, ININ, INNN, NIII, NIIN, NINI, NNII, NINN,
NNNI, NNIN, NNNN. (This, and the next part of the question are exercises in organizing the list:
note that the first eight elements have I as the first letter, and the remaining eight elements were
obtained from those by changing that first letter from I to N.)

Five years: the sample space consists of all five-letter sequences of letters, where each letter is either
I or N. Since we have two choices for each letter, the total number of sequences is 2 ·2 ·2 ·2 ·2 = 25 = 32.
To obtain a list of all elements, we use the list for the four years, and append I as the first letter,
and then use the same list and append N as the first letter: IIIII, IIIIN, IIINI, IINII, IIINN, IINNI,
IININ, IINNN, INIII, INIIN, ININI, INNII, ININN, INNNI, INNIN, INNNN, NIIII, NIIIN, NIINI,
NINII, NIINN, NINNI, NININ, NINNN, NNIII, NNIIN, NNINI, NNNII, NNINN, NNNNI, NNNIN,
NNNNN.

Reasoning in the same way, we conclude that the sample space for n years of the immigration/
no-immigration dynamics contains 2n elements.
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11. We find

A ∪ B = {1, 3, 5, 6, 7, 8, 9} ∪ {1, 3, 4} = {1, 3, 4, 5, 6, 7, 8, 9}
A ∩ B = {1, 3, 5, 6, 7, 8, 9} ∩ {1, 3, 4} = {1, 3}

Ac = {1, 3, 5, 6, 7, 8, 9}c = {2, 4}
A ∩ Bc = {1, 3, 5, 6, 7, 8, 9} ∩ {1, 3, 4}c = {1, 3, 5, 6, 7, 8, 9} ∩{ 2, 5, 6, 7, 8, 9} = {5, 6, 7, 8, 9}

13. Since all numbers divisible by 4 are even (i.e., B ⊂ A), it follows that A∪B = A and A∩B = B.
The complement of A consists of all odd (non-negative) numbers, Ac = {1, 3, 5, 7, 9, . . .}. Finally,

A ∩ Bc = {0, 2, 4, 6, 8, 10, . . .} ∩{ 0, 4, 8, 12, 16, 20, . . .}c

= {0, 2, 4, 6, 8, 10, . . .} ∩{ 1, 2, 3, 5, 6, 7, 9, 10, 11, . . .} = {2, 6, 10, 14, 18, 22, . . .}
So A ∩ Bc is the set of all (non-negative) even numbers which are not divisible by 4.

15. See below.

A∪B

A

S

B

(A∪B)c

A

S

B
A

S

B

Ac Bc Ac ∩Bc

A

S

B

A

S

B

17. Looking at De Morgan’s law (A ∪ B)c = Ac ∩ Bc we realize that we can find P (Ac ∩ Bc) if we
can find P (A ∪ B); recall that P ((A ∪ B)c) = 1 − P (A ∪ B). Thus

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) = 0.4 + 0.2 − 0.1 = 0.5

P ((A ∪ B)c) = 1 − 0.5 = 0.5 and so P (Ac ∩ Bc) = P ((A ∪ B)c) = 0.5.

19. See the figure below for a proof that B = A∪(Ac∩B). Because A and Ac∩B are disjoint (Ac∩B
is a subset of Ac), we conclude that

P (B) = P (A ∪ (Ac ∩ B)) = P (A) + P (Ac ∩ B)
Since A is a proper subset of B, the set Ac ∩ B is non-empty, and therefore P (Ac ∩ B) > 0. Thus,
P (A) < P (B).

A

S
B

S S
B B

A

Ac ∩ B

21. Interpreting probability as area (or using the argument presented in Exercise 19), we realize
that A ∩ B ⊆ B implies that P (A ∩ B) ≤ P (B). The data given (P (A ∩ B) = 0.4 and P (B) = 0.2)



P1-6 Probability and Statistics [Solutions]

contradict this formula.

23. (a) The probabilities add up to 1. Thus
P (4) = 1 − P (1) − P (2) − P (3) − P (5) = 1 − 0.4 − 0.15 − 0.2 − 0.1 = 0.15

(Because the meaning is clear, we drop the curly braces from the notation for the probability of an
event which consists of a single element, and write P (1) instead of P ({1}), P (2) instead of P ({2}),
and so on.)
(b) We compute

P (A) = P ({1, 2}) = P (1) + P (2) = 0.4 + 0.15 = 0.55
P (B) = P ({2, 3, 4}) = 0.15 + 0.2 + 0.15 = 0.5

P (A ∪ B) = P ({1, 2, 3, 4}) = P (1) + P (2) + P (3) + P (4) = 0.4 + 0.15 + 0.2 + 0.15 = 0.9
(Or, P (A ∪ B) = P ({1, 2, 3, 4}) = 1 − P (5) = 1 − 0.1 = 0.9.)
(c) A and B are not disjoint, and therefore P (A∪B) += P (A)+P (B). To verify, we use the probabilities
we found in (b): P (A) + P (B) = 1.05 whereas P (A ∪ B) = 0.8.

25. (a) Since the sum of all probabilities is 1, we get

P (2) = 1 − P (1) − P (3) − P (4) − P (5) = 1 − 0.2 − 0.4 − 0.3 − 0.1 = 0
(Because the meaning is clear, we drop the curly braces from the notation for the probability of an
event which consists of a single element, and write P (1) instead of P ({1}), P (2) instead of P ({2}),
and so on.)
(b) We compute

P (A) = P (2) = 0 [Thus, A = {2} is an impossible event.]
P (Ac) = 1 − P (A) = 1 − 0 = 1
P (B) = P ({1, 3, 4, 5}) = 0.2 + 0.4 + 0.3 + 0.1 = 1

P (Bc) = 1 − P (B) = 1 − 1 = 0

(c) Consider the formula P (A ∪ C) = P (A) + P (C) − P (A ∩ C). Since A ∩ C ⊂ A it follows that
P (A ∩ C) ≤ P (A). But since P (A) = 0, the probability P (A ∩ C) = 0 and therefore P (A ∪ C) =
P (A) + P (C) is true.

27. (a) The sample space S is

S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
Let A = “exactly two heads in a row occurred”. Then A = {HHT, THH} and P (A) = |A|/|S| =
2/8 = 1/4.

(b) The sample space consists of four-letter sequences in which each letter is either H or T. Since
there are two choices for each of the four locations in the sequence, there is a total of 24 = 16
distinct sequences. Thus, |S| = 16. Let A = “exactly two heads in a row occurred”. Then A =
{HHTT, HHTH, THHT, TTHH, HTHH} and P (A) = |A|/|S| = 5/16.

29. The sample space consists of 36 simple events (see Example 3.12 and Table 3.2). A simple event
is an ordered pair (m, n) where m is the number that came up on the first die and n is the number
that came up on the second die (1 ≤ m, n ≤ 6). Let A = “maximum of the two numbers is 4”. A
simple event (an ordered pair (m, n)) belongs to A if neither of its entries is larger than 4. There are 4
choices for m, and 4 choices for n, and so |A| = 16. [For the record: the following ordered pairs belong
to A: (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3),
(4, 4).] We conclude that P (A) = 16/36 = 4/9.

31. Let A = “at least one child is a girl”. Then Ac = “all children are boys”. The sample space
consists of eight equally likely events (G for a girl and B for a boy): S = {GGG, BGG, GBG, GGB,
BBG, BGB, GBB, BBB}. Thus P (Ac) = P (BBB) = 1/8, and so P (A) = 1 − 1/8 = 7/8.
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33. We follow the strategy of Exercise 31. The sample space consists of six-letter sequences, where
each letter is either G or B. Since there are 2 choices for the first letter, two choices for the second
letter, and so on, the total number of these six-letter sequences is 26 = 64. Let A = “at least one child
is a girl” and Ac = “all children are boys”. Since Ac consists of one event (BBBBBB), it follows that
P (Ac) = 1/64, and so P (A) = 1 − 1/64 = 63/64.

35. From p/(1− p) = 2/100 we get 100p = 2− 2p and 102p = 2. Thus, the corresponding probability
is p = 2/102 = 1/51.

37. (a) The sample space is {−1, 0, 1}. By assumption, the three simple events are equally likely:
P (−1) = P (0) = P (1) = 1/3.

(b) Assume that the particle is at −1 at t = 1. At t = 2, with equal probability, it is located at −2, or
−1, or 0. We proceed by listing the remaining cases: a particle which is at 0 at t = 1 will be at −1, 0
or 1 at t = 2 (with equal probability). A particle which is at 1 at t = 1 will be at 0, 1 or 2 at t = 2
(with equal probability).

Summarizing the above information: 1 path leads to −2, 2 paths lead to −1, 3 paths lead to 0,
2 paths lead to 1 and 1 path leads to 2 (note the symmetry for the locations x and −x). There are
1 + 2 + 3 + 2 + 1 = 9 equally likely paths, and so P (−2) = P (2) = 1/9, P (−1) = P (1) = 2/9, and
P (0) = 3/9.

(c) We proceed as in (b). A particle located at −2 when t = 2 is at −3, −2, or −1 when t = 3. A
particle located at −1 when t = 2 is at −2, −1, or 0 when t = 3. A particle located at 0 when t = 2
is at −1, −0, or 1 when t = 3. A particle located at 1 when t = 2 is at 0, 1, or 2 when t = 3. A
particle located at 2 when t = 2 is at 1, 2, or 3 when t = 3. This time, there is a total of 33 = 27
paths (for each t, there are three choices (move left, don’t move, and move right), so there is a total
of 3 · 3 · 3 = 33 choices).

One path leads to −3. How many paths lead to −2? One from −2 (to which a particle can arrive
along one path; see (b)) and one from −1 (to which a particle can arrive along two paths; see (b)).
Thus, there are three paths that end at −2 at t = 3.

How many paths lead to −1? One from −2 (to which a particle can arrive along one path) one
from −1 (to which a particle can arrive along two paths) and one from 0 (to which a particle can
arrive along three paths) Thus, there are six paths that end at −1 at t = 3. Due to symmetry, we get
that one path leads to 3, three paths lead to 2 and six paths lead to 1.

To count the paths that lead to 0 we can proceed as above, or subtract from 27 the number of
paths that lead to all other locations; thus, there are 27 − (1 + 3 + 6 + 6 + 3 + 1) = 7 paths that
lead to 0. It follows that P (−3) = P (3) = 1/27, P (−2) = P (2) = 3/27, P (−1) = P (1) = 6/27, and
P (0) = 7/27.

39. (a) and (b) See below.
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(c) Since A ∪ B is a disjoint union of B and Bc ∩ A, it follows that

P (A ∪ B) = P (B) + P (Bc ∩ A)



P1-8 Probability and Statistics [Solutions]

Likewise, A is a disjoint union of A ∩ B and A ∩ Bc, and thus

P (A) = P (A ∩ B) + P (A ∩ Bc)

Eliminating P (A ∩ Bc) we get
P (A ∪ B) = P (B) + P (Bc ∩ A)

= P (B) + (P (A) − P (A ∩ B))
= P (A) + P (B) − P (A ∩ B)
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Section 4 Conditional Probability and the Law of Total Probability

1. Take C to be a subset of A, so that A ∩ C = C; in that case, P (A |C) = P (A ∩ C)/P (C) =
P (C)/P (C) = 1. (Since we are asked to supply a specific example, we pick A = {2, 3, 4} and C =
{2, 4}.) If we take disjoint sets B and D, then P (B |D) = P (B ∩ D)/P (D) = P (∅)/P (D) = 0. (For
example, B = {2, 3} and D = {4, 5}.)

3. We compute P (A ∩ B) = P (1) = 0.2, P (A) = P ({1, 2, 3}) = 0.2 + 0.1 + 0.15 = 0.45, and
P (B) = P ({1, 4, 5}) = 0.2 + 0.45 + 0.1 = 0.75. Thus, P (A |B) = P (A ∩ B)/P (B) = 0.2/0.75 = 2/75
and P (B |A) = P (B ∩ A)/P (A) = 0.2/0.45 = 2/45.

5. We compute P (A ∩ B) = P ({4, 5}) = 0.4, P (A) = P ({1, 2, 4, 5}) = 0.8, and P (B) = P ({4, 5}) =
0.4. Thus, P (A |B) = P (A ∩ B)/P (B) = 0.4/0.4 = 1 (not a surprize, since B ⊂ A) and P (B |A) =
P (B ∩ A)/P (A) = 0.4/0.8 = 1/2.

7. Looking at the formulas

P (A |B) =
P (A ∩ B)

P (B)
and P (B |A) =

P (B ∩ A)
P (A)

we notice that P (A |B) and P (B |A) have equal numerators. Thus, it is the denominators that we
need to think about.
(a) Since all simple events are equally likely, to make P (A) += P (B) we pick A and B to be of different
sizes (with a non-empty intersection). For instance, if A = {1, 2, 3} and B = {3, 4} then

P (A |B) =
P (A ∩ B)

P (B)
=

P (3)
P ({3, 4}) = 1/2

P (B |A) =
P (B ∩ A)

P (A)
=

P (3)
P ({1, 2, 3}) = 1/3

(b) To make P (A) = P (B) we pick sets of the same size. For instance, if A = {2, 3, 4} and B = {3, 4, 5}
then

P (A |B) =
P (A ∩ B)

P (B)
=

P ({3, 4})
P ({3, 4, 5}) = 2/3

P (B |A) =
P (B ∩ A)

P (A)
=

P ({3, 4})
P ({2, 3, 4}) = 2/3

Alternatively, we can pick two disjoint sets for A and B (not necessarily of the same size), in which
case both conditional probabilities are zero.

9. Define A = “two children are girls” and B = “third child is a boy”. The probability that the third
child is a boy given that two children are girls is P (B |A).

If “two children are girls” means “exactly two children are girls” then P (B |A) = 1.
If “two children are girls” means “at least two children are girls” then we proceed as follows. The

sample space consists of eight equally likely events (G for a girl and B for a boy): S = {GGG, BGG,
GBG, GGB, BBG, BGB, GBB, BBB}. Thus

P (A) = P ({GGG, BGG, GBG, GGB}) = 4/8

and

P (A ∩ B) = P (BGG, GBG, GGB }) = 3/8
and therefore P (B |A) = P (A ∩ B)/P (A) = (3/8)/(4/8) = 3/4.

11. Define A = “three children are of the same sex” and B = “fourth child is a girl”. The probability
that the fourth child is a girl given that three children are of the same sex is P (B |A). The sample
space consists of four-letter sequences, where each letter is either G (girl) or B (boy). Since there are
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two choices for the first letter, two choices for the second letter, and so on, the total number of these
four-letter sequences is 24 = 16.

If A = “three children are of the same sex” means A = “exactly three children are of the same
sex” then

P (B |A) =
P (A ∩ B)

P (A)
=

P ({BBBG, BBGB, BGBB, GBBB})
P ({BBBG, BBGB, BGBB, GBBB, GGGB, GGBG, GBGG, BGGG}) =

1
2

If A = “three children are of the same sex” means A = “at least three children are of the same
sex” then

P (B |A) =
P (A ∩ B)

P (A)

=
P ({BBBG, BBGB, BGBB, GBBB, GGGG})

P ({BBBB, BBBG, BBGB, BGBB, GBBB, GGGB, GGBG, GBGG, BGGG, GGGG})

=
1
2

13. Define A = “one toss is H” and B = “at least two H”. The probability we are looking for is
P (B |A). The sample space (tossing a coin three times) is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
Thus

P (A) = 1 − P (all tosses are T) = 1 − 1/8 = 7/8

and

P (A ∩ B) = P (as least two H) = P ({HHH, HHT, HTH, THH}) = 4/8
and therefore P (B |A) = P (A ∩ B)/P (A) = (4/8)/(7/8) = 4/7.

15. Define A = “one die shows a number larger than 3” and B = “sum is equal to 7”; we are looking
for P (B |A). The sample space consists of 36 elements (see Example 3.12 and Table 3.2 in Section 3).

To find P (A) we can list all ordered pairs (m, n) such that one or both numbers are equal to
4, 5, or 6. Alternatively, we look at the complementary event Ac = “both dice show 1, or 2, or 3”.
Since there are 3 choices for each of the two numbers, |Ac| = 32 = 9, and P (Ac) = 9/36; thus,
P (A) = 1 − 9/36 = 27/36. Now

P (A ∩ B) = P (sum is 7 and one die shows a number larger than 3)
= P ({(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}) = 6/36

and therefore P (B |A) = P (A ∩ B)/P (A) = (6/36)/(27/36) = 6/27 = 2/9.

17. Define A = “baby tiger has one T allele” and B = “baby tiger has a striped tail”; we are looking
for P (B |A). The sample space of genotypes consists of three events {PP, PT, TT} with probabilities
P (PP ) = 1/4, P (PT ) = 1/2, and P (TT ) = 1/4. Thus P (A) = P ({PT, TT}) = 1/2 + 1/4 = 3/4,
P (A ∩ B) = P (TT ) = 1/4 and therefore P (B |A) = P (A ∩ B)/P (A) = (1/4)/(3/4) = 1/3.

19. (a) We have to pick at least one pair of non-disjoint subsets (i.e., they have to have a non-empty
intersection). For instance, take A = {1, 2, 3}, B = {3, 4}, and C = {5}. The union of these sets is S,
but A and B are not mutually exclusive.
(b) Let A = {1}, B = {2}, and C = {3}. The three sets are mutually exclusive, but their union
{1, 2, 3} is not equal to S.

