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Section 1 Introduction

1. Comparing with the general form z = ax+by + ¢, we see that f(z,y) = 3—xz+6y is linear (a = —1,
b=26,c=3); h(z,y) =3z — 2y + 4 is linear (a = 3, b = —2, ¢ = 4); and k(z,y) = 1 is linear (a = 0,
b =0, c=1). The function g(z,y) = 2xy, is not linear, since it involves the product of z and y.

3. We can generate many examples by using the fact that the functions Int and 1/v/t are defined
for t > 0. For instance, the domain of the functions f(z,y) = lnz + Iny (or lnz — Iny), f(z,y) =

/e +1/y, f(z,y) =nz//y, and f(x,y) =In(zy) + Inz is the set {(z,y) | # > 0 and y > 0}.

5. The distance from (z,y) to the origin is given by d(z,y) = y/22? + y2. Thus,
1 k

= ,Z(j . =
f(% y) dz(%y) x2 -+ y2
for a real number k. From f(—1,2) = 4 we get that
yo Bk
(—1)2+22 5

and k& = 20. Thus, f(z,y) = 2()/(332 4 y2).

7. The function f is defined whenever = # 0; i.e., it is defined at all points (z,y) where 2 # 0 and y
can be any real number. Thus, the domain of f is the xy-plane without the y-axis.

9. A point (z,y) in the domain of f satisfies 5 — z —y > 0. The equation 5 —z —y = 0, i.e.,
xr+y — 5 = 0, represents the line whose z- and y- intercepts are 5. This line divides the xy-plane
into two halves, and we use a test point to figure out which half satisfies 5 — z — y > 0. Take the
origin: since 5 — (0) — (0) > 0 is true, it follows that the domain of f is the half of the zy-plane which
contains the origin (i.e., the left half) including the line that borders it (because of the equals sign in
5—x —y > 0); see the figure below.

y

x+y-5=0

11. Since 22 +y? — 1 is in the denominator, the points (z,y) which are not in the domain of f satisfy
22 +y?> —1 =0, ie., 2 +y*> = 1. Thus, the domain of f consists of all points in R?, except those
that lie on the circle of radius 1 centred at the origin.

13. Since D > 0, the term 1/v/47 Dt is defined when ¢ > 0. The term —xz2 /4Dt in the exponent of e
is defined as long as ¢t # 0 (it is defined for all ). The domain of ¢(x,t) consists of all points (x,1),
where x is any real number and ¢ > 0.

15. If a = b =0, then f(z,y) = ¢ and so the range of f consists of a single value, R = {c}. If one of a
or b is not zero, or if both a # 0 and b # 0, the range of f consists of all real numbers. To prove this,
we pick a real number r and find 2 and y so that f(x,y) =azx+by+c=r.

If @ =0 (in which case b # 0), then by + ¢ =r and y = (r — ¢)/b. In this case, for any z,

f(a(r—c)/b)=o-z+b-%+c:o+7~_c+c:r
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If b =0, then az + ¢ =r and z = (r — ¢)/a. For any y,
f((r—c)/a,y):a-%+0~y+c:r—c+0+c:r

If a # 0 and b # 0 then we have infinitely many choices for x and y which satisfy ax 4+ by + ¢ = r.
Pick (the simplest value) y = 0; then z = (r — ¢)/a, and, as above, f((r — ¢)/a,0) =r.

17. The function f is a polynomial and so its domain is R?. To prove that the range of f is
R, we pick any real number r and show that there is a point (x,y) such that f(z,y) = r. From
f(z,y) =x+12 =r, we get & = r — 12. Take the point (r — 12, y), where y is any real number. Then
fr—12,y)=r—124+12=r.

19. Since the domain of the function h(z,y) = 22 + 3% is R?, and the exponential function e’ is

defined for all real numbers ¢, we conclude that the domain of the composition g(z,y) = e+ is R2.
Since z? + y? > 0, we conclude that
glw,y) =e" T >0 =1,
Thus, the range of g is a subset of [1,00). Now we show that the range is equal to [1,00): pick a
number r in [1, 00); then

glay) =t =
>4+ y*=Inr
Take y = 0, so that 22 = Inr and z = +v/Inr. We are done, since

f(:l:vlnr,O) = e(i\/lnr)2+02 _ elnr —

21. Because the polynomial under the square root satisfies 2 + 22 + 5y > 0 for all x,y, the domain
of g is R2.
From 2 + 532 > 0 we conclude that 2 + 22 + 532 > 2 and thus
gz, y) = /2422 +5y2 > V2
So, the range R of g is a subset of [v/2,00). We show that R = [v/2,00) by proving that for any
r € [v/2,00) there exists a point (z,y) so that f(x,y) = r. Let r € [/2,00). Then

g(x,y) =2+ 2> +5y° =7
2422 + 5y =12
R )

We do not need to solve this equation—all we need is one value for = and one value for y. So, take
y =0. From 22 = 72 — 2 we get © = =72 — 2. To check:

9(x,y) = g(£Vr? = 2,0)
= \/2 + (£v/r2 —2)2 +5(0)2
=Vr?

:|’,":’f‘

(since r € [V/2,00), r is positive, and thus |r| = 7).