(c) Let A = {1, 4}, B = {2, 5}, and C = {3}. The three sets are mutually exclusive and their union is
equal to the universal set S.
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21. The diagram below will help us calculate the probabilities. We use the following: F = “female”,
M = “male”, S = “smoker”, and NS = “non-smoker”. The subsets F and M form a partition of the
surveyed population.

F

surveyed
population

P(F)=0.6

M

S

S

NS

NS

P(M )=0.4

P(S |F)=0.2

P(S |M )=0.35
P(NS |F)=0.8

P(NS |M )=0.65

(a) By the law of total probability,

P (S) = P (S |F )P (F ) + P (S |M)P (M) = (0.2)(0.6) + (0.35)(0.4) = 0.26

(b) Using Bayes’ formula, we get

P (M |S) =
P (S |M)P (M)

P (S |F )P (F ) + P (S |M)P (M)
=

(0.35)(0.4)
0.26

=
14
26

=
7
13

23. We use the following: C = “child”, Y = “adolescent”, A = “adult”, and F = “flu”. The subsets
C, Y, and A form a partition of the given population.
(a) By the law of total probability,

P (F ) = P (F |C)P (C) + P (F |Y )P (Y ) + P (F |A)P (A)
= (0.45)(0.2) + (0.2)(0.3) + (0.15)(0.5) = 0.225

(b) Using Bayes’ formula, we get

P (A |F ) =
P (F |A)P (A)

P (F |C)P (C) + P (F |Y )P (Y ) + P (F |A)P (A)
=

(0.15)(0.5)
0.225

=
0.075
0.225

=
1
3

25. Let F = “female”, M = “male”, and A = “asthma”. The subsets F and M form a partition
of the population of young adults. It is given that P (F ) = P (M) = 0.5, P (A |F ) = 0.064 and
P (A |M) = 0.045.

(a) By the law of total probability,

P (A) = P (A |F )P (F ) + P (A |M)P (M) = (0.064)(0.5) + (0.045)(0.5) = 0.0545

(b) Using Bayes’ formula, we get

P (F |A) =
P (A |F )P (F )

P (A |F )P (F ) + P (A |M)P (M)
=

(0.064)(0.5)
0.0545

=
0.032
0.0545

≈ 0.587

27. Let R = “rain”, NR = “no rain”, and C = “car available”. The subsets R and NR form a partition
of the set of possible weather conditions tomorrow. It is given that P (R) = 0.6 (thus P (NR) = 0.4),
P (C |R) = 0.3, and P (C |NR) = 0.9. By the law of total probability,

P (C) = P (C |R)P (R) + P (C |NR)P (NR) = (0.3)(0.6) + (0.9)(0.4) = 0.54

29. Let M = “person has meningitis”, NM = “person does not have meningitis”, and A = “test for
meningitis is positive”. The subsets M and NM form a partition of the population of Canada. It is
given that P (M) = 3.4/100, 000 (thus P (NM) = 1 − 3.4/100, 000 = 99, 996.6/100, 000), P (A |M) =
0.85, and P (A |NM) = 0.07.
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(a) By the law of total probability,

P (A) = P (A |M)P (M) + P (A |NM)P (NM)

= 0.85 · 3.4
100, 000

+ 0.07 · 99, 996.6
100, 000

=
7, 002.652
100, 000

≈ 0.0700

So, the probability that a randomly selected person tests positive for meningitis is about 7%.
(b) Using Bayes’ formula, we get

P (M |A) =
P (A |M)P (M)

P (A |M)P (M) + P (A |NM)P (NM)
=

0.85 · 3.4
100,000

7,002.652
100,000

=
2.890

7002.62
≈ 0.00041270

So if a person tests positive for bacterial meningitis, the probability that they have it is very small,
about 0.04%.

31. (a) See below. Because E1, E2, and E3 form a partition, they are disjoint, and thus the sets
A ∩E1, A ∩E2, and A ∩E3 are disjoint as well (because A ∩E1 is a subset of E1, A ∩E2 is a subset
of E2, and A∩E3 is a subset of E3). Therefore, P (A) = P (A∩E1) + P (A∩E2) + P (A∩E3) is true.

A

E1 E3E2

A∩E3A∩E2

A∩E1

E1 E3E2

(b) From P (A |E1) = P (A ∩ E1)/P (E1) it follows that P (A ∩ E1) = P (A |E1)P (E1). Likewise,
P (A ∩ E2) = P (A |E2)P (E2) and P (A ∩ E3) = P (A |E3)P (E3). So, the equation

P (A) = P (A ∩ E1) + P (A ∩ E2) + P (A ∩ E3)

implies that

P (A) = P (A |E1)P (E1) + P (A |E2)P (E2) + P (A |E3)P (E3)

(c) Assume that E1, E2, . . . , En form a partition of S. As in (a), a Venn diagram shows that A can be
written as a union of disjoint sets

A = (A ∩ E1) ∪ (A ∩ E2) ∪ · · · ∪ (A ∩ En)

Thus
P (A) = P (A ∩ E1) + P (A ∩ E2) + · · · + P (A ∩ En)

Repeating the calculation in (b), we show that P (A ∩ Ei) = P (A |Ei)P (Ei) for all i = 1, 2, . . . , n.
Therefore,

P (A) = P (A |E1)P (E1) + P (A |E2)P (E2) + · · · + P (A |En)P (En)

and we are done.
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Section 5 Independence

1. No. If A and B are disjoint, then P (A ∩ B) = P (∅) = 0, and the condition for independence
P (A ∩ B) = P (A)P (B) reads 0 = P (A)P (B). This equation implies that either P (A) = 0 and
P (B) = 0, which contradicts the assumption that P (A) > 0 and P (B) > 0.

3. We compute

P (B |A) =
P (B ∩ A)

P (A)
=

P (5)
P ({4, 5}) =

0.1
0.4 + 0.1

=
0.1
0.5

= 0.2

P (B) = P ({2, 5}) = 0.1 + 0.1 = 0.2

Since P (B |A) = P (B), it follows that B and A are independent. (Because the meaning is clear,
we drop the curly braces from the notation for the probability of an event which consists of a single
element, and write P (5) instead of P ({5}).)

5. We compute

P (A |B) =
P (A ∩ B)

P (B)
=

P ({1, 5})
P ({1, 2, 5}) =

0.2 + 0.1
0.2 + 0.1 + 0.1

=
0.3
0.4

= 0.75

P (A) = P ({1, 5}) = 0.2 + 0.1 = 0.3
Since P (A |B) += P (A), it follows that A and B are not independent.

7. We compute

P (A ∩ B) = P ({1}) = 0.2
P (A) = P ({1, 3}) = 0.2 + 0.2 = 0.4
P (B) = P ({1, 4}) = 0.2 + 0.3 = 0.5

Since P (A)P (B) = (0.4)(0.5) = 0.2 = P (A ∩ B), it follows that A and B are independent.

9. Because A = {1, 3} and B = {2, 3} are independent,

P (A ∩ B) = P (A)P (B)
P ({3}) = (0.5)(0.4)

and so P (3) = 0.2. (Since the meaning is clear, we drop the curly brace notation for the probability
of an event which consists of a single element and write P (3) instead of P ({3}), P (1) instead of
P ({1}), and so on.) From P (A) = P ({1, 3}) = P (1) + P (3) we get 0.5 = P (1) + 0.2 and P (1) = 0.3.
Likewise, P (B) = P ({2, 3}) = P (2) + P (3) implies 0.4 = P (2) + 0.2 and P (2) = 0.2. Finally,
P (4) = 1 − P (1) − P (2) − P (3) = 0.3.

11. We find P (A) = 0.2 + 0.3 = 0.5. The relation for independence P (A∩B) = P (A)P (B) tells us to
look for a two-element set B (thus P (B) > 0) so that P (A ∩ B) = 0.5P (B).

Note that B cannot be disjoint from A (since in that case P (A ∩ B) = 0 and the relation
P (A∩B) = 0.5P (B) does not hold). If B = A, then P (A∩B) = P (B), and again P (A∩B) = 0.5P (B)
does not hold. This analysis shows that B must have one element in common with A.

Now, it’s a matter of trial-and-error. Assume that A ∩ B = {2} and take B = {2, 1}. Then
P (A ∩ B) = P (2) = 0.2 and P (B) = P (2) + P (1) = 0.5, so P (A ∩ B) = 0.5P (B) does not hold. In
the same way, we learn that the choice B = {2, 3} does not work either.

Thus, it must be that A ∩ B = {4}. Take B = {4, 1}. Then P (A ∩ B) = P (4) = 0.3 and
P (B) = P (4) + P (1) = 0.6 and P (A ∩ B) = 0.5P (B) is satisfied. Thus, B = {4, 1}. By showing that
B = {4, 3} does not satisfy P (A ∩ B) = 0.5P (B), we show that the answer for B is unique.
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13. Let Qi = “student answers the ith question correctly”, where i = 1, 2, . . . , 10. The context implies
that Qi are independent events and P (Qi) = 1/2 for all i. The probability of complementary events
Qc

i = “student answers the ith question incorrectly” is P (Qc
i ) = 1/2, i = 1, 2, . . . , 10.

(a) As usual, the phrase “at least” suggests that we use a complementary event. If A = “student
answers at least one question correctly” then Ac = “student answers all questions incorrectly.” From

Ac = Qc
1 ∩ Qc

2 ∩ · · · ∩ Qc
10

we get (by independence)

P (Ac) = P (Qc
1)P (Qc

2) · · ·P (Qc
10) =

(
1
2

)10

=
1

1024
Thus,

P (A) = 1 − P (Ac) = 1 − 1
1024

=
1023
1024

≈ 0.99902

(b) Let B = “student answers all questions correctly.” Then from
B = Q1 ∩ Q2 ∩ · · · ∩ Q10

we compute

P (B) =
(

1
2

)10

=
1

1024
≈ 0.00098

15. Let Gi = “ith child is a girl” and Bi = “ith child is a boy”. It is given that P (Gi) = 0.45 and
P (Bi) = 0.55. In part (a), i = 1, 2, 3; in part (b), i = 1, 2, 3, 4.

(a) Let A = “two girls”. Then

A = (G1 ∩ G2 ∩ B3) ∪ (G1 ∩ B2 ∩ G3) ∪ (B1 ∩ G2 ∩ G3)

Note that A is a union of three disjoint sets. By the mutual exclusivity property and then by the
independence, we get

P (A) = P (G1 ∩ G2 ∩ B3) + P (G1 ∩ B2 ∩ G3) + P (B1 ∩ G2 ∩ G3)
= P (G1)P (G2)P (B3) + P (G1)P (B2)P (G3) + P (B1)P (G2)P (G3)
= (0.45)(0.45)(0.55) + (0.45)(0.55)(0.45) + (0.55)(0.45)(0.45)
= 3(0.45)2(0.55) ≈ 0.334

(b) Let C = “at least two children are boys.” The event C includes all combinations involving 2, 3,
and 4 boys. To reduce the number of combinations, we consider Cc = “no boys or one boy.” Since

Cc = (G1 ∩ G2 ∩ G3 ∩ G4) ∪ (B1 ∩ G2 ∩ G3 ∩ G4) ∪ (G1 ∩ B2 ∩ G3 ∩ G4)
∪ (G1 ∩ G2 ∩ B3 ∩ G4) ∪ (G1 ∩ G2 ∩ G3 ∩ B4)

it follows that (again, by the mutual exclusivity and the independence of the events)

P (Cc) = P (G1)P (G2)P (G3)P (G4) + P (B1)P (G2)P (G3)P (G4) + P (G1)P (B2)P (G3)P (G4)
+ P (G1)P (G2)P (B3)P (G4) + P (G1)P (G2)P (G3)P (B4)

= (0.45)4 + (0.45)3(0.55) + (0.45)3(0.55) + (0.45)3(0.55) + (0.45)3(0.55)
= (0.45)4 + 4(0.45)3(0.55) ≈ 0.241

The probability that at least two children are boys is
P (C) = 1 − P (Cc) ≈ 1 − 0.241 = 0.759

17. Let Hi = “ith house dust mite survives in laundry washed at 60oC”, where i = 1, 2, . . . , 100. It is
given that P (Hi) = 0.01 for all i; thus, P (Hc

i ) = 0.99 for all i. We are looking for the probability of
A = “at least one house dust mite survives”. Consider the complementary event Ac = “none of the
100 house dust mites survives”, i.e.,

Ac = Hc
1 ∩ Hc

2 ∩ · · · ∩ Hc
100
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Then (using the independence)

P (Ac) = P (Hc
1 )P (Hc

2 ) · · ·P (Hc
100) = (0.99)100

and so P (A) = 1 − (0.99)100 ≈ 0.634.

19. Let Fi = “test result for the ith person is false-negative”, where i = 1, 2, . . . , 50. It is given
that P (Fi) = 0.012 for all i; thus, F c

i = “test result for the ith person is not false-negative” and
P (F c

i ) = 0.988 for all i. We are looking for the probability of F = “at least one false-negative test
result in a group of 50 people.” Consider the complementary event F c = “no one in a group of 50
people receives a false-negative test result”

F c = F c
1 ∩ F c

2 ∩ · · · ∩ F c
50

Assuming the independence of testing,
P (F c) = P (F c

1 )P (F c
2 ) · · ·P (F c

50) = (0.988)50

and P (F ) = 1 − (0.988)50 ≈ 0.453. Thus, the probability of at least one false-negative test result is
quite high, about 45.3%.

21. Let Ci = “use of a condom prevents pregnancy in year i”, where i = 1, 2, 3, 4, 5. It is given that
P (Ci) = 0.86 for all i. We are looking for the probability of A = “sexually active woman who uses
condoms regularly gets pregnant at least once in a 5-year period.” Consider the complementary event
Ac = “sexually active woman who uses condoms regularly does not get pregnant in a 5-year period.”
We write

Ac = C1 ∩ C2 ∩ C3 ∩ C4 ∩ C5

Assuming the independence of events,

P (Ac) = P (C1)P (C2)P (C3)P (C4)P (C5) = (0.86)5

and P (A) = 1 − (0.86)5 ≈ 0.530. The probability at least one pregnancy in five years is about 53%.

23. We use abbreviated symbols to represent independence conditions: we write XY for P (X ∩Y ) =
P (X)P (Y ), XY Z for P (X ∩ Y ∩ Z) = P (X)P (Y )P (Z), and so on.
(a) To prove that the four events A, B, C, and D are independent, we need to check: pairs of events
AB, AC, AD, BC, BD, CD; triples of events ABC, ABD, ACD, BCD; and the quadruple of events
ABCD. Thus, we need to check the total of 6 + 4 + 1 = 11 conditions.
(b) To prove that the five events A, B, C, D, and E are independent, we need to check: pairs of events
AB, AC, AD, AE, BC, BD, BE, CD, CE, DE; triples of events ABC, ABD, ABE, ACD, ACE,
ADE, BCD, BCE, BDE, CDE; quadruples of events ABCD, ABCE, ABDE, ACDE, BCDE;
and the quintuplet of events ABCDE. Thus, we need to check the total of 10 + 10 + 5 + 1 = 26
conditions.
(c) (Section 10 reasoning.) Assume that there are n events. The number of conditions involving 2
events is the number of ways we can pick a group of 2 symbols out of the group of n symbols, which is(n
2

)
; the number of conditions involving 3 events is the number of ways we can pick a group of 3 symbols

out of the group of n symbols, which is
(n
3

)
; and so on. (So, the sum in (b) is

(5
2

)
+

(5
3

)
+

(5
4

)
+

(5
5

)
.)

25. (a) Using gt+1 = agt, we compute g1 = ag0, g2 = ag1 = a(ag0) = a2g0, g3 = ag2 = a(a2g0) = a3g0,
and so on. Thus, gt = atg0. When a = 1 − m, we get gt = g0(1 − m)t.

(b) We check that the left side rt+1 is equal to the right side (1 − m)rt + m when we substitute
rt = (r0 − 1)(1 − m)t + 1:

rt+1 = (r0 − 1)(1 − m)t+1 + 1
(1 − m)rt + m = (1 − m)[(r0 − 1)(1 − m)t + 1] + m

= [(r0 − 1)(1 − m)t+1 + 1 − m] + m

= (r0 − 1)(1 − m)t+1 + 1
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Section 6 Discrete Random Variables

1. The range of X is the set {5, 6, 7, 8, 9, 10, . . .}; it is an infinite, countable set (since its elements can
be listed in a sequence). Thus, X is a discrete random variable.

3. Since p(1) + p(2) + p(3) = 0.16 + 0.54 + 0.29 = 0.99 += 1, p cannot be a probability mass function
of a random variable.

5. Because F (x) = 0.32 if 0 ≤ x < 1 and F (x) = 0.31 if 1 ≤ x < 2 it follows that F (x) is decreasing
on a part of its domain. Thus one of the properties of a cumulative distribution function (F (x) is
non-decreasing for all x) fails to hold.

7. The sample space S consists of four-letter sequences, where each letter is either H or T. Thus, S
contains 2 · 2 · 2 · 2 = 22 = 16 elements:

S = {THHH, TTHH, THTH, THHT, TTTH, TTHT, THTT, TTTT,

HHHH, HTHH, HHTH, HHHT, HTTH, HTHT, HHTT, HTTT}
Since all 16 events are equally likely, the probability of any one occurring is 1/16.

The range of X is {0, 1, 2, 3, 4}. The probabilities are:

P (X = 0) = P ({HHHH}) = 1/16
P (X = 1) = P ({THHH, TTHH, THTH, THHT, TTTH, TTHT, THTT, TTTT}) = 8/16
P (X = 2) = P ({HTHH, HTTH, HTHT, HTTT}) = 4/16
P (X = 3) = P ({HHTH, HHTT}) = 2/16
P (X = 4) = P ({HHHT}) = 1/16

The probability mass function of X is given in the table below.

x P (X = x)

0 1/16

1 1/2

2 1/4

3 1/8

4 1/16

9. The sample space of the experiment consists of 36 simple events

S = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), . . . , (6, 5), (6, 6)}
(where (m, n) means that the number m came up on the first die and n came up on the second die).
Since all simple events are equally likely, the probability that any one occurs is 1/36.

The range of X is {1, 2, 3, 4, 5, 6}. The probabilities are:
P (X = 1) = P ({(1, 1)}) = 1/36
P (X = 2) = P ({(1, 2), (2, 1), (2, 2)}) = 3/36
P (X = 3) = P ({(1, 3), (3, 1), (2, 3), (3, 2), (3, 3)}) = 5/36
P (X = 4) = P ({(1, 4), (4, 1), (2, 4), (4, 2), (3, 4), (4, 3), (4, 4)}) = 7/36
P (X = 5) = P ({(1, 5), (5, 1), (2, 5), (5, 2), (3, 5), (5, 3), (4, 5), (5, 4), (5, 5)}) = 9/36
P (X = 6) = P ({(1, 6), (6, 1), (2, 6), (6, 2), (3, 6), (6, 3), (4, 6), (6, 4), (5, 6), (6, 5), (6, 6)}) = 11/36

The probability mass function of X is given in the table below.
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x P (X = x)

1 1/36

2 3/36

3 5/36

4 7/36

5 9/36

6 11/36

11. We use the mutual exclusivity of events to calculate the probabilities. The probability distribution
for Y : P (Y = 0) = 1/8, P (Y = 1) = 4/8, P (Y = 2) = 2/8, P (Y = 3) = 1/8. The probability
distribution for Z: P (Z = 0) = 1/8, P (Z = 1) = 4/8, P (Z = 2) = 2/8, P (Z = 3) = 1/8.
The probability distribution for W : P (W = −6) = 1/8, P (W = −1) = 3/8, P (W = 4) = 3/8,
P (W = 9) = 1/8.

13. Denote the presence of a virus by V and its absence by N. The sample space is
S = {VV, NV, VN, NN}

For instance, NV describes the event that the population (which starts virus-free, by assumption) is
virus-free for a month; then the virus appears.

The random variable X counts the number of virus-free months in the 2-month period; thus
X(VV) = 0, X(NV) = 1, X(VN) = 1, and X(NN) = 2.

Using independence, we compute

P (VV) = P (V during the first month and V during the second month
= P (V during the first month)P (V during the second month)
= (0.3)(0.4) = 0.12

P (NV) = P (N)P (V) = (0.7)(0.3) = 0.21
P (VN) = P (V)P (N) = (0.3)(0.6) = 0.18
P (NN) = P (N)P (N) = (0.7)(0.7) = 0.49

Thus, the probability mass function for X is given by P (X = 0) = 0.12, P (X = 1) = 0.21+0.18 = 0.39,
and P (X = 2) = 0.49.

15. Denote a dark brown baby monkey by D and a light brown baby monkey by L. It is given that,
in every year, P (D) = 0.65 and P (L) = 0.35. The sample space is

S = {DDD, LDD, DLD, DDL, LLD, LDL, DLL, LLL}
and the probabilities of the simple events in S are (using independence):

P (DDD) = P (D)P (D)P (D) = (0.65)3 = 0.274625
P (LDD) = P (DLD) = P (DDL) = P (D)P (D)P (L) = (0.65)2(0.35) = 0.147875
P (LLD) = P (LDL) = P (DLL) = P (D)P (L)P (L) = (0.65)(0.35)2 = 0.079625
P (LLL) = P (L)P (L)P (L) = (0.35)3 = 0.042875

The range of R is {0, 1, 2, 3}. Using mutual exclusivity, we compute
P (R = 0) = 0.042875
P (R = 1) = 3(0.079625) = 0.238875
P (R = 2) = 3(0.147875) = 0.443625
P (R = 3) = 0.274625
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17. Denote a red-eyed baby monkey by D, a blue-eyed baby monkey by E, a brown-eyed baby monkey
by N (for lack of good notation, we use the last letter of the word for the colour). It is given that, in
every year, P (D) = 0.15, P (E) = 0.05, and P (N) = 0.8. The sample space is

S = {DD, EE, NN, DE, ED, NE, EN, DN, ND}
and the probabilities of the events in S are (using independence):

P (DD) = P (D)P (D) = (0.15)2 = 0.0225
P (EE) = P (E)P (E) = (0.05)2 = 0.0025
P (NN) = P (D)P (D) = (0.8)2 = 0.64
P (DE) = P (ED) = P (D)P (E) = (0.15)(0.05) = 0.0075
P (NE) = P (EN) = P (N)P (E) = (0.8)(0.05) = 0.04
P (DN) = P (ND) = P (D)P (N) = (0.15)(0.8) = 0.12

The probability mass function of B = “number of blue-eyed baby monkeys born to the couple in a
2-year period” is given in the table below.

x P (B = x)

0 P (DD, NN, DN, ND) = 0.0225 + 0.64 + 2(0.12) = 0.9025

1 P (DE, ED, NE, EN) = 2(0.0075) + 2(0.04) = 0.095

2 P (EE) = 0.0025

19. See below. The word that best describes the histogram is “uniform”.

1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

21. See below. The word that best describes the histogram is “skewed right”.

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

23. The discontinuities of F (x) occur at x = 0.7, 1, and 1.2. The sizes of the jumps determine the
non-zero probabilities, and hence the probability mass function of X: P (X = 0.7) = 0.3 − 0 = 0.3,
P (X = 1) = 0.7 − 0.3 = 0.4, and P (X = 1.2) = 1 − 0.7 = 0.3.
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25. The discontinuities of F (x) occur at x = 1/2, 1, 3/2, and 3. The sizes of the jumps determine the
non-zero probabilities, and hence the probability mass function of X: P (X = 1/2) = 0.1 − 0 = 0.1,
P (X = 1) = 0.5 − 0.1 = 0.4, P (X = 3/2) = 0.8 − 0.5 = 0.3, and P (X = 3) = 1 − 0.8 = 0.2.

27. The values of F (x) are zero until x (moving from −∞ to ∞) reaches the smallest value in the
range of X, which is x = 0. There, F (0) = P (X ≤ 0) = P (X = 0) = 0.25. Then, F (x) remains
constant until x reaches the next value in the range of X, which is x = 1. The value of F is

F (1) = P (X ≤ 1) = P (X = 0) + P (X = 1) = 0.25 + 0.25 = 0.5
Continuing in this way, we obtain the following:

F (x) =






0 x < 0
0.25 0 ≤ x < 1
0.5 1 ≤ x < 2
0.75 2 ≤ x < 3
1 x ≥ 3

See the graph below.

1 2 3 x0

0.25

F(x)
1

0.5

0.75

29. The values of F (x) are zero until x (moving from −∞ to ∞) reaches the smallest value in the
range of X, which is x = 0. There, F (0) = P (X ≤ 0) = P (X = 0) = 0.8. Then, F (x) remains constant
until x reaches the next value in the range of X, which is x = 1. The value of F is

F (1) = P (X ≤ 1) = P (X = 0) + P (X = 1) = 0.8 + 0.05 = 0.85
Continuing in the same way, we obtain the following:

F (x) =






0 x < 0
0.8 0 ≤ x < 1
0.85 1 ≤ x < 2
0.9 2 ≤ x < 3
0.95 3 ≤ x < 4
1 x ≥ 4

See the graph below.

1 2 3 x0

0.85

F(x)
1

0.9
0.8

0.95

4

31. (a) Initial location: 0; locations after 1 step: −1 and 1; locations after 2 steps: −2, 0 and 2;
locations after 3 steps: −3, −1, 1, and 3; locations after 4 steps: −4, −2, 0, 2, and 4; locations
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after 5 steps: −5, −3, −1, 1, 3, and 5. To move one step ahead, we add 1 to the locations in the
previous step or subtract 1 from the locations in the previous step. Adding 1 to an even number
(or subtracting 1 from an even number) makes it odd, and vice versa. A particle starts at an even
numbered location (x = 0). Thus, after an even (odd) number of steps, the particle arrives at an
even-numbered (odd-numbered) location.
(b) To be absorbed, the particle needs to reach 3 or −3, which are odd numbers. The particle can
reach 3 or −3 in 3 steps (in which case X = 3). If it does not, it means that it ended at −1 or 1 after 3
steps (since after an odd number of steps a particle can only be in an odd-numbered location). Thus,
the particle needs 2 more steps to reach 3 or −3 (in which case X = 5); if it does not, it means that
it ended at −1 or 1; repeating this routine, we see that X can assume only odd-numbered values.

33. We read the values from the table. The probability mass function of X is given by P (X = 1) = 0.3,
P (X = 2) = 0.1, P (X = 3) = 0.2, P (X = 4) = 0.1, and P (X = 5) = 0.3. The discontinuities of the
cumulative distribution function F (x) of X occur at x = 1, 2, 3, 4 and 5. We find that

F (x) =






0 x < 1
0.3 1 ≤ x < 2
0.4 2 ≤ x < 3
0.6 3 ≤ x < 4
0.7 4 ≤ x < 5
1 x ≥ 5
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Section 7 The Mean, the Median, and the Mode

1. Ordering S1, we get S1 = {2, 3, 4, 5, 6, 7, 10}; the median is 5. Ordering S2, we get S2 =
{2, 3, 4, 5, 6, 700,000, 1,000,000}; the median is 5 as well. The median fails to capture large differ-
ence in the values at the right ends of the two distributions.

3. Adding up the values of all elements in S1 and dividing by the number of elements in S1 we get the
mean of S1. To calculate the mean of S2, the numerator doubles whereas the denominator remains
the same. Thus, the mean of S2 is double the mean of S1.

The location of the midpoint of the two distributions does not change, since multiplication by 2
does not change the order (assume that S1 and S2 are ordered; if a is before b in the list for S1, then
2a is before 2b in the list for S2). Thus, the median of S2 is double the median of S1.

If a is the value that appears most often in S1, then the value 2a appears most often in S2. So,
the mode of S2 is double the mode of S1.

5. Intutively: since all outcomes are equally likely, the mean is (1+2+3+ · · ·+10)/10 = 55/10 = 5.5.
Formally,

E(X) =
10∑

k=1

k · P (X = k) =
10∑

k=1

k · 1
10

=
1
10

(1 + 2 + 3 + · · · + 10) =
1
10

· 10 · 11
2

= 5.5

(Recall the formula:
∑n

k=1 k = 1 + 2 + 3 + · · · + n = n(n + 1)/2.)

7. No. Consider the random variable X given by P (X = 0) = 0.5 and P (X = 6) = 0.5 Then
E(X) = 0 · 0.5 + 6 · 0.5 = 3. The distribution of X2 is P (X2 = 0) = 0.5 and P (X2 = 36) = 0.5 and so
E(X2) = 0 · 0.5 + 36 · 0.5 = 18. (This is just one of many counterexamples.)

9. Using properties of the expected value,

E(2X2 − 4X + 1) = E(2X2) − E(4X) + E(1) = 2E(X2) − 4E(X) + E(1)

Since
E(1) =

∑

x

1 · P (X = x) =
∑

x

P (X = x) = 1

we get E(2X2 − 4X + 1) = 2(3) − 4(2) + 1 = −1.

11. Using the properties of the expected value,

E(Y ) = E

(
1
σ

(X − µ)
)

=
1
σ

E (X − µ) =
1
σ

(E(X)− µ) = 0,

since, by assumption, E(X) = µ. (Recall that E(X + b) = E(X) + b for a real number b; replacing b
by −µ, we get E(X − µ) = E(X) − µ, which is how the second last equality was obtained.)

13. We compute

E(X) =
3∑

x=0

x · P (X = x) = 0 · 0.25 + 1 · 0.25 + 2 · 0.25 + 3 · 0.25 = 6(0.25) = 1.5

E(X2) =
3∑

x=0

x2 · P (X = x) = 0 · 0.25 + 1 · 0.25 + 4 · 0.25 + 9 · 0.25 = 14(0.25) = 3.5

E(X(X − 1)) =
3∑

x=0

x(x − 1) · P (X = x) = 0 · 0.25 + 0 · 0.25 + 2 · 0.25 + 6 · 0.25 = 8(0.25) = 2

To check:

E(X(X − 1)) = E(X2 − X) = E(X2) − E(X) = 3.5 − 1.5 = 2
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15. We compute

E(X) =
4∑

x=0

x · P (X = x) = 0 · 0.8 + 1 · 0.05 + 2 · 0.05 + 3 · 0.05 + 4 · 0.05 = 10(0.05) = 0.5

E(X2) =
4∑

x=0

x2 · P (X = x) = 0 · 0.8 + 1 · 0.05 + 4 · 0.05 + 9 · 0.05 + 16 · 0.05 = 30(0.05) = 1.5

E(X(X − 1)) =
4∑

x=0

x(x − 1) · P (X = x) = 0 · 0.8 + 0 · 0.05 + 2 · 0.05 + 6 · 0.05 + 12 · 0.05

= 20(0.05) = 1
To check:

E(X(X − 1)) = E(X2 − X) = E(X2) − E(X) = 1.5 − 0.5 = 1

17. Instead of ordering the list (call it S), we record the frequencies:

Value 14 18 19 20 22 25 27 29 30

Frequency 1 15 3 5 1 1 3 2 5

Clearly, the mode is 18.
The data set S contains 36 elements. In identifying the median, we calculate the mean of the

18th and the 19th entries. Since both are equal to 19, the median of S is 19. The mean is

S =
1
36

(1 · 14 + 15 · 18 + 3 · 19 + 5 · 20 + 1 · 22 + 1 · 25 + 3 · 27 + 2 · 29 + 5 · 30)

=
777
36

≈ 21.58

19. From

E(X) =
4∑

x=1

x · P (X = x) = 1 · 0.2 + 2 · 0.4 + 3 · 0.3 + 4 · 0.1 = 2.3

E(sin(X)) =
4∑

x=1

sin x · P (X = x) = sin 1 · 0.2 + sin 2 · 0.4 + sin 3 · 0.3 + sin 4 · 0.1 ≈ 0.49867

we compute E(sinX) − sin(E(X)) = 0.49867 − sin 2.3 ≈ −0.24704.

21. From

E(ln(X)) =
4∑

x=1

lnx · P (X = x) = ln 1 · 0.2 + ln 2 · 0.4 + ln 3 · 0.3 + ln 4 · 0.1 ≈ 0.74547

we compute eE(ln X) = e0.74547 ≈ 2.10743.

23. We compute

E(1/X) =
4∑

x=1

1
x
· P (X = x) =

1
1
· 0.2 +

1
2
· 0.4 +

1
3
· 0.3 +

1
4
· 0.1 = 0.525
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25. Let R represent the per capita production rate of the fish population. Its probability mass
function is P (R = 1.25) = 0.7 and P (R = 0.1) = 0.3. From

E(ln(R)) = ln 1.25 · P (R = 1.25) + ln 0.1 · P (R = 0.1)
= (ln 1.25)(0.7) + (ln 0.1)(0.3)
≈ −0.53458

we get the geometric mean eE(ln R) = e−0.53458 ≈ 0.58591. The geometric mean predicts a decline in
the population at the rate of 1 − 0.58591 = 0.41409 per year.

27. The mode consists of three values: 2, 6, and 7. The probability mass function is given below.

x P (X = x)

1 0.15

2 0.2

5 0.1

6 0.2

7 0.2

8 0.15

The mean is

E(X) = (1)(0.15) + 2(0.2) + 5(0.1) + 6(0.2) + 7(0.2) + 8(0.15) = 4.85

To find the median, we keep calculating the values of the cumulative distribution function until we
reach 0.5: F (1) = 0.15, F (2) = 0.35, F (5) = 0.45, F (6) = 0.65. The median is (5 + 6)/2 = 5.5.

29. The mode consists of two values: 3 and 6. The probability mass function is given in the table
below.

x P (X = x)

1 0.2

3 0.3

6 0.3

8 0.2

The mean is
E(X) = (1)(0.2) + 3(0.3) + 6(0.3) + 8(0.2) = 4.5

To find the median, we keep calculating the values of the cumulative distribution function until we
reach 0.5: F (1) = 0.2, F (3) = 0.5, F (6) = 0.8. The median is (3 + 6)/2 = 4.5.
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Section 8 The Spread of a Distribution

1. All three samples share the same mean: µA = µB = µC = 3. The sample B is least spread out
(the two values which differ from the mean are one unit away from it). The sample A is less spread
out than C: the four values in A which differ from 3 are closer to the mean than the four values in C
which differ from 3. Thus, B has the smallest standard deviation, followed by A; the sample C has
the largest standard deviation of the three samples.