23. The domain of g is R?, since the absolute value function is defined for all real numbers.

The range of g is [0,00): pick a real number r € [0,00); Then ¢(0,7) = 3|0 + |r| = |r| = r (the
last equality is true because r > 0).

(Of course, there are other choices for x and y; for instance, g(r/3,0) = 3|r/3| 4+ |0| = |r| = r or

g9(r/6,7/2) = 3[r/6| + |r/2| = [r/2[ + |r/2] = |r| = 7

and so on.)
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25. Since arctant is defined for all real numbers, it follows that the domain of f is R2. As well,
arctant < 7/2 for all t €R, and arctant > 0 if ¢+ > 0. Because t = 2 > 0, the range of f is a subset
of [0,7/2).

We now prove that that the range is equal to [0,7/2). Pick r € [0,7/2); from arctan(z?) = r we
get 22 = tanr and z = +v/tanr. (Note that r € [0,7/2) guarantees that tanr > 0, and so the square
root is defined.) The function f does not depend on y. Thus (picking any value for y we wish)

f(+vtanr, y) = arctan(£v/'tanr)?
= arctan(tanr)
=r

Hence the range of f is all of [0, 7/2).

27. Think of f(z,y,z) = e~ 22" =3y"=2" — o=(20°+3y°+2”) Woe analyze the exponent:
202 +3y% + 22 >0
— (222 + 3% + z2) <0
e—(212+3y2+22) < =1
Since e' > 0 for all ¢ € R, we conclude that the range of f is contained in (0, 1].
Pick r € (0, 1]; then
Flay,2) = 2 g
—222 —3y? -2 =Inr

Take z = y = 0; then —2? = Inr, 22 = —Inr, and 2 = +v/—Inr. (Note that, because r € (0, 1],
Inr <0, and thus the square root is defined.) We have just shown that f(0,0, &+ —Inr) = r, which
completes the proof that the range of f is equal to the interval (0, 1].

29. The distance between a point (z,y,z) and (3,2, —4) is given by the function
d(z,y,2) = /(x —3)2 4 (y — 2)2 + (2 + 4)2
It is given that f is proportional to d; thus, f = kd, i.e.,
fla,y,2) = k(@ =3)2 + (y = 2)2 + (2 + 4)2
where k is a constant. Using f(1,1,3) = 18 we find the value of k:
18 = ky/(1—3)2 + (1 —2)2 + (3 +4)2
18 = kv/54 = kvV/9 - 6 = 3kV6

18 6
]{7:3—\@:%:\/6

Thus, f(z,y,2) = V6y/(x —3)2 + (y — 2)2 + (2 + 4)%.

31. A point (x,y) is in the domain of f if tana tany > 0. Thus, (a) tanxz > 0 and tany > 0, or (b)
tanx < 0 and tany < 0.

Recall that tant > 0 whenever ¢ is in [0 + km,7/2 4+ km) where k is an integer, and tant < 0 if
te(—m/2+ km, 0+ k.

From (a) we conclude that z € [0 + kym,7/2 4+ ki) and y € [0+ kamw, /2 + kom) for integers k;
and ko. Taking k; = ko = 0, we obtain = € [0,7/2) and y € [0, 7/2), which represents the square Sy
in the figure below. By keeping ks = 0 and varying ki, we obtain the remaining squares in the same
row. The square Sy is represented by k1 = 1 and ks = 0, i.e., x € [7,37/2) and y € [0,7/2). By
taking non-zero values for ks, and varying ki1, we obtain the squares in every other row. For instance,
to obtain Ss, we take ky =0 and ky =1, i.e., 2 € [0,7/2) and y € 7, 37/2).

The remaining squares are obtained from (b): € (—7/2+ksm,0+ksw] and y € (—7/2+ kg7, 0+
kym], for integers ks and k4. For instance, Sy is represented by k3 = ky = 1, S5 is represented by
ks = k4 = 0, and Sg is represented by k3 = 2 and k4 = 0.
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33. From BMI(m,h) = m/h? we get

1.1m
BMI 0.1m,h +0.1h) = BMI(1.1m, 1.1h) =
_ 1 m
T 1.1 A2

~ 0.91BMI(m, h)

Thus, the body mass index of a person A who is 10% heavier and 10% taller than a person B is about
91% of the body mass index of B.

35. Using Sp(m, h) = 0.20247m0%425h0-725 we calculate
Sp(1.1m, 1.05h) = 0.20247(1.1m)%*25(1.05h)°-72°
— 0'20247(1.1)0.4257”0.425(1.05)0.725}10.725
= (1.1)°425(1.05)0-725(.2024 7m 0425 0725
~ 1.07883Sp(m, h)
and
Sp(1.05m, 1.1h) = 0.20247(1.05m)%*?5(1.1h)%-7%
= 0.20247(1.05) %425y, 0425 (1,1)0- 725 p0-725
= (1.05)%42%(1.1)%-7220.20247m 425 p0-725
~ 1.09399Sp (m, h)

Thus, of the two options: a 10% increase in mass and a 5% increase in height, or a 5% increase in
mass and a 10% increase in height, the latter makes the body surface area larger.
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Section 2 Graph of a Function of Several Variables

1. A level curve of a function f is a set of points in the domain of f at which f takes on the same
value.

Level curves corresponding to different values cannot intersect. (Think of a topographic map: is
it possible that the contour curves representing different altitudes intersect?) Here is a formal proof:
assume that the level curves f(x,y) = ¢; and f(z,y) = c2 (¢1 # c2) have a point (zg,yo) in common.
As this point, f(zg,yo0) = ¢1 and f(xg,y0) = c2, which violates the definition of a function as a unique
assignment.