We confirm our reasoning by calculating the three standard deviations:

var(A) =
∑

a

(a − µA)2P (A = a) =
1
5

∑

a

(a − 3)2

=
1
5

(
(2 − 3)2 + (2 − 3)2 + (3 − 3)2 + (4 − 3)2 + (4 − 3)2

)
=

4
5

and σA =
√

var(A) = 2/
√

5. Likewise,

var(B) =
∑

b

(b − µB)2P (B = b) =
1
5

∑

b

(b − 3)2

=
1
5

(
(2 − 3)2 + (3 − 3)2 + (3 − 3)2 + (3 − 3)2 + (4 − 3)2

)
=

2
5

and σB =
√

var(B) =
√

2/
√

5. Finally,

var(C) =
∑

c

(c − µC)2P (C = c) =
1
5

∑

c

(c − 3)2

=
1
5

(
(1 − 3)2 + (1 − 3)2 + (3 − 3)2 + (5 − 3)2 + (5 − 3)2

)
=

16
5

and σC =
√

var(C) = 4/
√

5. Thus, σB < σA < σC .

3. Consider multiplying X by a real number a. The formula var(aX) = a2var(X) gives 2 = a2(22),
so a2 = 1/22 and a = ±1/

√
11. Define Y = ±(1/

√
11)X; the variance of Y is 2. To check:

var(Y ) = var
(
± 1√

11
X

)
=

(
± 1√

11

)2

var(X) =
1
11

· 22 = 2

(Note that adding a real number to X does not change its variance; that’s why we considered the
multiplication by a real number).

5. The expected value of X is zero:

E(X) =
4∑

k=−4

kP (X = k) =
1
9

4∑

k=−4

k =
1
9
(−4 − 3 − 2 − 1 + 0 + 1 + 2 + 3 + 4) = 0

Therefore

var(X) =
4∑

k=−4

(k − E(X))2P (X = k) =
1
9

4∑

k=−4

k2 =
1
9
(16 + 9 + 4 + 1 + 0 + 1 + 4 + 9 + 16) =

60
9

7. From

E(X) =
∑

x

xP (X = x) = (0)(0.15) + (1)(0.15) + (2)(0.15) + (4)(0.15) = (7)(0.15) = 1.05

and
E(X2) =

∑

x

x2P (X = x) = (0)(0.15) + (1)(0.15) + (4)(0.15) + (16)(0.15) = (21)(0.15) = 3.15

we compute

var(X) = E(X2) − [E(X)]2 = 3.15 − (1.05)2 = 2.0475

and σX =
√

2.0475 ≈ 1.43091.
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9. From

E(X) =
∑

x

xP (X = x) = (−2)(0.25) + (−1)(0.2) + (0)(0.1) + (1)(0.2) + (2)(0.25) = 0

and

E(X2) =
∑

x

x2P (X = x) = (4)(0.25) + (1)(0.2) + (0)(0.1) + (1)(0.2) + (4)(0.25) = 2.4

we compute

var(X) = E(X2) − [E(X)]2 = 2.4 − (0)2 = 2.4

and σX =
√

2.4 ≈ 1.54919.

11. Let E(X) = µ and X1 = X − E(X) = X − µ.

Direct proof:

E(X1) =
∑

x1

x1P (X1 = x1)

=
∑

x

(x − µ)P (X − µ = x − µ)

=
∑

x

(x − µ)P (X = x)

=
∑

x

xP (X = x) −
∑

x

µP (X = x)

= E(X) − µ
∑

x

P (X = x)

= µ − µ · 1 = 0
Using Theorem 7:

E(X1) = E(X − µ) = E(X)− µ = µ − µ = 0

13. Replacing X in var(X) = E(X2) − [E(X)]2 by aX, we get

var(aX) = E[(aX)2] − [E(aX)]2

= E[a2X2] − [aE(X)]2

= a2E[X2] − a2[E(X)]2

= a2(E(X2) − [E(X)]2) = a2var(X)

15. The sample of 12 healthy adults, sorted:

110, 116, 120, 122, 123, 125, 125, 128, 132, 138, 138, 140

The minimum is 110, and the maximum is 140. The median is the mean of the sixth and the
seventh numbers: 125. The lower quartile is the mean of the third and the fourth numbers: Q1 =
(120 + 122)/2 = 121, and the upper quartile is the mean of the ninth and the tenth numbers: Q3 =
(132 + 138)/2 = 135.

The sample of 12 adults with a history of cardiovascular problems, sorted:

136, 142, 148, 150, 154, 154, 154, 158, 160, 160, 162, 166

The minimum is 136, and the maximum is 166. The median is the mean of the sixth and the
seventh numbers: 154. The lower quartile is the mean of the third and the fourth numbers: Q1 =
(148+150)/2 = 149, and the upper quartile is the mean of the ninth and the tenth numbers: Q3 = 160.
See the figure below for the boxplots.
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149

121

Cardiovascular problems

110

160

125

140

166

Healthy

154

136135

Blood pressure

17. The sample, sorted:
14, 16, 17, 18, 19, 20, 20, 20, 22, 22, 24, 24, 24, 25

The sample contains 14 numbers. The minimum is 14, and the maximum is 25. The median is the
mean of the seventh and the eighth numbers: 20. The lower quartile is the fourth number: Q1 = 18,
and the upper quartile is the eleventh number: Q3 = 24.

18
14

20

25

Lions in captivity

24

Lifespan

19. The sample, sorted:

12, 20, 20, 20, 21, 23, 23, 24, 24, 25, 25, 26, 27, 28
The sample contains 14 numbers. The minimum is 12, and the maximum is 28. The median is the
mean of the seventh and the eighth numbers: 23.5. The lower quartile is the fourth number: Q1 = 20,
and the upper quartile is the eleventh number: Q3 = 25.

20

12

23.5

28

Moose

25

Lifespan
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21. We extract the probability mass function from the histogram.

x P (X = x)

1 0.15

2 0.1

3 0.05

4 0.15

5 0.1

6 0.2

7 0.05

8 0.2

From

E(X) =
∑

x

xP (X = x)

= (1)(0.15) + (2)(0.1) + (3)(0.05) + (4)(0.15) + (5)(0.1) + (6)(0.2) + (7)(0.05) + (8)(0.2)
= 4.75

and

E(X2) =
∑

x

x2P (X = x)

= (1)(0.15) + (4)(0.1) + (9)(0.05) + (16)(0.15) + (25)(0.1) + (36)(0.2) + (49)(0.05) + (64)(0.2)
= 28.35

we compute

var(X) = E(X2) − [E(X)]2 = 28.35 − (4.75)2 = 5.7875
and σX =

√
5.7875 ≈ 2.40572.

23. We extract the probability mass function from the histogram.

x P (X = x)

1 0.05

2 0.05

3 0.1

4 0.1

5 0.15

6 0.15

7 0.2

8 0.2

From
E(X) =

∑

x

xP (X = x)

= (1)(0.15) + (2)(0.15) + (3)(0.1) + (4)(0.1) + (5)(0.15) + (6)(0.15) + (7)(0.2) + (8)(0.2) = 5.8
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and

E(X2) =
∑

x

x2P (X = x)

= (1)(0.05) + (4)(0.05) + (9)(0.1) + (16)(0.1) + (25)(0.15) + (36)(0.15) + (49)(0.2) + (64)(0.2)
= 34.5

we compute

var(X) = E(X2) − [E(X)]2 = 34.5 − (5.8)2 = 0.86

and σX =
√

0.86 ≈ 0.92736.

25. The mean of all three distributions is 24.5. For the Milky Way Farm,

MAD(X1) = E(|X1 − E(X1)|) = E(|X1 − 24.5|)

= |18 − 24.5| · 6
30

+ |20 − 24.5| · 5
30

+ |22 − 24.5| · 2
30

+ |24 − 24.5| · 1
30

+ |25 − 24.5| · 1
30

+ |27 − 24.5| · 4
30

+ |29 − 24.5| · 4
30

+ |30 − 24.5| · 7
30

=
134
30

For the Milkshake Farm,
MAD(X2) = E(|X2 − 24.5|)

= |22 − 24.5| · 4
30

+ |23 − 24.5| · 6
30

+ |24 − 24.5| · 3
30

+ |25 − 24.5| · 8
30

+ |26 − 24.5| · 6
30

+ |27 − 24.5| · 3
30

=
41
30

For the Butterscotch Farm,

MAD(X3) = E(|X3 − 24.5|)

= |17 − 24.5| · 2
30

+ |18 − 24.5| · 7
30

+ |19 − 24.5| · 4
30

+ |20 − 24.5| · 3
30

+ |30 − 24.5| · 2
30

+ |31 − 24.5| · 5
30

+ |32 − 24.5| · 7
30

=
192
30

Thus, the MAD is able to detect the differences in the spreads of the three distributions. Note that
the order of the three distributions from the smallest to the largest standard deviation is the same as
the order of the three distributions from the smallest to the largest mean absolute deviation.
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Section 9 Joint Distributions

1. Using independence, we find

P (X = 1, Y = 1) = P (X = 1)P (Y = 1) = (0.2)(0.7) = 0.14
P (X = 1, Y = 2) = P (X = 1)P (Y = 2) = (0.2)(0.3) = 0.06
P (X = 2, Y = 1) = P (X = 2)P (Y = 1) = (0.8)(0.7) = 0.56
P (X = 2, Y = 2) = P (X = 2)P (Y = 2) = (0.8)(0.3) = 0.24

These four probabilities form the joint probability distribution of X and Y. See below.

X = 1 X = 2

Y = 1 0.14 0.56

Y = 2 0.06 0.24

3. Denote the missing entries by a and b and expand the table to include the horizontal and the
vertical totals:

X = 0 X = 1

Y = 0 0.1 0.3 P (Y = 0) = 0.4

Y = 1 a b P (Y = 1) = a + b = 0.6

P (X = 0) = 0.1 + a P (X = 1) = 0.4 + b

By independence

P (X = 0, Y = 0) = P (X = 0)P (Y = 0)
0.1 = (0.1 + a)(0.4)

0.25 = 0.1 + a

and thus a = 0.15. From P (Y = 1) = a + b = 0.6 we get b = 0.45.

5. Using independence, we find

P (X = 1, Y = 1) = P (X = 1)P (Y = 1) = (0.2)(0.9) = 0.18
P (X = 1, Y = 2) = P (X = 1)P (Y = 2) = (0.2)(0.1) = 0.02
P (X = 2, Y = 1) = P (X = 2)P (Y = 1) = (0.8)(0.9) = 0.72
P (X = 2, Y = 2) = P (X = 2)P (Y = 2) = (0.8)(0.1) = 0.08

The four probabilities form the joint probability distribution of X and Y, shown in the table below
(expanded, to include horizontal and vertical totals):

X = 1 X = 2

Y = 1 0.18 0.72 P (Y = 1) = 0.9

Y = 2 0.02 0.08 P (Y = 2) = 0.1

P (X = 1) = 0.2 P (X = 2) = 0.8

We find

P (X = 1 |Y = 1) =
P (X = 1, Y = 1)

P (Y = 1)
=

0.18
0.9

= 0.2

P (X = 1 |Y = 2) =
P (X = 1, Y = 2)

P (Y = 2)
=

0.02
0.1

= 0.2
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Recall the law of total probability: If A is an event, and E1 and E2 form a partition, then

P (A) = P (A |E1)P (E1) + P (A |E2)P (E2)

Substituting A = {X = 1}, E1 = {Y = 1}, and E2 = {Y = 2}, we obtain the desired relation
P (X = 1) = P (X = 1 |Y = 1)P (Y = 1) + P (X = 1 |Y = 2)P (Y = 2)

between P (X = 1 |Y = 1), P (X = 1 |Y = 2), and P (X = 1). We illustrate it by substituting the
probabilities we calculated:

0.2 = (0.2)(0.9) + (0.2)(0.1)

7. We need to find P (R = + and G = B |G = B). From P (G = B) = 0.076 + 0.014 = 0.09 we get

P (R = + and G = B |G = B) =
P (R = +, G = B)

P (G = B)
=

0.076
0.09

≈ 0.844

9. The two probabilities

P (R = + |G = B) =
P (R = +, G = B)

P (G = B)
=

0.076
0.09

=
76
90

P (R = − |G = B) =
P (R = −, G = B)

P (G = B)
=

0.014
0.09

=
14
90

define the distribution of R conditional on G = B. (Note that P (G = B) = 0.076 + 0.014 = 0.09.)

11. By adding up the entries horizontally, we obtain the marginal distribution for A:

P (A = allergy) = P (A = allergy, T = positive)
+ P (A = allergy, T = negative) + P (A = allergy, T = inconclusive)

= 0.3 + 0.07 + 0.1 = 0.47
P (A = no allergy) = P (A = no allergy, T = positive)

+ P (A = no allergy, T = negative) + P (A = no allergy, T = inconclusive)
= 0.03 + 0.45 + 0.05 = 0.53

Thus, there is a 47% chance that a randomly selected person from the group has allergy.
By adding up the entries vertically, we obtain the marginal distribution for T :

P (T = positive) = P (A = allergy, T = positive) + P (A = no allergy, T = positive)
= 0.3 + 0.03 = 0.33

P (T = negative) = P (A = allergy, T = negative) + P (A = no allergy, T = negative)
= 0.07 + 0.45 = 0.52

P (T = inconclusive) = P (A = allergy, T = inconclusive) + P (A = no allergy, T = inconclusive)
= 0.1 + 0.05 = 0.15

Thus, for 33% of the population the test is positive, and for 52% it is negative; for 15% of the
population the test is inconclusive.

13. We compute

P (A = allergy |T = negative) =
P (A = allergy, T = negative)

P (T = negative)
=

0.07
0.07 + 0.45

=
7
52

≈ 0.13461

15. We need to find the probabilities a, b, c and d which define the joint distribution:
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X = 1 X = 2

Y = 3 a b

Y = 4 c d

From the given information, we get the following equations:
P (X = 1) = 0.4 implies that a + c = 0.4
P (X = 2) = 0.6 implies that b + d = 0.6

P (Y = 3 |X = 1) = 0.7 implies that
P (Y = 3, X = 1)

P (X = 1)
=

a

a + c
= 0.7

P (Y = 3 |X = 2) = 0.1 implies that
P (Y = 3, X = 2)

P (X = 2)
=

b

b + d
= 0.1

Combining the first and the third equation we get a/0.4 = 0.7 and thus a = 0.28. From a + c = 0.4
it follows that c = 0.12. Combining the second and the fourth equation we get b/0.6 = 0.1 and thus
b = 0.06. From b + d = 0.6 it follows that d = 0.54. The joint distribution is

X = 1 X = 2

Y = 3 0.28 0.06

Y = 4 0.12 0.54

17. By adding up the entries along the rows we obtain the distribution for F :

P (F = fish) = P (F = fish, P = brown bear)
+ P (F = fish, P = wolf) + P (F = fish, P = fox)

= 0.2 + 0.02 + 0.03 = 0.25
P (F = insects) = P (F = insects, P = brown bear)

+ P (F = insects, P = wolf) + P (F = insects, P = fox)
= 0.1 + 0.05 + 0.05 = 0.2

P (F = small mammals) = P (F = small mammals, P = brown bear)
+ P (F = small mammals, P = wolf) + P (F = small mammals, P = fox)

= 0.2 + 0.25 + 0.1 = 0.55

By adding up the entries vertically we obtain the distribution for P :
P (P = brown bear) = P (P = brown bear, F = fish)

+ P (P = brown bear, F = insects)
+ P (P = brown bear, F = small mammals)

= 0.2 + 0.1 + 0.2 = 0.5
P (P = wolf) = P (P = wolf, F = fish)

+ P (P = wolf, F = insects) + P (P = wolf, F = small mammals)
= 0.02 + 0.05 + 0.25 = 0.32

P (P = fox) = P (P = fox, F = fish)
+ P (P = fox, F = insects) + P (P = fox, F = small mammals)

= 0.03 + 0.05 + 0.1 = 0.18



P1-32 Probability and Statistics [Solutions]

19. The conditional probabilities are:

P (F = fish |P = wolf) =
P (F = fish, P = wolf)

P (P = wolf)
=

0.02
0.02 + 0.05 + 0.25

=
0.02
0.32

P (F = insects |P = wolf) =
P (F = insects, P = wolf)

P (P = wolf)
=

0.05
0.02 + 0.05 + 0.25

=
0.05
0.32

P (F = small mammals |P = wolf) =
P (F = small mammals, P = wolf)

P (P = wolf)
=

0.25
0.02 + 0.05 + 0.25

=
0.25
0.32

The probabilities add up to 1, because a wolf will have one of the three for food.

21. The probability that a bear will prey on a small mammal is

P (F = small mammals |P = bear) =
P (F = small mammals, P = bear)

P (P = bear)
=

0.2
0.2 + 0.1 + 0.2

=
2
5

or 40%.

23. (a) The marginal distribution for X is given by
P (X = 0) = P (X = 0, Y = 0) + P (X = 0, Y = 1) = 0.05 + 0.45 = 0.5
P (X = 1) = P (X = 1, Y = 0) + P (X = 1, Y = 1) = 0.1 + 0.4 = 0.5

The marginal distribution for Y is given by

P (Y = 0) = P (X = 0, Y = 0) + P (X = 1, Y = 0) = 0.05 + 0.1 = 0.15
P (Y = 1) = P (X = 0, Y = 1) + P (X = 1, Y = 1) = 0.45 + 0.4 = 0.85

(b) The random variables X and Y are not independent; for instance, P (X = 0, Y = 0) = 0.05 is not
equal to P (X = 0)P (Y = 0) = (0.5)(0.15) = 0.075.

25. (a) The marginal distribution for X is given by

P (X = 0) = P (X = 0, Y = 0) + P (X = 0, Y = 1) + P (X = 0, Y = 2) = 0.12 + 0.22 + 0.02 = 0.36
P (X = 1) = P (X = 1, Y = 0) + P (X = 1, Y = 1) + P (X = 1, Y = 2) = 0.18 + 0.28 + 0.18 = 0.64

The marginal distribution for Y is given by
P (Y = 0) = P (X = 0, Y = 0) + P (X = 1, Y = 0) = 0.12 + 0.18 = 0.3
P (Y = 1) = P (X = 0, Y = 1) + P (X = 1, Y = 1) = 0.22 + 0.28 = 0.5
P (Y = 2) = P (X = 0, Y = 2) + P (X = 1, Y = 2) = 0.02 + 0.18 = 0.2

(b) The random variables X and Y are not independent; for instance, P (X = 0, Y = 1) = 0.22 is not
equal to P (X = 0)P (Y = 1) = (0.36)(0.5) = 0.18.

27. We find

P (Y = 0 |X = 0) =
P (Y = 0, X = 0)

P (X = 0)
=

0.2
0.2 + 0.08 + 0.12

=
0.2
0.4

= 0.5

P (Y = 0 |X = 1) =
P (Y = 0, X = 1)

P (X = 1)
=

0.3
0.3 + 0.12 + 0.18

=
0.3
0.6

= 0.5

We see that P (Y = 0 |X = 0)+P (Y = 0 |X = 1) = 0/5+0.5 = 1. From the joint distribution table we
compute P (Y = 0) = 0.2+0.3 = 0.5. By examining the joint distribution closer, we realize that X and
Y are independent. Thus P (Y = 0 |X = 0)+P (Y = 0 |X = 1) = P (Y = 0)+P (Y = 0) = 2P (Y = 0),
which is illustrated by their numeric values above.

29. The probabilities P (X = 0) = 0.05 + 0.1 + 0.4 = 0.55 and P (X = 1) = 0.1 + 0.1 + 0.25 = 0.45
define the marginal probability distribution of X.
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31. The probabilities

P (X = 0 |Y = 2) =
P (X = 0, Y = 2)

P (Y = 2)
=

0.4
0.4 + 0.25

=
0.4
0.65

=
8
13

P (X = 1 |Y = 2) =
P (X = 1, Y = 2)

P (Y = 2)
=

0.25
0.4 + 0.25

=
0.25
0.65

=
5
13

define the distribution of X conditional on Y = 2.

33. The marginal probability distributions of X and Y are given in the last row and the last column
in the table below.

Y = 1 Y = 2

X = −2 0 0.12 P (X = −2) = 0.12

X = −1 0.1 0.38 P (X = −1) = 0.48

X = 0 0.26 0.14 P (X = 0) = 0.4

P (Y = 1) = 0.36 P (Y = 2) = 0.64

35. Assume that P (X = 1) = p1 and P (X = 2) = p2 is the probability distribution of X and
P (Y = 3) = q1, P (Y = 4) = q2, and P (Y = 5) = q3 is the probability distribution of Y. Then
E(X) = p1 +2p2 and E(Y ) = 3q1 +4q2 +5q3. The range of XY is {3, 4, 5, 6, 8, 10} and its distribution
is given by (here we use independence)

P (XY = 3) = P (X = 1 and Y = 3) = P (X = 1)P (Y = 3) = p1q1

P (XY = 4) = P (X = 1 and Y = 4) = P (X = 1)P (Y = 4) = p1q2

P (XY = 5) = P (X = 1 and Y = 5) = P (X = 1)P (Y = 5) = p1q3

P (XY = 6) = P (X = 2 and Y = 3) = P (X = 2)P (Y = 3) = p2q1

P (XY = 8) = P (X = 2 and Y = 4) = P (X = 2)P (Y = 4) = p2q2

P (XY = 10) = P (X = 2 and Y = 5) = P (X = 2)P (Y = 5) = p2q3

It follows that
E(XY ) = 3p1q1 + 4p1q2 + 5p1q3 + 6p2q1 + 8p2q2 + 10p2q3

Since

E(X)E(Y ) = (p1 + 2p2)(3q1 + 4q2 + 5q3) = 3p1q1 + 4p1q2 + 5p1q3 + 6p2q1 + 8p2q2 + 10p2q3

we conclude that E(XY ) = E(X)E(Y ).
In general: the range of X is {x1, x2, . . . , xm}; assume that its distribution is given by P (X =

xi) = pi. The range of Y is {y1, y2, . . . , yn}; assume that its distribution is given by P (Y = yi) = qi.
Then E(X) = p1x1 + p2x2 + · · · + pmxm and E(Y ) = q1y1 + q2y2 + · · · + qnyn. The range of XY
consists of all products xiyj , where i = 1, 2, . . . , m and j = 1, 2, . . . , n. The probability distribution is
(by independence)

P (XY = xiyj) = P (X = xi and Y = yj) = P (X = xi)P (Y = yj) = piqj

and

E(XY ) = x1y1p1q1 + x1y2p1q2 + · · · + x1ynp1qn

+ x2y1p2q1 + x2y2p2q2 + · · · + x2ynp2qn

+ · · ·
+ xmy1pmq1 + xmy2pmq2 + · · · + xmynpmqn

Computing the product

E(X)E(Y ) = (p1x1 + p2x2 + · · · + pmxm)(q1y1 + q2y2 + · · · + qnyn)
we see that E(XY ) = E(X)E(Y ).
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Section 10 The Binomial Distribution

1. No. The binomial distribution requires that the same experiment (with the same probability of
success) be repeated. In this case, the probability of success (a male is interviewed) changes: initially,
the probability that a male is selected for an interview is 1/2. Assuming independence, the probability
that the second interviewee is a male is 10/19 (if the first interviewee was a woman) or 9/19 (if the
first interviewee was a man); however, neither is equal to 50%.

3. Define

B =
{

1 goshawk catches a small mammal (success)
0 goshawk does not catch a small mammal

B is a Bernoulli random variable with the probability of success equal to 0.6. Repeat the experiment
10 times; by assumption, the outcomes are independent. The random variable X = “number of
small mammals captured” counts the number of successes in ten independent repetitions of the same
experiment. Thus, X is a binomial variable.

5. Let S represent success and F represent a no-success (failure). Exactly two successes in four trials
occur in the following six cases: SSFF, SFSF, SFFS, FSSF, FSFS, and FFSS. They are all equally
likely, with the probability

P (SSFF) = P (S)P (S)P (F)P (F) = (0.3)(0.3)(0.7)(0.7) = (0.3)2(0.7)2

Thus, probability of obtaining exactly two successes in four trials is 6P (SSFF) = 6 · (0.3)2(0.7)2 =
0.2646.

Now the binomial distribution approach: the probability of success in a single experiment is 0.3.
The probability of 2 successes in 4 independent repetitions of the experiment is given by

b(2, 4; 0.3) =
(

4
2

)
(0.3)2(0.7)2 = 6 · (0.3)2(0.7)2

Clearly, the two answers match.

7.
(12

3

)
represents the number of ways to choose a group of three objects from a group of 12 objects

(say, the number of ways of picking three shirts from a collection of 12 shirts in different colours). We
compute

(
12
3

)
=

12 · 11 · 10
1 · 2 · 3 = 2 · 11 · 10 = 220

9. We compute

C(8, 0) =
(

8
0

)
=

8!
0! · (8 − 0)!

= 1

since 0! = 1. In theory, C(8, 0) represents the number of ways to choose zero objects from a group
of eight objects (we can define that there is one way of not picking any object from a group of 8
objects).

11. The number b(1, 4; 0.6) represents the probability of one success in 4 independent repetitions of
the same Bernoulli experiment with the probability of success equal to 0.6. We compute

b(1, 4; 0.6) =
(

4
1

)
(0.6)1(1 − 0.6)4−1 = 4 (0.6)(0.4)3 = 0.1536.
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13. The number b(1, 7; 0.2) represents the probability of one success in 7 independent repetitions of
the same Bernoulli experiment whose probability of success is 0.2. We compute

b(1, 7; 0.2) =
(

7
1

)
(0.2)1(1 − 0.2)7−1 = 7 (0.2)(0.8)6 ≈ 0.3670.

15. Label the tosses by numbers S = {1, 2, 3, 4, 5, 6, 7, 8}. Picking a group of three numbers from S
corresponds to one event in which 3 tails occurred in 8 tosses (for instance, picking 4, 5 and 8 describes
the event in which tails occurred on the 4th, 5th and 8th tosses). Thus, the number of ways of getting
three tails in eight tosses of a coin is equal to the number of ways of selecting a group of 3 numbers
from the set S of 8 numbers, which is

(
8
3

)
=

8 · 7 · 6
1 · 2 · 3 = 56

17. The number of ways of selecting a team of 4 students from a group of 20 students is
(

20
4

)
=

20 · 19 · 18 · 17
1 · 2 · 3 · 4 = 5 · 19 · 3 · 17 = 4845

19. “At least three successes” means 3, 4, or 5 successes. Thus, the probability of at least three
successes in five trials is given by b(3, 5; 0.6) + b(4, 5; 0.6) + b(5, 5; 0.6).

21. The number of successes could be 5, 6, 7, 8, or 9. The probability is given by b(5, 25; 0.6) +
b(6, 25; 0.6) + b(7, 25; 0.6) + b(8, 25; 0.6) + b(9, 25; 0.6).

23. Formula (10.3) states that
(

n

k

)
=

n!
k!(n − k)!

Replacing k by n − k, we get
(

n

n − k

)
=

n!
(n − k)!(n − (n − k))!

=
n!

(n − k)!(k!
=

(
n

k

)

Thus,
(

22
20

)
=

(
22

22 − 20

)
=

(
22
2

)
=

22 · 21
1 · 2 = 231

25. (a) The probability distribution of X is given by:

P (X = 0) = b(0, 2; 0.4) =
(

2
0

)
(0.4)0(1 − 0.4)2 = (0.6)2 = 0.36

P (X = 1) = b(1, 2; 0.4) =
(

2
1

)
(0.4)1(1 − 0.4)1 = 2 (0.4)(0.6) = 0.48

P (X = 2) = b(2, 2; 0.4) =
(

2
2

)
(0.4)2(1 − 0.4)0 = (0.4)2 = 0.16

(b) See below.
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k

P(N=k)

0.16

0.36

0 1 2

0.48

(c) The mean is

E(X) = 0 · 0.36 + 1 · 0.48 + 2 · 0.16 = 0.8

From
E(X2) = 0 · 0.36 + 1 · 0.48 + 4 · 0.16 = 1.12

we compute the variance

var(X) = E(X2) − (E(X))2 = 1.12 − 0.82 = 0.48

(d) Using (10.4), E(X) = np = 2 · 0.4 = 0.8; using (10.5), var(X) = np(1 − p) = 2 · 0.4 · 0.6 = 0.48.

27. (a) The probability distribution of X is given by:

P (X = 0) = b(0, 4; 0.4) =
(

4
0

)
(0.4)0(0.6)4 = (0.6)4 = 0.1296

P (X = 1) = b(1, 4; 0.4) =
(

4
1

)
(0.4)1(0.6)3 = 4 (0.4)(0.6)3 = 0.3456

P (X = 2) = b(2, 4; 0.4) =
(

4
2

)
(0.4)2(0.6)2 = 6 (0.4)2(0.6)2 = 0.3456

P (X = 3) = b(3, 4; 0.4) =
(

4
3

)
(0.4)3(0.6)1 = 4 (0.4)3(0.6) = 0.1536

P (X = 4) = b(4, 4; 0.4) =
(

4
4

)
(0.4)4(0.6)0 = (0.4)4 = 0.0256

(b) See below.

k

P(N=k)
0.3456

0.1296

0 1 2 3 4

0.1536

0.0256

(c) The mean is
E(X) = 0 · 0.1296 + 1 · 0.3456 + 2 · 0.3456 + 3 · 0.1536 + 4 · 0.0256 = 1.6

From

E(X2) = 0 · 0.1296 + 1 · 0.3456 + 4 · 0.3456 + 9 · 0.1536 + 16 · 0.0256 = 3.52
we compute the variance

var(X) = E(X2) − (E(X))2 = 3.52 − 1.62 = 0.96

(d) Using (10.4), E(X) = np = 4 · 0.4 = 1.6; using (10.5), var(X) = np(1 − p) = 4 · 0.4 · 0.6 = 0.96.
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29. (a) Define

H =
{

1 a chocolate has a hazelnut (success)
0 a chocolate has no hazelnut

H is a Bernoulli random variable with probability of success equal to 0.03. Let N = “number of
chocolates with a hazelnut in a box of 20 chocolates”. Since N counts the number of successes in
repetitions of H (assumed independent), N is a binomially distributed random variable with n = 20
and p = 0.03.

The expected number of chocolates with a hazelnut per box is E(N) = np = 20(0.03) = 0.6.

(b) The probability that there are no chocolates with a hazelnut in one box of 20 chocolates is the
probability of no successes in 20 repetitions:

b(0, 20; 0.03) =
(

20
0

)
(0.03)0(0.97)20 = 0.54379

i.e., a bit over 54%.
(c) Define

B =
{

1 a box of chocolates has no chocolates with a hazelnut (success)
0 a box of chocolates has a chocolate with a hazelnut

B is a Bernoulli random variable with probability of success equal to 0.54379. Let M = “number of
boxes of chocolates which do not contain a chocolate with a hazelnut”. Since M counts the number
of successes in 15 independent repetitions of B, M is a binomially distributed random variable with
n = 15 and p = 0.54379.

The expected number of of boxes that contain no chocolates with a hazelnut is E(M) = np =
15(0.54379) = 8.15685; i.e., 8 boxes.

31. Define

T =
{

1 a tomato plant has been infested with hornworms (success)
0 a tomato plant has not been infested with hornworms

T is a Bernoulli random variable with probability of success equal to 0.15. Let N = “number of
tomato plants which have been infested with hornworms”. Since N counts the number of successes in
independent repetitions of T, N is a binomially distributed random variable; it is given that n = 10
and p = 0.15. The probability that none of the ten randomly picked tomato plants have been infested
with hornworms is (zero successes in ten trials)

b(0, 10; 0.15) =
(

10
0

)
(0.15)0(0.85)10 ≈ 0.19687

33. The probability distribution of the genotype of a puppy of SC parents is P (SS) = 0.25, P (SC) =
0.5, and P (CC) = 0.25. Thus,

P (puppy has straight hair) = P (SS) + P (SC) = 0.75
P (puppy has curly hair) = P (CC) = 0.25

Define

H =
{

1 a puppy has curly hair (success)
0 a puppy does not have curly hair

H is a Bernoulli random variable with probability of success equal to 0.25. Let N = “number of
puppies which have curly hair”. Since N counts the number of successes in independent repetitions
of H, N is a binomially distributed random variable; it is given that n = 8 and p = 0.25.

The expected number of puppies with curly hair is E(N) = np = 8(0.25) = 2. The probability
that exactly 2 puppies have curly hair is

b(2, 8; 0.25) =
(

8
2

)
(0.25)2(0.75)6 ≈ 0.31146
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35. The probability distribution of the genotype of an offspring of LS parents is P (LL) = 0.25 =
P (long), P (LS) = 0.5 = P (medium-sized), and P (SS) = 0.25 = P (short). Define

T =
{

1 an offspring is medium-sized (success)
0 an offspring is not medium-sized

T is a Bernoulli random variable with probability of success equal to 0.5. Let N = “number of medium-
sized offspring”. Since N counts the number of successes in repetitions of T, N is a binomially
distributed random variable; it is given that n = 12 and p = 0.5.

(a) The expected number of medium-sized offspring is E(N) = np = 12(0.5) = 6.
(b) The probability that that there are at most two medium-sized offspring is

b(0, 12; 0.55) + b(1, 12; 0.55) + b(2, 12; 0.55)

=
(

12
0

)
(0.5)0(0.5)12 +

(
12
1

)
(0.5)1(0.5)11 +

(
12
2

)
(0.5)2(0.5)10

= (1 + 12 + 66)(0.5)12 ≈ 0.01929

37. (a) We approximate

50! ≈
√

2π50
(

50
e

)50

= 10
√
π

(
50
e

)50

≈ 3.036344619 · 1064

The true value is

50! = 30414093201713378043612608166064768844377641568960512000000000000

(b) We get

log10

(√
2πn

(n

e

)n)
= log10

√
2πn + log10

(n

e

)n

=
1
2

(log10(2π) + log10 n) + n(log10 n − log10 e)

=
1
2

log10(2π) +
(

n +
1
2

)
log10 n − n log10 e

When n = 120,

log10 120! ≈ 1
2

log10(2π) + 120.5 log10 120 − 120 log10 e ≈ 198.8250922

(c) Using (b), we get

log10

(
120
36

)
= log10

120!
36!84!

= log10 120! − [log10 36! + log10 84!]

≈ 1
2

log10(2π) + 120.5 log10 120 − 120 log10 e

−
[
1
2

log10(2π) + 36.5 log10 36 − 36 log10 e +
1
2

log10(2π) + 84.5 log10 84 − 84 log10 e

]

= −1
2

log10(2π) + 120.5 log10 120 − 36.5 log10 36 − 84.5 log10 84

≈ 30.7356092
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Section 11 The Multinomial and the Geometric Distributions

1. (a) We can do it in 4!
1! 3! = 24

6 = 4 ways: {1 | 2, 3, 4}, {2 | 1, 3, 4}, {3 | 1, 2, 4}, and {4 | 1, 2, 3}.
(b) We can do it in 4!