3. The contour diagram of a linear function consists of (i) parallel lines that are (ii) equally spaced.
The diagram (a) does not satisfy (ii), and (b) does not satisfy (i). Since both (i) and (ii) are true for
(¢), we conclude that (c) is the only diagram (of the three offered) which represents a linear function.

5. One trick is to use a function of two variables that depends on one variable only, such as f(z,y) = 3.

The level curves of f are given by f(z,y) = 2% = ¢, i.e., ¥ = ¥/c (this equation represents a family of
vertical lines, which are not equally spaced). Using the same idea: the contour diagrams of g(z,y) = €Y,
h(z,y) =1/(x +4), and k(z,y) = siny consist of parallel lines, either horizontal or vertical.

An alternative is to compose a linear function of two variables with a one-variable function, such
as f(z,y) = e3**t¥=4 The level curves of f are given by

flay) = vt =
3r+y—4=Inc
y=—-3r+4+1Inc

Thus, the level curves are lines of slope —3. Few more examples: g(z,y) = (v — 4y + 3)3, h(x,y) =
1/(z —y+2), and k(z,y) = In(3 + = + 6y).

7. Starting with g(x,y) = \/m = ¢, we get
16 — 2% —y? =c
2?4+ =16—¢2
Since x2 + y? > 0 for all = and v, it follows that 16 — ¢? > 0, i.e., ¢ < 16 and —4 < ¢ < 4.
We conclude that: (i) there are no level curves if ¢ < —4 or ¢ > 4; (ii) if ¢ = +4, the level “curve”

22 + y? = 0 consists of a single point, (0,0); (iii) if —4 < ¢ < 4, the level curve of value c is a circle of
radius V16 — ¢2 centred at the origin.

2

y

@
s

9. From f(z,y) = x — 4 = ¢ we get © = ¢+ 4; i.e., the level curves of f are vertical lines. The level
curve of value c intersects the z-axis at ¢ = c+ 4.

11. From f(z,y) = ye® = c we get y = ce™*, and it follows that the level curves of f are transformed

versions of the graph of e™®. The level curve y = ce™™ is obtained by vertically expanding the graph
of e by a factor of ¢ if ¢ > 1 and by vertically contracting it if 0 < ¢ < 1. If ¢ = 0, the level curve
y = ce”® = 0 coincides with the z-axis. For the negative values of ¢, we need to reflect: If ¢ < —1,
the graph of y = ce™? is obtained by vertically expanding the graph of e=* by a factor of |¢| and then
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reflecting it across the z-axis. If —1 < ¢ < 0, we vertically contract the graph of e~* by a factor of |¢|
and then reflect it across the x-axis.

13. From f(z,y) =y — cosx = ¢ we get y = cosx + ¢. Thus, a level curve of value ¢ is a vertical shift
(up if ¢ > 0 and down if ¢ < 0) of the graph of y = cosx. The level curve of value ¢ = 0 is the curve
Y = COS .

15. From f(z,y) = J/zy = c we get ay = ¢ and y = ¢*/x. If ¢ # 0, the level curve of f is a scaled
graph of y = 1/x if ¢ > 0 and scaled and reflected (across the z-axis) graph of y = 1/z if ¢ < 0. By
“scaled” we mean: expanded vertically by a factor of |c| if ¢ > 1 or ¢ < —1 and compressed vertically
by a factor of |c| if -1 <c¢< 1.

If ¢ = 0 then 2y = ¢® implies that 2 = 0 or y = 0; the level curve of value ¢ = 0 consists of the
z-axis and the y-axis.

17. From g(z,y) = |z| = ¢ we conclude that there are no level curves corresponding to negative values
of ¢. If ¢ = 0, then |z| = 0 implies that z = 0; thus, the level curve of value ¢ = 0 is the y-axis. When
¢ >0, |z| = ¢ implies = 4c. This means that the level curve of value ¢ consists of a pair of vertical
lines © = +c¢ (see the figure below).

The surface g(x,y) = |z| intersects the zz-plane along z = |z|. Since the function g does not
depend on y, the intersection of the graph of ¢ with any plane parallel to the zz-plane is a copy of
z = |z|. Thus, the graph of g is obtained by moving the graph of z = |z| along the y-axis; see the
figure below.

c=2c=1 \ c=1c=2

19. Note that f(z,y) = 12—x? < 12. Thus, there are no level curves of value larger than 12. Assuming
that ¢ < 12, from f(z,y) = 12 — 22 = ¢ we get 2 = 12 — ¢ and x = ++/12 — ¢. So the level curve of
value ¢ = 12 is = = 0, i.e., the y-axis. If ¢ < 12, the level curve of value ¢ consists of a pair of vertical
lines x = £+/12 — ¢; see the figure below.