2! 2! = 24
4 = 6 ways: {1, 2 | 3, 4}, {1, 3 | 2, 4}, {1, 4 | 2, 3}, {2, 3 | 1, 4}, {2, 4 | 1, 3},

and {3, 4 | 1, 2}.
(c) We can do it in 4!

1! 1! 2! = 24
2 = 12 ways: {1 | 2 | 3, 4}, {2 | 1 | 3, 4}, {1 | 3 | 2, 4}, {3 | 1 | 2, 4}, {1 | 4 | 2, 3},

{4 | 1 | 2, 3}, {2 | 3 | 1, 4}, {3 | 2 | 1, 4}, {2 | 4 | 1, 3}, {4 | 2 | 1, 3}, {3 | 4 | 1, 2}, and {4 | 3 | 1, 2}.

3. (a) The probability that the 80 wolves will prey on 10 deer, 70 beavers, no moose, and no animals
from the “other” group is

P (N1 = 10, N2 = 70, N3 = 0, N4 = 0) =
80!

10! · 70! · 0! · 0!
0.3310 · 0.5570 · 0.050 · 0.070

=
80!

10! · 70!
0.3310 · 0.5570

(b) Is it given that N2 = 60, N4 = 16 and N1 + N3 = 4. The probability is (we go through all
combinations of N1 and N3 whose sum is 4):

P (N1 = 0, N2 = 60, N3 = 4, N4 = 16) + P (N1 = 1, N2 = 60, N3 = 3, N4 = 16)
+ P (N2 = 2, N2 = 60, N3 = 2, N4 = 16) + P (N1 = 3, N2 = 60, N3 = 1, N4 = 16)
+ P (N1 = 4, N2 = 60, N3 = 0, N4 = 16)

=
80!

0! · 60! · 4! · 16!
0.330 · 0.5560 · 0.054 · 0.0716 +

80!
1! · 60! · 3! · 16!

0.331 · 0.5560 · 0.053 · 0.0716

+
80!

2! · 60! · 2! · 16!
0.332 · 0.5560 · 0.052 · 0.0716 +

80!
3! · 60! · 1! · 16!

0.333 · 0.5560 · 0.051 · 0.0716

+
80!

4! · 60! · 0! · 16!
0.334 · 0.5560 · 0.050 · 0.0716

5. The probability distribution of the genotype of an offspring of AB parents is P (AA) = 0.25,
P (AB) = 0.5, and P (BB) = 0.25. There is a total of 9 offspring. The probability is

P (three AA, two AB, four BB) =
9!

3! · 2! · 4!
0.253 · 0.52 · 0.254 =

9!
6 · 2 · 24

0.258 ≈ 0.01923

i.e., close to 2%.

7. The probability distribution of the genotype of an offspring of LS parents is P (LL) = 0.25 =
P (long), P (LS) = 0.5 = P (medium length), and P (SS) = 0.25 = P (short).
(a) The probability is

P (two LL, two LS, two SS) =
6!

2! · 2! · 2!
0.252 · 0.52 · 0.252 =

6!
8

0.255 ≈ 0.08789

(b) The probability is

P (two LL, zero LS, four SS) + P (two LL, one LS, three SS)

=
6!

2! · 0! · 4!
0.252 · 0.50 · 0.254 +

6!
2! · 1! · 3!

0.252 · 0.51 · 0.253

≈ 0.00366 + 0.02930 = 0.03296

9. The probability distribution of the genotype of an offspring of AB parents is

P (AA) = 0.25 = P (neither carrier nor has the trait)
P (AB) = 0.5 = P (carrier)
P (BB) = 0.25 = P (has the trait)
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The probability that one child will have attached earlobes, two will be carriers, and one will neither
be a carrier nor have attached earlobes is

P (one AA, two AB, one BB) =
4!

1! · 2! · 1!
(0.25)1 · (0.5)2 · (0.25)1 = 12 (0.25)3 = 0.1875

11. (a) Consider the geometric distribution with probability of success p = 0.15. The probability of
the first success occurring on the fourth trial is

P (X = 4) = (1 − 0.15)3(0.15) = (0.85)3(0.15) ≈ 0.092

(b) See below.
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13. (a) Consider the geometric distribution with probability of success p = 0.2. The probability of
the first success occurring on the third trial is

P (X = 3) = (1 − 0.2)2(0.2) = (0.8)2(0.2) = 0.128

(b) See below.
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15. (a) Consider the geometric distribution with probability of success p = 0.6. The probability that
the first success occurs on or after the fourth trial is (use the complementary event “success occurs
before the fourth trial”)

P (X ≥ 4) = 1 − P (X < 4)
= 1 − [P (X = 1) + P (X = 2) + P (X = 3)]
= 1 − [0.6 + (1 − 0.6)(0.6) + (1 − 0.6)2(0.6)] = 0.064

(b) See below.
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17. (a) Consider the geometric distribution with probability of success p = 0.6. The probability that
the first success occurs on or before the fourth trial is

P (X ≤ 4) = P (X = 1) + P (X = 2) + P (X = 3) + P (X = 4)
= 0.6 + (1 − 0.6)(0.6) + (1 − 0.6)2(0.6) + (1 − 0.6)3(0.6)
= 0.6[1 + 0.4 + 0.42 + 0.43]

= 0.6 · 1 − 0.44

1 − 0.4
= 1 − 0.44 = 0.9744

(In calculating the sum in the end, we used the formula 1+ q + q2 + q3 + · · ·+ qn = (1− qn+1)/(1− q)
with q = 0.4 and n = 3.)
(b) See below.
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19. A geometric distribution will larger p is less spread out that the one with smaller p (look at
histograms in Figure 11.1). Thus, the geometric distribution with p2 = p/2 is more spread out than
the one with p1 = p.

Formally: the variances are var1 = (1 − p)/p2 and

var2 =
1 − p

2(p
2

)2 =
1 − p

2
p2

4

=
4 − 2p

p2

From 4 − 2p > 1 − p (which is true whenever p < 3) we conclude

var1 =
1 − p

p2
<

4 − 2p

p2
= var2

So, p2 = p/2 yields larger variance (thus, wider spread) than p1 = p.

21. From E(X) = 1/p = 5 we get p = 0.2 The variance is var(X) = (1 − p)/p2 = 0.8/0.04 = 20 and
the standard deviation is

√
20 ≈ 4.472.

23. From var = (1−p)/p2 = 2 we get 2p2 = 1−p and 2p2 +p−1 = (2p−1)(p+1) = 0. Thus p = 1/2
(the remaining solution p = −1 makes no sense) and so the mean is 1/(1/2) = 2.



P1-42 Probability and Statistics [Solutions]

25. Let X = “number of trials until gene mutates”. X is a geometrically distributed random variable
with the probability of success p = 0.001.

The probability that a gene will mutate during the 20th cell division is

P (X = 20) = (1 − 0.001)19(0.001) ≈ 0.00098

The probability that the gene will mutate before or during the 20th cell division is

P (X ≤ 20) = P (X = 1) + P (X = 2) + P (X = 3) + · · · + P (X = 20)
= 0.001 + (0.999)(0.001) + (0.999)2(0.001) + · · · + (0.999)19(0.001)
= 0.001[1 + 0.999 + (0.999)2 + · · · + (0.999)19]

= 0.001 · 1 − 0.99920

1 − 0.999
= 1 − 0.99920 ≈ 0.0198

(In calculating the sum we used the formula 1 + q + q2 + q3 + · · · + qn = (1 − qn+1)/(1 − q) with
q = 0.999 and n = 19.)

27. (a) We compute

sn − qsn = 1 + q + q2 + q3 + · · · + qn − q(1 + q + q2 + q3 + · · · + qn)
sn(1 − q) = 1 + q + q2 + q3 + · · · + qn − q − q2 − q3 − · · ·− qn − qn+1

sn(1 − q) = 1 − qn+1

sn =
1 − qn+1

1 − q

(b) Since |q| < 1, it follows that the limit of qn+1 as n → ∞ is zero. Thus,

lim
n→∞

sn = lim
n→∞

1 − qn+1

1 − q
=

1
1 − q

i.e.,

1 + q + q2 + q3 + · · · =
1

1 − q

29. (a) Differentiating

1 + q + q2 + q3 + · · · =
1

1 − q

with respect to q, we get

1 + 2q + 3q2 + 4q3 + · · · = −(1 − q)−2(−1) =
1

(1 − q)2

replacing q by 1 − p yields

1 + 2(1 − p) + 3(1 − p)2 + 4(1 − p)3 + · · · =
1

(1 − (1 − p))2
∞∑

k=1

k(1 − p)k−1 =
1
p2

(b) Differentiating

1 + q + q2 + q3 + · · · =
1

1 − q

with respect to q, then multiplying by q and differentiating with respect to q again, we obtain

1 + 2q + 3q2 + 4q3 + · · · =
1

(1 − q)2

q + 2q2 + 3q3 + 4q4 + · · · =
q

(1 − q)2
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1 + 22q + 32q2 + 42q3 + · · · =
(1 − q)2 − q · 2(1 − q)(−1)

(1 − q)4
=

(1 − q) + 2q
(1 − q)3

1 + 22q + 32q2 + 42q3 + · · · =
q + 1

(1 − q)3

Replacing q by 1 − p and then multiplying by p yields

1 + 22(1 − p) + 32(1 − p)2 + 42(1 − p)3 + · · · =
(1 − p) + 1

(1 − (1 − p))3
∞∑

k=1

k2(1 − p)k−1 =
2 − p

p3

p
∞∑

k=1

k2(1 − p)k−1 =
2 − p

p2
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Section 12 The Poisson Distribution

1. It is given that X∼ Po (2.5). Using

P (X = k) =
e−λλk

k!
=

e−2.5(2.5)k

k!
we obtain

P (X = 0) =
e−2.5(2.5)0

0!
= e−2.5 ≈ 0.0820850

P (X = 1) =
e−2.5(2.5)1

1!
≈ 0.205212

P (X = 2) =
e−2.5(2.5)2

2!
≈ 0.256516

P (X = 3) =
e−2.5(2.5)3

3!
≈ 0.213763

P (X = 4) =
e−2.5(2.5)4

4!
≈ 0.133602

3. It is given that X∼ Po (12). We find

P (4 ≤ X ≤ 7) = P (X = 4) + P (X = 5) + P (X = 6) + P (X = 7)

=
e−12124

4!
+

e−12125

5!
+

e−12126

6!
+

e−12127

7!

= e−12

(
124

4!
+

125

5!
+

126

6!
+

127

7!

)
≈ 0.087213

5. It is given that X∼ Po (4). We find

P (0 ≤ X ≤ 3) = P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3)

=
e−440

0!
+

e−441

1!
+

e−442

2!
+

e−443

3!

= e−4

(
1 + 4 + 8 +

32
3

)
≈ 0.433470

7. Look at Figure 12.1. There are two identical probabilities, corresponding to the values P (X = λ−1)
and P (X = λ). Thus, the given graph represents the Poisson distribution with λ = 4.

We now prove that the observation we made is indeed true. Assume that λ is an integer, λ ≥ 1.
and that X∼ Po (λ). Then

P (X = λ− 1) =
e−λλλ−1

(λ− 1)!
=

e−λλλ−1

(λ− 1)!
· λ
λ

=
e−λλλ

λ!
= P (X = λ)

(In the above, we used the fact that (λ− 1)!λ = λ!.)

9. Define X = “number of people with a respiratory infection in a group of 5000 people.” The
occurrence of 3 out of 2,000 translates to (multiply by 2.5) 7.5 out of 5,000. Thus, X is a Poisson
distribution with parameter λ = 7.5. The probability that 12 out of 5,000 people are diagnosed with
the infection is

P (X = 12) =
e−7.5(7.5)12

12!
≈ 0.036575
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11. Let X = “number of more serious traffic accidents per week.” Then X is a Poisson distribution
with parameter λ = 4. The probability that at least two more serious accidents happen in a week is

P (X ≥ 2) = 1 − P (X < 2) = 1 − (P (X = 0) + P (X = 1))

= 1 −
(

e−4(4)0

0!
+

e−4(4)1

1!

)
= 1 − 5e−4 ≈ 0.908422

13. Define X = “number of spoiled apples in a bag of 15 apples.” The occurrence of 2 spoiled
apples in a bag of 30 apples translates to 1 spoiled apple in a bag of 15 apples. Thus, X is a Poisson
distribution with parameter λ = 1. The probability that there are no more than two spoiled apples in
the bag of 15 apples is

P (X ≤ 2) = P (X = 0) + P (X = 1) + P (X = 2)

=
e−1(1)0

0!
+

e−1(1)1

1!
+

e−1(1)2

2!
= e−1(1 + 1 + 0.5) = 2.5e−1 ≈ 0.919699

15. Define X = “number of heavy metal particles in a half-litre glass of tap water.” The occurrence
of six heavy metal particles in 1 L of tap water translates to three heavy metal particles in 1/2 L of
tap water. Thus, X is a Poisson distribution with parameter λ = 3. The probability that there are no
heavy metal particles in a half-litre glass of tap water is

P (X = 0) =
e−3(3)0

0!
= e−3 ≈ 0.049787

i.e., a bit less than 5%.

17. Define X = “number of molecules leaving the region by the end of the second hour.” The rate
of 0.4 molecules per hour translates to the rate of 0.8 molecules per two hours. Thus, X is a Poisson
distribution with parameter λ = 0.8. The probability that three or fewer molecules leave by the end
of the second hour is

P (X ≤ 3) = P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3)

=
e−0.8(0.8)0

0!
+

e−0.8(0.8)1

1!
+

e−0.8(0.8)2

2!
+

e−0.8(0.8)3

3!
≈ 0.990920

19. Define X = “number of hits by cosmic rays in an eight-hour interval.” The rate of one cosmic ray
per day translates to the rate of 1/3 cosmic rays per eight hours. Thus, X is a Poisson distribution
with parameter λ = 1/3. The probability that we will be hit at least once in an eight-hour interval is

P (X ≥ 1) = 1 − P (X < 1) = 1 − P (X = 0) = 1 − e−1/3(1/3)0

0!
= 1 − e−1/3 ≈ 0.283469

21. Let X = “number of text messages received in an hour.” The context implies that X is a Poisson
distribution with parameter λ = 3. The probability that the student receives more than five messages
in an hour is

P (X > 5) = 1 − P (X ≤ 5)
= 1 − (P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) + P (X = 4) + P (X = 5))

= 1 −
(

e−3(3)0

0!
+

e−3(3)1

1!
+

e−3(3)2

2!
+

e−3(3)3

3!
+

e−3(3)4

4!
+

e−3(3)5

5!

)

= 1 − 92
5

e−3 ≈ 0.083918
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23. Since X ∼ Po (1) and Y ∼ Po (9), it follows that (assuming independence) X + Y ∼ Po (1 + 9),
i.e., X + Y ∼ Po (10). Thus

P (X + Y = 2) =
e−10(10)2

2!
= 50e−10 ≈ 0.002270

and

P (Y = 2 |X + Y = 2) =
P (Y = 2 and X + Y = 2)

P (X + Y = 2)

=
P (Y = 2 and X = 0)

P (X + Y = 2)

=
P (Y = 2)P (X = 0)

P (X + Y = 2)

=
e−9(9)2

2!
e−1(1)0

0!

50e−10
=

(9)2

50 · 2!
= 0.81

25. Define T = “number of text messages in an hour” and C = “number of phone calls in an hour.”
It is given that T ∼ Po (4) and C ∼ Po (2). Let I = T + C = “number of interruptions in an hour.”
Assuming independence, I∼ Po (6). The probability that the student will experience no interruptions
in 1 hour is

P (I = 0) =
e−6(6)0

0!
= e−6 ≈ 0.002479

Let J = “number of interruptions in a ten-minute interval.” Then J∼ Po (1), and the probability
that the student will experience one interruption every 10 minutes is

P (J = 1) =
e−1(1)1

1!
= e−1 ≈ 0.367879

27. Define

A =
{

1 a person experiences serious side effects from allergy medication (success)
0 a person does not experience serious side effects from allergy medication

A is a Bernoulli random variable with probability of success equal to 0.003. Let N = “number of
people experiencing serious side effects from allergy medication in a group of 200 people”. Since N
counts the number of successes in 200 independent repetitions of the event A, it follows that N is a
binomially distributed random variable with n = 200 and p = 0.003. Thus, the probability that in a
group of 200 people nobody experiences serious side effects is

b(0, 200; 0.003) =
(

200
0

)
(0.003)0(0.997)200 = (0.997)200 ≈ 0.548317

Using Poisson approximation (recall that b(k, n; p) ≈ P (X = k) if X∼ Po (np)), we get
b(0, 200; 0.003) ≈ P (X = 0)

where X∼ Po (200 · 0.003 = 0.6). Thus

P (X = 0) =
e−0.6(0.6)0

0!
= e−0.6 ≈ 0.548812

29. Define

L =
{

1 a person has serious consequences from lactose intolerance (success)
0 a person does not have serious consequences from lactose intolerance

L is a Bernoulli random variable with probability of success equal to 0.002. Let N = “number of
people who have serious consequences from lactose intolerance in a group of 500 people”. Since N
counts the number of successes in 500 independent repetitions of the event L, it follows that N is a
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binomially distributed random variable with n = 500 and p = 0.002. Thus, the probability that in a
group of 500 people one person experiences serious consequences from lactose intolerance is

b(1, 500; 0.002) =
(

500
1

)
(0.002)1(0.998)499 = (0.998)499 ≈ 0.368248

Using Poisson approximation (recall that b(k, n; p) ≈ P (X = k) if X∼ Po (np)), we get
b(1, 500; 0.002) ≈ P (X = 1)

where X∼ Po (500 · 0.002 = 1). Thus

P (X = 1) =
e−1(1)1

1!
= e−1 ≈ 0.367879
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Section 13 Continuous Random Variables

1. The function f(x) = 1 − x2, x ∈ [0, 2], cannot be a probability density function because f(x) ≥ 0
does not hold on [0, 2]. For instance, f(1.5) = 1 − (1.5)2 = −1.25.