The surface f(z,y) = 12 — 22 intersects the zz-plane along z = 12 — 22. Since the function f does
not depend on y, the intersection of the graph of f with any plane parallel to the xz-plane is a copy
of z = 12 — 22. Thus, the graph of f is obtained by moving the graph of z = 12 — 22 along the y-axis;
see the figure below.
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21. From f(x,y) =2 —y —8 = ¢ we get y = x — 8 — ¢. The level curve of value ¢ is a line of slope
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1 whose y-intercept is —8 — ¢. The contour diagram consists of equally spaced parallel lines (f is a
linear function); see below.

The plane cuts the yz-plane along the line z = —y — 8, and the xz-plane along the line z = x — 8.
The z-intercept (substitute y = 0 and z = 0 into the formula for the function) is 2z = 8. The y-intercept
(r =2=0)is y = —8, and the z-intercept is —8.

y
c=-18 ¢=-15) ¢=-12 ¢=-9 c¢=-6

Az
c=-3
........ 25:0 -8
- \
0 2 c=3 )
8
............................. c=6 X
-8

23. Since 2% + y2 > 0, it follows that Y > 0 = 1. Thus, f has level curves of value 1 or larger
than 1 only. From f(z,y) = e ¥ = ¢ we get 22 4+ 42 = Inc. Therefore: if ¢ < 1, there are no level
curves; if ¢ = 1, the level curve 22 +y* = In1 = 0 is the point (0,0); if ¢ > 1, the level curve is a circle
of radius v/In ¢ centred at the origin. The figure below (left) shows several level curves.

The fact that the level curves are circles implies that the graph of f is rotationally symmetric
(i.e., symmetric with respect to the z-axis). The intersection of the graph of f with the xzz-plane is
the curve z = e® t0° = e’”z; see the figure below (centre). The graph of f is obtained by rotating this
curve about the z-axis (see figure below, right).

Z

4

2 2

3

-2 -1 0

25. The level surfaces of f, given by f(z,y,2) = 3z + y + z = ¢, where ¢ € R, are parallel planes in
R3. The plane 3z + y + 2z = c intersects the z-axis (y = z = 0) at = ¢/3, the y-axis (x = z = 0) at
y = ¢, and the z-axis (x =y = 0) at z = ¢. In the figure below we show the parts of the three planes
(level surfaces of values 3, 6, and 9) in the first octant, and a computer-generated picture of several

planes 3z +y+ 2z =c.

2
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27. The fact that there is no y in the equation makes is easier: we draw the graph of z + 3z = 4 in
the zz-plane, and then move it along the y-axis.

The equation 4 3z = 4 represents the line whose z-intercept is 4 and z-intercept 4/3. By moving
this line parallel to itself along the y-axis, we generate the graph of the equation x 4+ 3z = 4 in space.
The figure below shows two different views of the plane.

Z

29. In the zy-plane, the equation 22 + y? — 10 = 0 represents the circle of radius v/10 centred at the
origin. Since there is no z, we conclude that the intersection of the surface 2% + y? — 10 = 0 with any
horizontal plane is the same circle.

In other words, the surface 22 + 32 — 10 = 0 is generated by moving the circle z2 +y?> — 10 =0
vertically up and down, keeping its centre on the z-axis. The surface thus obtained is a cylinder of
radius /10, whose axis of symmetry is the z-axis. See the figure below.
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31. The distance between a fixed point (a,b,c) and a point (x,y,2) in R? is given by
d=+\/(r—a)2+(y—b)2+ (z — c)?

All points (x,y, z) whose distance d from (a,b,¢) is equal to r lie on a sphere of radius r centred at
the origin. Squaring the equation d = r, we get

P =@—a)+y—-0*+(z—c)?=r?

33. As we walk along the horizontal line representing the latitude of 44°, we record the values of the
level curves that we meet, and the location where we meet them. Going from left to right, we meet
the level curves of value 0.02 and 0.05 before we arrive at 57° mark. Between 57° and 56°, we cross
the level curves of values 0.1, 0.2 and 0.3 at about equal distances from each other. By continuing to
mark the values of the level curves and the corresponding locations where we cross them, we obtain
the points in the diagram below (left). Once done, we can connect the points with a smooth curve.

The diagram on the right is obtained in the same way, this time by walking vertically along the
line representing the longitude of 55°.
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35. The five points are shown in the figure below. They are equally spaced, for the following reason.
Substituting v = 30 into W (T, v) = 13.12 + 0.6215T — 11.37v%16 + 0.3965T %16 we obtain

W(T,30) = 13.12 + 0.6215T — 11.37(30)'¢ + 0.39657(30)"'6 = —6.4730 + 1.3048T

which is a linear function. Thus, the same difference in T' (say, moving from —25 to —35 and moving
from —35 to —45) will generate the same difference in W.

wind speed v
10 20 30 40 50 60 70

temperature 7

37. The graphs of T'(z,tg) for to = 0, to = 1, and ¢y = 5 are shown in the figure below, left. The
three curves represent the snapshots of the temperature initially, 1, and 5 time units later. At the
locations where it is above zero, the temperature decreases with time, and at the locations where it’s
below zero, the temperature increases with time. There is no change in temperature at all locations
where initially the temperature is zero.