3. To satisfy f(x) ≥ 0, we need a ≥ 0 (actually, we need a > 0; if a = 0, then f is identically zero and
cannot be a probability density function). As well, the integral of f has to be equal to 1:

∫ 10

1

a

x
dx = a ln |x|

∣∣∣
10

1
= a ln 10 − a ln 1 = a ln 10 = 1

Thus, a = 1/ ln 10.

5. To satisfy f(x) ≥ 0, we need a ≥ 0 (actually we need a > 0; if a = 0, then f is identically zero and
cannot be a probability density function). As well, the integral of f has to be 1:

∫ ∞

0

a

1 + x2
dx = a arctanx

∣∣∣
∞

0
= a arctan(∞) − a arctan 0 = a

π

2
= 1

(since arctan 0 = 0). Thus, a = 2/π.
In the above, we abbreviated the calculation of the improper integral. Without skipping steps:

∫ ∞

0

a

1 + x2
dx = a lim

T→∞

∫ T

0

a

1 + x2
dx

= a lim
T→∞

arctanx
∣∣∣
T

0

= a lim
T→∞

(arctanT − arctan 0) = a
π

2

7. Clearly, f(x) = 2/x3 is positive for x ∈ [1,∞). As well,
∫ ∞

1

2
x3

dx = lim
T→∞

∫ T

1

2
x3

dx

= lim
T→∞

2
x−2

−2

∣∣∣
T

1

= lim
T→∞

− 1
x2

∣∣∣
T

1

= lim
T→∞

(
− 1

T 2
+

1
12

)
= 0 + 1 = 1

The mean is

µ =
∫ ∞

1
x

2
x3

dx = lim
T→∞

∫ T

1

2
x2

dx

= lim
T→∞

2
x−1

−1

∣∣∣
T

1

= lim
T→∞

− 2
x

∣∣∣
T

1

= lim
T→∞

(
− 2

T
+

2
1

)
= 0 + 2 = 2

9. No. Let f(x) = a for x ∈ [0,∞), where a > 0 is a constant. Since
∫ ∞

0
a dx = lim

T→∞

∫ T

0
a dx = lim

T→∞
ax

∣∣∣
T

0
= lim

T→∞
(aT ) = ∞

the integral of f cannot be equal to 1, no matter what value of a is used.
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11. Using the probability density function, we compute

P (0.5 ≤ X ≤ 2) =
∫ 2

0.5
(0.3 + 0.2x) dx = (0.3x + 0.1x2)

∣∣∣
2

0.5
= (0.6 + 0.4) − (0.15 + 0.025) = 0.825

The cumulative distribution function of f(x) is

F (x) =
∫ x

0
(0.3 + 0.2t) dt = (0.3t + 0.1t2)

∣∣∣
x

0
= (0.3x + 0.1x2) − 0 = 0.3x + 0.1x2

for x in [0, 2]. Thus,
P (0.5 ≤ X ≤ 2) = F (2) − F (0.5) = [(0.3)(2) + (0.1)(2)2] − [(0.3)(0.5) + (0.1)(0.5)2] = 0.825

13. Using the probability density function, we compute

P (1 ≤ X ≤ 2) =
∫ 2

1

1
x

dx = ln |x|
∣∣∣
2

1
= ln 2 − ln 1 = ln 2

The cumulative distribution function of f(x) is

F (x) =
∫ x

1

1
t

dt = ln |t|
∣∣∣
x

1
= lnx − ln 1 = lnx

for x in [1, e]. Thus,

P (1 ≤ X ≤ 2) = F (2) − F (1) = ln 2 − ln 1 = ln 2

15. We check the properties listed in Theorem 13:
(a) Since e−2x ≤ 1 for x ≥ 0, it follows that F (x) = 1− e−2x ≥ 0 for all x ∈ [0,∞). As well, e−2x > 0,
and thus F (x) = 1 − e−2x ≤ 1 for all x ∈ [0,∞).
(b) The function F (x) is continuous for all x, as the difference of two continuous functions. The fact
that F ′(x) = −e−2x(−2) = 2e−2x > 0 implies that F (x) is increasing (thus, it is non-decreasing) for
all x ∈ [0,∞).
(c) The limits:

lim
x→0

F (x) = lim
x→0

(1 − e−2x) = 1 − e0 = 0

and

lim
x→∞

F (x) = lim
x→∞

(1 − e−2x) = 1 − e−∞ = 1

Thus F (x) = 1 − e−2x, x ∈ [0,∞), is indeed a cumulative distribution function. The corresponding
probability density function is f(x) = F ′(x) = 2e−2x.

The expected value is given by

µ =
∫ ∞

0
x(2e−2x) dx = 2

∫ ∞

0
xe−2x dx

First we calculate the indefinite integral (using integration by parts): let u = x and v′ = e−2x. Then
u′ = 1, v = −e−2x/2, and

∫
xe−2x dx = uv −

∫
vu′ dx

= −1
2
xe−2x +

1
2

∫
e−2x dx

= −1
2
xe−2x − 1

4
e−2x = −1

4
(2x + 1)e−2x

Thus

µ = 2
∫ ∞

0
xe−2x dx = 2 lim

T→∞

∫ T

0
xe−2x dx
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= 2 lim
T→∞

(
−1

4
(2x + 1)e−2x

)∣∣∣
T

0

= 2
[

lim
T→∞

(
−1

4
(2T + 1)e−2T

)
−

(
−1

4

)]
= 2

(
0 +

1
4

)
=

1
2

Recall that

lim
T→∞

e−2T = 0

and, by L’Hôpital’s rule,

lim
T→∞

Te−2T = lim
T→∞

T

e2T
= lim

T→∞

1
2e2T

= 0

17. (a) Clearly, f(x) = 2x ≥ 0 for x ∈ [0, 1]. As well,
∫ 1

0
f(x) dx =

∫ 1

0
2xdx = x2

∣∣∣
1

0
= 1 − 0 = 1

(b) The cumulative distribution function is

F (x) =
∫ x

0
2t dt = t2

∣∣∣
x

0
= x2

for x ∈ [0, 1].
(c) The expected value of X is

µ = E(X) =
∫ 1

0
x(2x) dx =

2x3

3

∣∣∣∣
1

0

=
2
3

(d) We find

P (X ≤ µ) = P (X ≤ 2/3) = F (2/3) =
(

2
3

)2

=
4
9

19. (a) Clearly, f(x) = 3x2 ≥ 0 for x ∈ [0, 1]. As well,
∫ 1

0
f(x) dx =

∫ 1

0
3x2 dx = x3

∣∣∣
1

0
= 1 − 0 = 1

(b) The cumulative distribution function is

F (x) =
∫ x

0
3t2 dt = t3

∣∣∣
x

0
= x3

for x ∈ [0, 1].
(c) The expected value of X is

µ = E(X) =
∫ 1

0
x(3x2) dx =

3x4

4

∣∣∣∣
1

0

=
3
4

(d) We find

P (X ≤ µ) = P (X ≤ 3/4) = F (3/4) =
(

3
4

)3

=
27
64

21. (a) From 0 ≤ x ≤ 3 we get (after multiplying by 2/9) 0 ≤ 2x/9 ≤ 2/3. Thus, 2/3 − 2x/9 ≥ 0 for
x ∈ [0, 3]. As well,

∫ 3

0
f(x) dx =

∫ 3

0

(
2
3
− 2x

9

)
dx =

(
2x

3
− x2

9

)∣∣∣∣
3

0

= (2 − 1) − 0 = 1
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(b) The cumulative distribution function is

F (x) =
∫ x

0

(
2
3
− 2t

9

)
dt =

(
2t

3
− t2

9

)∣∣∣∣
x

0

=
2x

3
− x2

9
for x ∈ [0, 3].
(c) The expected value of X is

µ = E(X) =
∫ 3

0
x

(
2
3
− 2x

9

)
dx =

∫ 3

0

(
2x

3
− 2x2

9

)
dx =

(
x2

3
− 2x3

27

)∣∣∣∣
3

0

= (3 − 2) − 0 = 1

(d) We find

P (X ≤ µ) = P (X ≤ 1) = F (1) =
(

2
3
− 1

9

)
=

5
9

23. We compute

µ = E(X) =
∫ 1

0
x(3x2) dx =

3x4

4

∣∣∣∣
1

0

=
3
4

= 0.75

E(X2) =
∫ 1

0
x2(3x2) dx =

3x5

5

∣∣∣∣
1

0

=
3
5

var(X) = E(X2) − (E(X))2 =
3
5
− 9

16
=

3
80

and σ =
√

var(X) =
√

3/80 ≈ 0.19365. The probability that the values of X are at most one standard
deviation away from the mean is

P (µ − σ ≤ X ≤ µ + σ) =
∫ µ+σ

µ−σ
3x2 dx

= x3
∣∣∣
µ+σ

µ−σ

= (µ + σ)3 − (µ − σ)3

= (0.75 + 0.19365)3 − (0.75 − 0.19365)3 = 0.668093

25. The cumulative distribution function is

F (x) =
∫ x

0
3t2 dt = t3

∣∣∣
x

0
= x3

for x ∈ [0, 1]. The median is the value x where F (x) = 1/2, i.e., where x3 = 1/2. Thus, the median is
3
√

1/2.

27. We are looking for a number Q3 such that P (X ≤ Q3) = 0.75.
∫ Q3

0

(
2
3
− 2x

9

)
dx = 0.75

(
2x

3
− x2

9

)∣∣∣∣
Q3

0

= 0.75

2Q3

3
− Q2

3

9
= 0.75

Multiplying by 9 and using the quadratic formula, we get

Q2
3 − 6Q3 + 6.75 = 0

Q3 =
6 ±

√
36 − 27
2
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So Q3 = 1.5 or Q3 = 4.5. Since the probability density function and the cumulative distribution
function are defied on 0 ≤ x ≤ 3, the upper quartile is 1.5.

29. The average lifetime of the tree is given by the integral
∫ ∞

0
t f(t) dt =

∫ ∞

0
t 0.01e−0.01t dt = lim

T→∞

∫ T

0
0.01te−0.01t dt

To calculate the indefinite integral, we use the integration by parts with u = t and v′ = e−0.01t. Then
u′ = 1, v = −e−0.01t/0.01 = −100e−0.01t, and

∫
0.01te−0.01t dt = 0.01

(
uv −

∫
vu′ dt

)

= 0.01
(
−100te−0.01t +

∫
100e−0.01t dt

)

= 0.01
(
−100te−0.01t − 10000e−0.01t

)

= −te−0.01t − 100e−0.01t

Thus,

lim
T→∞

∫ T

0
0.01te−0.01t dt = lim

T→∞

(
−te−0.01t − 100e−0.01t

)∣∣∣
T

0

= lim
T→∞

[(
−Te−0.01T − 100e−0.01T

)
− (0 − 100)

]

= 100
because

lim
T→∞

e−0.01T = 0

and, by L’Hôpital’s rule,

lim
T→∞

Te−0.01T = lim
T→∞

T

e0.01T
= lim

T→∞

1
0.01e0.01T

= 0

Thus, the average lifetime of a tree is 100 years.
The probability that a tree will live longer than 70 years is

P =
∫ ∞

70
f(t) dt =

∫ ∞

70
0.01e−0.01t dt

= lim
T→∞

∫ T

70
0.01e−0.01t dt

= lim
T→∞

−e−0.01t
∣∣∣
T

70

= lim
T→∞

(
−e−0.01T + e−0.01(70)

)

= e−0.7 ≈ 0.49659

i.e., about 50%.

31. The probability is

P (distance ≤ 10) =
∫ 10

0

2
π(1 + x2)

dx

=
2
π

arctanx
∣∣∣
10

0

=
2
π

arctan 10 − 0 ≈ 0.936550
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33. (a) When x ≥ 0, f(x) = 1 − |x| = 1 − x; thus,

P (1/2 ≤ X ≤ 3/4) =
∫ 3/4

1/2
(1 − |x|) dx =

∫ 3/4

1/2
(1 − x) dx

=
(

x − x2

2

)∣∣∣
3/4

1/2

=
(

3
4
− 9

32

)
−

(
1
2
− 1

8

)
=

3
32

When x < 0, f(x) = 1 − |x| = 1 − (−x) = 1 + x; so

P (−1/2 ≤ X ≤ 0) =
∫ 0

−1/2
(1 − |x|) dx =

∫ 0

−1/2
(1 + x) dx

=
(

x +
x2

2

)∣∣∣
0

−1/2

= (0) −
(
−1

2
+

1
8

)
=

3
8

(b) To find the expected value, we need to find the integral

E(X) =
∫ 1

−1
x(1 − |x|) dx =

∫ 0

−1
x(1 + x) dx +

∫ 1

0
x(1 − x) dx

We can proceed as usual, calculating antiderivatives and evaluating. But, there is a shortcut: the
function x(1 − |x|) is odd, and therefore its integral from −1 to 1 is zero. Thus, E(X) = 0. We need
to find

E(X2) =
∫ 1

−1
x2(1 − |x|) dx =

∫ 0

−1
x2(1 + x) dx +

∫ 1

0
x2(1 − x) dx

=
∫ 0

−1
(x2 + x3) dx +

∫ 1

0
(x2 − x3) dx

=
(

x3

3
+

x4

4

)∣∣∣∣
0

−1

+
(

x3

3
− x4

4

)∣∣∣∣
1

0

= (0) −
(
−1

3
+

1
4

)
+

(
1
3
− 1

4

)
− (0) =

1
6

Thus, the variance is var(X) = E(X2) − (E(X))2 = 1/6.

35. The Intermediate Value Theorem states that a continuous function defined on a closed interval
[a, b] assumes all values between f(a) and f(b). The cumulative distribution function is continuous,
and by assumption in this exercise, it is defined on a closed interval [a, b] (and not on an interval that
includes −∞ or ∞). Any cumulative distribution function F (x) satisfies F (a) = 0 and F (b) = 1. Thus,
the Intermediate Value Theorem implies that F assumes all values between 0 and 1, in particular the
value 1/2. In other words, there is a number x where F (x) = 1/2; this number is the median of X.
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Section 14 The Normal Distribution

1. Assume that X is normally distributed with mean µ and variance σ2. The z-score of a number
a is the number (a − µ)/σ; it is used to convert a probability related to a normal distribution to a
probability related to the standard normal distribution.

If X ∼ N(3, 16) then µ = 3 and σ = 4. To calculate P (0 ≤ X ≤ 7) we convert the numbers to
their z-scores:

P (0 ≤ X ≤ 7) = P

(
0 − 3

4
≤ X − 3

4
≤ 7 − 3

4

)
= P (−3/4 ≤ Z ≤ 1)

The random variable Z = (X − 3)/4 has the standard normal distribution.

3. The notation X ∼ N(0, 22) says that the mean is µ = 0 and the standard deviation is σ = 2. Thus,

P (−1 ≤ X ≤ 2) = P

(
−1 − 0

2
≤ X − 0

2
≤ 2 − 0

2

)
= P (−1/2 ≤ Z ≤ 1)

Below is the graph of the standard normal distribution; the area of the shaded region is equal to
P (−1 ≤ X ≤ 2).

−5 −4 −3 −2 −1/2 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

5. It is given that µ = 5 and σ = 10. Thus

P (X < 9) = P

(
X − 5

10
<

9 − 5
10

)
= P (Z < 0.4) = F (0.4) = 0.655422

7. It is given that µ = 0 and σ = 10. Thus

P (X > 25) = P

(
X − 0

10
>

25 − 0
10

)

= P (Z > 2.5)
= 1 − P (Z ≤ 2.5)
= 1 − F (2.5) = 1 − 0.993790 = 0.006210

9. It is given that µ = −5 and σ = 10. We find

P (X < −10) = P

(
X − (−5)

10
<

−10 − (−5)
10

)

= P (Z < −0.5)
= F (−0.5)
= 1 − F (0.5) = 1 − 0.691462 = 0.308538



Section 14 [Solutions] P1-55

11. It is given that µ = 2 and σ = 5. Thus

P (0 ≤ X ≤ 5) = P

(
0 − 2

5
≤ X − 2

5
≤ 5 − 2

5

)

= P (−0.4 ≤ Z ≤ 0.6)
= F (0.6) − F (−0.4)
= F (0.6) − (1 − F (0.4)) = 0.725747 − (1 − 0.655422) = 0.381169

13. Let W denote the weight of a pink salmon. It is given that W ∼ N(1.7, 0.12). The ratio of pink
salmon which is heavier than 1.9 kg is given by

P (W > 1.9) = P

(
W − 1.7

0.1
>

1.9 − 1.7
0.1

)

= P (Z > 2)
= 1 − P (Z ≤ 2)
= 1 − F (2) = 1 − 0.977250 = 0.022750

So, about 2.3% of salmon is heavier than 1.9 kg.