The graphs of the curves T'(xo,t) for zo = 0, xg = 7/4, and 29 = 7 are shown below, right. The
three curves describe how the temperature changes at three fixed locations. At the locations zg = 0
and 2y = /4, the temperature is initially positive and then decreases exponentially. At the location
xo = 7 the temperature is initially negative, and then increases. All three graphs approach 0 as
t — o0.

To put it all together: initially the temperature is distributed according to T'(x,0) = cosz. Over
time, the temperature evens out, approaching the value of 0 at all locations z.

06 T(0,1)

o2 T (m/4,t)

-06 T'(m,1)

-3 -2 -1 0 1 2 3 4 5 6 0 0.5 1 1.5 2 25 3
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39. The vector field F(z,y) = i+ 2j is a constant vector field; it is represented by the same vector
i+ 2j starting at every point in its domain R2.
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41. The vector zi+ yj is the position vector of a point (x,y); thus, zi + yj points radially away from
the origin (i.e., from the origin towards (x,y)). The square root in the denominator is the length of
xi+ yj, and so F(z,y) = (zi+ yj)//x? + y? is a unit vector field. Its direction is radial, away from
the origin; see the figure below.
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43. The vector field F = yi has no j component, and so its direction is parallel to the z-axis. Thus,
the diagram (c) represents F. Writing G = —xi — yj = — (21 + yj), we see that the direction of G is
radial toward the origin (i.e., opposite of the direction of the position vector of a point (x,y)). Thus,
(b) represents G. The components H = sin zi+sin yj are periodic functions, and we see the periodicity
in the diagram (a).
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Section 3 Limits and Continuity

1. The fact that ( %inh N f(z,y) = 5 means that we can make the values of f as close to 5 as desired
x7y - 9

by picking points (z,y) close enough to (1,4). More precisely: suppose we wish to make the values
of f to fall within 0.01 of 5, i.e., to fall inside the interval (4.99,5.01). We can find an open disk
centred at (1,4) such that for every point (z,y) in that disk (except possibly for (1,4)) the value of
the function f(z,y) is in the interval (4.99,5.01). The fact that the limit is 5 means that we can repeat
this procedure for any real number (i.e., we can replace 0.01 by any real number), no matter how
small.

3. To prove that a function f(z,y) is continuous at the point (2,—1), we have to verify that
lim  f(z,y) = f(2,—1). Since

(z,9)—(2,—1)

f(27 _1) =

this amounts to showing that

) 23y — zy?
hm —_— =
(zy)—(2,-1) 22+ y?

5. The requirement for continuity states that

. cos(xy)
1 O £(0,0) = 0.
() —(0.0) T2+ 2 + 1 70,0)

To figure out the limit, consider the approach along the z-axis (i.e., when y = 0):

cos(ry) .. cos(0) 1

lim — 27 —lim e —
(@) —00) 22 +y2+1 a2—0x2+1 1

Thus, if the limit of f(z,y) as (z,y) approaches (0,0) exists, then it must be equal to 1. Or else, the
limit does not exist. In either case, the limit is not zero, and hence f is not continuous at (0,0).

7. Approaching (0,0) along lines does not amount to checking all possible paths. Thus, all we can
say is that 4f the limit exists, then it must be equal to 3. (However, as we said, the limit might not
exist.)

9. The given function is a polynomial; thus, using the direct substitution,

lim  (zy — 222) = (2)(0) — 2(2)? = —8
(x,y)ﬁ(m(y ) =1(2)(0) —2(2)

11. The given function involves a polynomial and a rational function. By direct substitution,

im (e Y (- D3 Y3
(,9)—(1,-3) 2y — 11 2(=3) — 11 17 17

13. The given function is a rational function. By direct substitution,

i Syt _(02-(=22 4
@) —0-2) 22 +y2  (0)2+(-2)2 4
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15. Along the line y = 2z,

. 2xy . 2x(2x) ) 422 . 4 2
im ————— = lim = lim =lim — = —-
(2,9)—(0,0) 222 — 3y?  1—0 222 — 3(2x)2  2—0 —1022  2—0 —10 5
Along the line y = 7z,
. 2xy . 2x(Tx) . 1422 . 4 4
lm ——=lim——r-—"—=lim——F—=1m—=——
(@) —(0,0) 222 — 3y2 a0 222 — 3(Tz)2 -0 —145z2  «—0 —145 145

Since the two paths to (0,0) give different values, we conclude that the limit does not exist.

17. Let’s choose simplest paths. Along y = 0,

im ——  —lim—— = 1lim 0 =0
(z.9)—(0,0) (22 +y2)3/2  2=0 (22)3/2  2—0
The limit along = = 0 is 0 as well, since the function is symmetric in & and y. Along y = =z,
Y z? a? x? 1

) 00 24 PP e P+ 2P b @) T s T PR Sy

This limit is not a real number, and we are done: we found two paths (y = 0 and y = x) along which
the values for the limit differ.

19. The function g(z,y) = e~*~¥~2 is continuous for all (z,y), as the composition of the exponential
function h(t) = e’ (which is continuous for all real numbers ¢) and the linear function (polynomial)
I(z,y) = —x —y — 2 (which is continuous for all (z,y) € R?). The constant function 1 is continuous,
and thus the difference f(z,y) =1 —e~*7Y~2 is continuous for all (x,y) € R2. We conclude that

lim (1—e*7¥7?) = flz,y) = £(0,0)=1—¢"?

im
(z,9)—(0,0) (x,9)—(0,0)

21. The function h(x,y) = e ¥ is the composition of the exponential function e’ (continuous at
all ¢) and the polynomial in two variables —zy (continuous at all (x,y)), and therefore continuous
at all (z,y) €R2. The function f(z,y) = e % — z + 4 is continuous at all (z,y), as the sum of
two continuous functions (I(z,y) = —z + 4 is a polynomial, hence continuous). Since f(1,10) =
e 10 —144=¢7143>0, the function F(z,y) =In (e~ — z +4) is continuous at (1,10). Thus,

( )lin(l 0 In(e™ —z+4) = F(1,10) =In (e —=1+4) =In(e™ ' + 3) ~ 1.09862
z,y)—(1,

23. The function h(t) = v/t is continuous as long as ¢t > 0. The function g(z,y) = 1 + 2% + 4% is a
polynomial, and hence continuous at all (x,%). Because g(x,y) = 1+ 22 +y? > 1 > 0 for all (z,y),
the composition

flz,y) = (hog)(z,y) = h(1+2° +y°) = /1 + a2 + 2

is defined and continuous at all (z,y) € R

25. The function f(m,h) = m/h? is continuous at all (m, h) such that h # 0. In terms of the body
mass index h = 0 makes no sense, so BMI is continuous on any biologically meaningful subset of the
values for m and h. One possible domain is the set of all (m, h), where m ranges from the mass of the
lightest to the mass of the heaviest person on Earth, and h ranges from the height of the shortest to
the height of the tallest person on Earth.

27. The function f(t) = Int is defined and continuous for ¢ > 0. Therefore, g(z,y) = In(x +y — 2) is
continuous at all points (z,y) which satisfy  +y — 2 > 0.

The line z + y — 2 = 0 divides the xy-plane into two half-planes. To figure out which half-plane
is the domain, we use a test point, for instance (0,0). Since 0 + 0 — 2 > 0 does not hold, the region
defined by z+y—2 > 0 is the one that does not contain the origin. Thus, the function g is continuous
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on the shaded region in the figure below. (Recall that dashed line indicates that the points on the
line are not included in the domain.)

x+y- 2=(5\\
PARS

29. From e — 1 = 0 we get ¢ = 1 and x = 0. Thus, f is continuous at all points (z,y) in R? such
that  # 0. Geometrically, the largest domain where f is continuous is the zy-plane with the y-axis
removed.

31. We investigate the limit ( %im(o 0 f(x,y) by computing its values along different paths that lead
,y)— (0,
0 (0,0). Along = =0,

2 0
im Y — lim — = 1lim 0 =0
(x,y)—(0,0) T + 2y y—0y y—0
This does not help, since we did not prove that ( %ur% )f(x, y) = 0. The limit along y = 0 is 0 as
z,y)—(0,0
well. Let’s try y = x:

2xy . 222 .2 2

im ——— =lim —— = lim -~ =
(z,9)—(0,0) 1'2 + 2y2 x—0 31’2 z—0 3 3

Thus ( %Hn( ) f(z,y) does not exist, and we conclude that f is not continuous at (0,0).
x,y)— (0,0

33. Assume that m # 0. Along y = mz,
4 2

sy (ma) mx mx 0

lim —— = lim m-————=Im——=—
(2,9)—(0,0) 20 + 32 20 20 + (mx)?2  2—0a0 4+ m22?2 =0t 4+m?2  m
Along y = 0 (i.e., when m = 0),
3

1 — 2 =1 =1 0=0
(w)lin(o,O) 28 + y? o000 a0
Along z =0,
23y

00 T R

Thus, indeed, along all lines through the origin, the limit is zero. Along y = 23,
lim ﬂ = lim L v

(z,y)—(0,0) 8 + (23)2 20 26 4 26

We conclude that the limit in question does not exist.

= lim — m— =
x—0 2{E6 z—0 2

35. Along the y-axis (z = 0) the limit is

lim  arctan (1.2z/y) = lim arctan (0/y) = arctan0 = 0
(z,y)—(0,0) y—0

Along the line y = 1.2z,

lim  arctan (1.2z/y) = lim arctan (1.22/1.22) = arctan1 = 7/4
(z,y)—(0,0) z—0

Thus, the limit does not exist.
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Section 4 Partial Derivatives

1. The change is with respect to the variable ¢, and thus

ft(1'7y,t) — }{:Illof(a:?y’t + h})L — f($7y’t)

3. We see that f(2,3) = 4. Moving vertically up, we meet the level curve of value 5 (approximately)
at (2,4.5); i.e., f(2,4.5) = 5. Thus
Of () g 245 - F(23) 54 1 2
oy’ 45—-3 45—-3 1.5 3
Using the fact that f(2,2) = 3, we get another estimate:

8f Nf(2a2)_f(233)_3_4_
87?/(2’3)'\“ 2_3 2.3

Taking the average, we obtain 0f/0y(2,3) ~ (2/3+1)/2 =5/6.