15. The mean of I is µ = 100 and the standard deviation is σ = 15. We compute

P (I > 120) = P

(
Z >

120 − 100
15

)

= P (Z > 4/3)
= 1 − P (Z ≤ 1.33)
= 1 − F (1.33)
≈ 1 − F (1.35) = 1 − 0.911492 = 0.088508

The probability that someone’s IQ is more than 120 is about 8.85%.

17. Given S ∼ N(44, 52), we compute

P (S > 50) = P

(
Z >

50 − 44
5

)

= P (Z > 1.2)
= 1 − P (Z ≤ 1.2)
= 1 − F (1.2) = 1 − 0.884930 = 0.115070

About 11.5% of moose can run faster than 50 km/h.

19. The fraction of the population in the interval (µ−σ, µ+σ) is 0.683. The fraction of the population
in the interval (µ− 2σ, µ+2σ) which is outside of (µ−σ, µ+σ) is 0.955− 0.683 = 0.272. The fraction
of population in (µ − σ, µ + 2σ) is the fraction of the population in (µ − σ, µ + σ) plus (because of
symmetry) one half of the population in the interval (µ−2σ, µ+2σ) which is outside of (µ−σ, µ+σ).
Thus, the required fraction is 0.683 + 0.272/2 = 0.819.

21. Let X denote the given population. From P (µ − σ ≤ X ≤ µ + σ) = 0.683 it follows that
P (µ ≤ X ≤ µ + σ) = 0.683/2 (that’s because of the symmetry of the graph). Thus,

P (−∞ ≤ X ≤ µ + σ) = P (−∞ ≤ X ≤ µ) + P (µ ≤ X ≤ µ + σ) = 0.5 + 0.683/2 = 0.8415

23. Let X denote the given population. From P (µ − σ ≤ X ≤ µ + σ) = 0.683 it follows that
P (µ − σ ≤ X ≤ µ) = 0.683/2 (because of the symmetry of the graph). Thus,

P (−∞ ≤ X ≤ µ − σ) = P (−∞ ≤ X ≤ µ) − P (µ − σ ≤ X ≤ µ) = 0.5 − 0.683/2 = 0.1585



P1-56 Probability and Statistics [Solutions]

25. X is normally distributed with mean E(X) = 2 + 4 = 6 and variance var(X) = 122 + 62 = 180
(so the standard deviation of X is σ =

√
180).

27. Reducing to z-scores, we obtain

P (X ≤ x) = 0.56

P

(
Z ≤ x − 2

12

)
= 0.56

In Table 14.4 we find
P (Z ≤ 0.15) = 0.559618

which is the closest value to 0.56. Thus, (x − 2)/12 ≈ 0.15, and x ≈ 12(0.15) + 2 = 3.8.

29. Reducing to z-scores, we obtain

P (X > x) = 0.2

P

(
Z >

x − 2
12

)
= 0.2

1 − P

(
Z ≤ x − 2

12

)
= 0.2

P

(
Z ≤ x − 2

12

)
= 0.8

In Table 14.4 we find

P (Z ≤ 0.85) = 0.802337

which is the closest value to 0.8. Thus, (x − 2)/12 ≈ 0.85, and x ≈ 12(0.85) + 2 = 12.2.

31. Denote by S the grades on the test. It is given that S ∼ N(72, 82). The ratio of students which
scored more than 90% on the test is

P (S > 90) = P

(
Z >

90 − 72
8

)

= P (Z > 18/8 = 2.25)
= 1 − P (Z ≤ 2.25)
= 1 − F (2.25)
= 1 − 0.987776 = 0.012224

Thus, about 1.2% of students scored more than 90% on the test.

33. Denote by S the grades on the test. It is given that S ∼ N(72, 82). We are asked to find s so that
P (S ≥ s) = 0.05. We compute

P (S ≥ s) = 0.05

P

(
Z >

s − 72
8

)
= 0.05

1 − P

(
Z ≤ s − 72

8

)
= 0.05

P

(
Z ≤ s − 72

8

)
= 0.95

In Table 14.4 we find P (Z ≤ 1.65) = 0.950529, which is the closest value to 0.95. Thus, (s − 72)/8 =
1.65, and s = 8(1.65) + 72 = 85.2. So the minimum score of the highest 5% of the test scores is 85.2
(of 100).
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35. Define the Bernoulli experiment

Ti =
{

1 ith tree is infested by canker-rot fungus (success)
0 ith tree is not infested by canker-rot fungus

It is given that p = P (Ti = 1) = 0.014 and P (Ti = 0) = 0.986 for i = 1, 2, . . . , 200 (we find
E(Ti) = p = 0.014 and var(Ti) = p(1−p) = (0.014)(0.986) = 0.013804 for all i). The random variable

M =
200∑

i=1

Ti

counts the number trees infested by canker-rot fungus.
The random variables Ti are identically distributed (and assumed to be) independent. The mean

of M is (see Theorem 7 in Section 7) E(M) = np = (200)(0.014) = 2.8 and the variance is (see
Theorem 9 in Section 9) var(M) = np(1 − p) = 200(0.014)(0.986) = 2.7608. Using the Central Limit
Theorem, we approximate M by the normal distribution M ∼ N(2.8, 2.7608).

The probability that fewer than 25 trees are infested with the fungus is (approximately)

P (M ≤ 25) = P

(
Z ≤ 25 − 2.8√

2.7608

)

≈ P (Z ≤ 13.36089)
= F (13.36089)
≈ 0.999999

(We don’t have this value in the tables, but know that it’s very close to 1).

37. Consider the random variable Bi = “number of surviving offspring from ith bacterium”, where
i = 1, 2, 3, . . . , 10, 000. It is given that, for all i, P (Bi = 2) = 0.15, P (Bi = 1) = 0.75, and P (Bi =
0) = 0.1. We compute

E(Bi) = 2(0.15) + 1(0.75) + 0(0.1) = 1.05

From

E(B2
i ) = 4(0.15) + 1(0.75) + 0(0.1) = 1.35

we compute the variance

var(Bi) = E(B2
i ) − (E(Bi))2 = 1.35 − 1.052 = 0.2475.

The random variable

M =
10,000∑

i=1

Bi

counts the number surviving offspring.
The random variables Bi are identically distributed (with mean µ = 1.05 and variance σ2 =

0.2475) and assumed to be independent. The mean of M is (see Theorem 7 in Section 7) E(M) =
nµ = (10, 000)(1.05) = 10, 500 and the variance is (see Theorem 9 in Section 9) var(M) = nσ2 =
10, 000(0.2475) = 2, 475. Using the Central Limit Theorem, we approximate M by the normal distri-
bution M ∼ N(10, 500, 2, 475).

The probability that the population will be larger than 10,000 is (approximately)

P (M > 10, 000) = P

(
Z >

10, 000 − 10, 500√
2, 475

)

= P (Z > −10.05)
= 1 − P (Z ≤ −10.05)
= 1 − F (−10.05)
= 1 − (1 − F (10.05)) = F (10.05) ≈ 0.999999

(F (10.05) is very close to 1.)
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39. Define the Bernoulli experiment

V =
{

1 virus is present (success)
0 virus is absent

It is given that p = P (V = 1) = 0.2 and P (V = 0) = 0.8. Repeat the experiment 120 times, and let
N count the number of successes (number of months the virus is present). The probability that the
virus will be present in between 30 and 36 months during a 10-year period is given by the sum of the
probabilities of 30, 31, 32, 33, 34, 35 and 36 successes in 120 repetitions:

P (30 ≤ n ≤ 36) = b(30, 120; 0.2) + b(31, 120; 0.2) + b(32, 120; 0.2)
+ b(33, 120; 0.2) + b(34, 120; 0.2) + b(35, 120; 0.2) + b(36, 120; 0.2)

The major difficulty in evaluating the seven expressions consists of dealing with products of very large
numbers (factorials) with very small numbers (coming from the probabilities). For instance,

b(33, 120; 0.2) =
(

120
33

)
(0.2)33(0.8)87 =

120!
33! 87!

(0.2)33(0.8)87

However, thus is not a real problem if instead of a pocket calculator we use Maple, Matlab, Mathe-
matica, or similar software.

41. Let t = −u2. Then dt/du = −2u, and udu = −dt/2; we get
∫

ue−u2
du =

∫
et

(
−dt

2

)
dt = −1

2

∫
et dt = −1

2
et + C = −1

2
e−u2

+ C.

The definite integral is computed to be
∫ ∞

0
ue−u2

du = lim
T→∞

∫ T

0
ue−u2

du

= lim
T→∞

(
−1

2
e−u2

)∣∣∣∣
T

0

= −1
2

lim
T→∞

(
e−T 2

− e0
)

= −1
2
(0 − 1) =

1
2

Let f(u) = ue−u2
. Then f(−u) = (−u)e−(−u)2 = −ue−u2

= −f(u); i.e., f(u) is an odd function.
Because

∫ ∞
0 ue−u2

du is a convergent integral (equal to 1/2) it follows that
∫ 0
−∞ ue−u2

du is convergent
as well, and equal to −1/2. Thus,

∫ ∞

−∞
ue−u2

du =
∫ 0

−∞
ue−u2

du +
∫ ∞

0
ue−u2

du =
1
2

+
(
−1

2

)
= 0

43. (a) The calculation g(−x) = e−(−x)2 = e−x2
= g(x) proves that g is an even function.

(b) We compute g′(x) = −2xe−x2
. If x > 0, then g′(x) < 0 (keep in mind that e−x2

> 0 for all x),
and so g is decreasing. If x < 0, then g′(x) > 0 and g is increasing.

The equation g′(x) = −2xe−x2
= 0 implies that x = 0 is the only critical point of g. Since g

changes from increasing to decreasing at x = 0, it follows that g(0) = 1 is a local maximum.
Because −x2 ≤ 0 for all x, we conclude that e−x2 ≤ e0 = 1 for all real numbers x. Thus, g(0) = 1

is also a global maximum of g.

(c) Differentiating g′, we obtain

g′′(x) = −2e−x2
− 2xe−x2

(−2x) = −2e−x2
(1 − 2x2)

From g′′(x) = 0 we get 1 − 2x2 = 0, x2 = 1/2 and x = ±1/
√

2.
If x < −1/

√
2, then g′′(x) > 0 and g is concave up. If −1/

√
2 < x < 1/

√
2, then g′′(x) < 0 and g

is concave down. If x > 1/
√

2, then g′′(x) > 0 and g is concave up. Thus, x = ±1/
√

2 are points of
inflection of g.
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(d) We find

lim
x→−∞

g(x) = lim
x→−∞

e−x2
= e−∞ = 0

lim
x→∞

g(x) = lim
x→∞

e−x2
= e−∞ = 0

45. It is assumed that X ∼ N(µ,σ2). We use z-scores to convert to calculations involving the standard
normal distribution:

P (µ − σ ≤ X ≤ µ + σ) = P

(
µ − σ − µ

σ
≤ X − µ

σ
≤ µ + σ − µ

σ

)

= P (−1 ≤ Z ≤ 1)
= F (1) − F (−1)
= F (1) − (1 − F (1))
= 2F (1) − 1 = 2(0.841345) − 1 = 0.682690 ≈ 0.683

Likewise,

P (µ − 2σ ≤ X ≤ µ + 2σ) = P

(
µ − 2σ − µ

σ
≤ X − µ

σ
≤ µ + 2σ − µ

σ

)

= P (−2 ≤ Z ≤ 2)
= F (2) − F (−2)
= 2F (2) − 1 = 2(0.977250) − 1 = 0.9545 ≈ 0.955

and

P (µ − 3σ ≤ X ≤ µ + 3σ) = P

(
µ − 3σ − µ

σ
≤ X − µ

σ
≤ µ + 3σ − µ

σ

)

= P (−3 ≤ Z ≤ 3)
= F (3) − F (−3)
= 2F (3) − 1 = 2(0.998650) − 1 = 0.9973 ≈ 0.997
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Section 15 The Uniform and the Exponential Distributions

1. From var(U) = (b − 0)2/12 = 12 we get b2 = 122 and b = 12 (since b > 0). The mean of U is
E(U) = (0 + 12)/2 = 6.

3. (a) The probability density function is f(t) = 0.2e−0.2t and the cumulative distribution function is
F (t) = 1 − e−0.2t. The probability that the first event occurs between times 2 and 6 is

P (2 ≤ T ≤ 6) =
∫ 6

2
0.2e−0.2t dt

=
(
−e−0.2t

)∣∣∣
6

2

= −e−1.2 + e−0.4 ≈ 0.369126

Alternatively, using the cumulative distribution function,

P (2 ≤ T ≤ 6) = F (6) − F (2) =
(
1 − e−0.2(6)

)
−

(
1 − e−0.2(2)

)
= −e−1.2 + e−0.4 ≈ 0.369126

(b) See below.
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5. (a) The probability density function is f(t) = 1.5e−1.5t and the cumulative distribution function is
F (t) = 1 − e−1.5t. The probability that the first event occurs before t = 3 is

P (T < 3) =
∫ 3

0
1.5e−1.5t dt

=
(
−e−1.5t

)∣∣∣
3

0

= −e−4.5 + 1 ≈ 0.988891
Alternatively, using the cumulative distribution function, we obtain

P (T < 3) = F (3) = 1 − e−1.5(3) = 1 − e−4.5 ≈ 0.988891

(b) See below.
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7. (a) The probability density function is f(t) = 2.4e−2.4t and the cumulative distribution function is
F (t) = 1 − e−2.4t. The probability that the first event occurs before t = 0.3 or after t = 1.2 is

P (T < 0.3) + P (T > 1.2) = P (T < 0.3) + (1 − P (T ≤ 1.2))
= F (0.3) + 1 − F (1.2)
= (1 − e−2.4(0.3)) + 1 − (1 − e−2.4(1.2)) ≈ 0.569383

(b) See below.
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9. Given s(t) = e−0.4t, we identify λ = 0.4/month. The mean lifetime is 1/λ = 1/0.4 = 2.5 months.
From s(3) = e−0.4(3) = e−1.2 ≈ 0.301194 we conclude that about 30.1% of insects will survive 3
months.

11. Denote the lifespan of the atom by T. Since the expected lifespan is 4 hours, it follows that
λ = 1/4 = 0.25/hour. The probability density function of T is f(t) = 0.25e−0.25t, the cumulative
distribution function is F (t) = 1 − e−0.25t, and the survivorship function is s(t) = e−0.25t.

The probability that the atom will not decay during the first 3 hours is

P (T > 3) = 1 − P (T ≤ 3) = 1 − F (3) = s(3) = e−0.25(3) = e−0.75 ≈ 0.472367

Repeating this calculation, we obtain the probability that the atom will decay after 6 hours:
P (T > 6) = s(6) = e−0.25(6) = e−1.5 ≈ 0.223130

13. (a) The average lifespan of a guinea pig is 1/0.18 ≈ 5.56 years.
(b) The survivorship function for the guinea pig is s(t) = e−0.18t. Thus, the chance that a guinea pig
will live longer than 6 years is s(6) = e−0.18(6) ≈ 0.236928.
(c) Let T represent the lifetime of a guinea pig. We find

P (T > 8 |T > 2) =
P ((T > 8) ∩ (T > 2))

P (T > 2)

=
P (T > 8)
P (T > 2)

=
s(8)
s(2)

=
e−0.18(8)

e−0.18(2)
= e−0.18(6) = s(6)

The answer is the same as in (b).

15. Young and old organisms are more likely to die, since the survivorship curve is sharply decreasing
for them. After the initial sharp drop, the curve continues with a small negative slope. Thus, an adult



P1-62 Probability and Statistics [Solutions]

organism has a good change of living bit longer (until it reaches the age where the survivorship curve
drops quickly again).

17. This is not hard to guess: the function f(x) = 5x stretches by a factor of 5: it maps the interval
(0, 1) to the interval (0, 5). Now we shift by 3 units, so the answer is f(x) = 5x + 3.

(Formally: we are looking for a linear function that maps the initial point of the first interval (0)
to the initial point of the second interval (3) and the terminal point of the first interval (1) to the
terminal point of the second interval (8). In other words, we are looking for an equation of a line
through the points (0, 3) and (1, 8). Using the point-slope equation, we get y − 3 = 8−3

1−0 (x − 0), i.e.,
y = 5x + 3.)

By generating random numbers in the interval (0, 1) and then applying f(x) to them, we generate
random numbers in the interval (3, 8).

The length of the interval (a, b) is b − a. Thus f(x) = (b − a)x transforms the interval (0, 1) to
(0, b − a). Now we move it so that it starts at a; the function f(x) = (b − a)x + a maps the interval
(0, 1) to (0 + a, b − a + a) = (a, b). So, composing a random number generator on the interval (0, 1)
with f(x) we obtain a random number generator on the interval (a, b).

19. The half-life of a radioactive substance is the time th for which P (T > th) = s(th) = 1/2. From
e−λth = 1/2 we obtain

−λth = ln(1/2) = ln 1 − ln 2 = − ln 2

and th = ln 2/λ.
The median is the time tm such that F (tm) = 1 − e−λtm = 1/2, i.e., e−λtm = 1/2.
We see that tm = th. From F (t) = 1 − e−λt = 1 − s(t) we conclude that F (t) + s(t) = 1. So, if

one of the F (t) or s(t) is 1/2, so is the other. Or: the half-life is the time t when the probability of
surviving s(t) is the same as the probability of dying F (t).