1

5. Here is an idea: the partial derivatives of a linear function f(z,y) = ax + by + ¢ are df/0x = a
and 0f /0y = b. Since we need to satisfy df/0x > 0 and 9f /0y < 0 we pick a positive value for a and
a negative value for b, say f(x,y) = 2z — y+ 3. The level curves are given by f(z,y) =2x—y+3=c¢,
ie., y = 2z + 3 — ¢. Thus, we draw parallel lines with the slope of 2 (see below, left).

We are not asked to draw level curves of a linear function, so we can expand the idea: the level
curves need not be parallel, nor equally spaced; as well, we can use other curves; see the figures below.
To check: in the horizontal direction away from any point the values of f increase, and in the vertical
direction the values decrease.

1234567 1234567 3456

x / x / x

7. The graph of the surface z = 22 is the parabolic sheet shown in the figure below. The intersection
of this surface with the plane z = 2 is the curve z = 22 = 4 (horizontal line). The partial derivative
fy(2,1) is the slope of this line at the point (labeled A) where y = 1. Since the line is horizontal, the
slope is zero. Thus, f,(2,1) = 0.

9. Moving away from A in the positive z-direction, the graph of f increases. The same is true if we
move away from A in the positive y-direction. Thus, f;(A) > 0 and f,(A) > 0. For the same reason
fz(B) >0 and f,(B) > 0.
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11. From f.(z,y) = 2292, we get f.(—2,0) = 2(—2)(0)? = 0. Consider the curve which is obtained as
the intersection of the graph of f(z,y) = 3 + 2%y? and the vertical plane y = 0 (its equation is z = 3,
so it is a line). The slope of this line at the point whose z-coordinate is —2 is zero.

13. Keeping y constant, we obtain f,(x,y) = 322y — 7(1)y + 0 = 322y — 7Ty. Keeping = constant,
we get fy(z,y) = 233y? — Tz(1) + 0 = 323y* — Tx.

15. Keeping ¢ fixed, h,(z,t) = cos(3z — 2t) - 3 = 3cos(3z — 2t). Keeping z fixed and differentiating
with respect to t, we get hy(z,t) = cos(3z — 2t) - (—2) = —2cos(3z — 2t).

17. Thinking of the exponent of e as —z%/t = (—1/t)x? and using the chain rule, we get

1 1
fo(z,t) = Ee—gﬁ/t . (__) oy = _ L _o—a?/t

t 212
Using the product and the chain rules (this time thinking of the exponent of e as —x?/t = —2%t71,
1 1
filmt) = = (=)t 2e %/t f =%/t (—g?)(—1)t 2
4 4t
1 2 x? 2
— et T matt
=ttt

1 x2 2
e | - —z“/t
42 ( 5 )e

19. Keeping w constant and using the chain rule,

1 1
-3
oz, w) = 1=
fo(z,w) = w x4 w? w3 (x 4+ w?)
Keeping z fixed and using the product and the chain rules,
_ 3 1 3n(z + w?) 2
_ 4 2 3 _
fw(:ﬂ,w)——3w hl(l""w )—|—w me—— wh +w2(x—|—u}2)

21. From
W(T,v) = 13.12 + 0.6215T — 11.370%1% 4+ 0.3965Tv°-1°
we compute
W (T,v) = 0.6215 + 0.39650%-16
Thus, Wr(—15,30) = 0.6215 + 0.3965(30)%1¢ ~ 1.3048.

23. Recall that (arctant)’ = 1/(1 + t?). Using the chain rule,

1 1 —3z —3x
- = . 3x(=1y 2= —
fy(x7y) 1 ¥ (3.1?/:[/)2 1'( )y 1 + 9;22 y2 y2 —|—9J)2
Thus,
—3(1 3 1
£ = o = =

(3)2+9(1)2 18 6

25. Writing S(m, h) = Vmh/6 = (\/m/6)h'/2, we compute

m 1. m
Sp(m, h) = %ih 12 = %
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Thus,

V70

55,(70,1.6) = oV

~ 0.59512

27. The point (6, 10) lies on the contour curve of value 11, so f(6,10) = 11. Moving away from (6, 10)
in the horizontal direction (thus keeping y fixed) we meet the level curve of value 10 at approximately
(6.8,10); based on this,

£(6.8,10) — £(6,10) 10— 11 1
(6,10 ~ - - —_195
fal ) 6.8—6 0.8 0.8
Moving toward the left, we meet the level curve of value 12 at (4, 10); based on this,

4,10) — f(6,10) 12 —11 1

Taking the average, we obtain f,(6,10) ~ (—1.25 — 0.5)/2 = —0.875.

=—-0.5

29. We base our answer on the forward quotient. Moving away from (6,5) in the direction of the
positive z-axis, we see that f decreases; thus, f,(6,5) < 0. Moving away from (6,5) in the direction
of the positive y-axis, the function f increases, and so f,(6,5) > 0. Thus, f,(6,5) > f,(6,5).

31. The diagram shows that f(2,15) = 10. The function f(z,y) increases as a point (z,y) moves
away from (2,15) in the direction of the positive z-axis; thus, f,(2,15) > 0. As a point (z,y) moves
away from (2,15) in the direction of the positive y-axis, the values of f decrease, and so f,(2,15) < 0.

33. From
OBMI 1 OBMI 2m
it T (=) = 2
om 2 o g =m(=2h B3
we obtain
OBMI 1 OBMI 2(60)
_— 1.7) = —— = 0. A 1.7) = — ~ —24.42
o (60,1.7) TIE 0.35 and o (60,1.7) 17y

A person of mass 60 kg and height 1.7 m has the body mass index of BMI(60, 1.7) = 60/(1.7)% ~ 20.76.
At that moment, an increase of 1kg in mass (with no change in height) will increase the body mass
index of that person by approximately 0.35. As well, an increase of 1 m in height (with no change
in weight) will decrease the person’s body mass index by about 24.42 (this is not realistic; it’s better
to say that, an increase of 1 c¢m in the person’s height with no change in mass will decrease her/his
body mass index by approximately 0.2442).

35. From Table 4.2 we read H(26,60) = 32. Based on H(26,70) = 33, we get
H(26,70) — H(26,60) 33 — 32

H}j(26,60) ~ =0.1
(26, 60) 70 — 60 10
Based on H(26,50) = 30, we get
H(26,50) — H(26,60 30 — 32
Hy, (26, 60) ~ (26,50) — H(26,60) _ =02

50 — 60 —10
Taking the average, we obtain H}(26,60) ~ (0.1 4+ 0.2)/2 = 0.15.

When the temperature is 26°C and the humidity is 60 percent, the humidex is H(26,60) = 32.
At that moment, a unit increase in humidity (i.e., an increase by one percent), with no change in the
temperature, will increase the humidex by approximately 0.15.

37. From z = 24 — (v — 3)? — 2(y — 2)* we obtain 2, = —2(z —3) and 2,(2,1) = —2(2—3) = 2 (that’s
the slope of the hill in the easterly direction). From z, = —8(y — 2)®> we compute the slope in the
northerly direction z,(2,1) = —8(1 — 2)? = 8. Thus, the hill is steeper in the direction of the north.
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Section 5 Tangent Plane, Linearization, and Differentiability

1. Assume that the given surface is the graph of a differentiable function z = f(x,y). To construct
the tangent plane at a point (a,b, f(a,b)) on the surface, we use the fact that two intersecting lines
determine a unique plane in space.

By intersecting the given surface with the vertical planes x = a and y = b we obtain two curves
that pass through (a,b, f(a,b)). The tangent lines to these curves at the point (a,b, f(a,b)) are the
lines that define the tangent plane.

3. From one-variable calculus we know that sint ~ ¢ if ¢ is near 0. (This follows from the fact that
the tangent line to y = sint at ¢ = 0 has the equation y = ¢.) Replacing ¢ by = + y, we obtain
sin(z +y) ~ z +y for (x,y) near (0,0).

Alternatively: the function f(x,y) = sin(z + y) is differentiable at all (x,y) €R?, since both
partial derivatives f;(x,y) = cos(z +y) and f,(z,y) = cos(x + y) are continuous at all (z,y). Thus,
f(@,y) = Lo,0)(,y) for (x,y) near (0,0).

From f;(0,0) =cos0 =1 and f,(0,0) = cos0 = 1 we obtain

(x —

Lo,0)(2,y) = £(0,0) + £2(0,0)(x = 0) + f,(0,0)(y =0) =0+ 1(z = 0) + 1(y = 0) =z +y
Thus, sin(z +y) = f(x,y) = L0 (z,y) = = +y for (x,y) near (0,0).

5. The contour curve of value c is given by f(x,y) = /22 +92 = ¢, i.e., 22 +y> = 2 (so it is a
circle of radius ¢, ¢ > 0). As we keep zooming in, the contour diagram does not change, we still see
circles (of smaller and smaller radii). All we can say is that this might mean that the function is
not differentiable at (0,0), as its contour diagram does not resemble the contour diagram of a linear
function.

For instance, h(z,y) = 2% + y? is differentiable at all (z,y) € R?, and, in particular, at (0,0). Its
contour diagram around the origin consists of concentric circles.

7. Let f(z,y) = In(2? —4?). Note that f is defined and continuous near (1,0). The partial derivatives
are:
1 2z 2
fo(z,y) = m% S g and  fz(1,0) = 7=2
1 2y
fy(@,y) = 2 (—2y) = T and  f,(1,0) =0
Since f, and f, are continuous near (1,0), we conclude that f is differentiable at (1,0), and therefore
f(x,y) = L1 0)(z,y) for (x,y) near (1,0). We compute f(1,0) =In1l = 0. Thus
ie., In(z? —y?) = f(z,y) = L1,0)(z,y) = 2z — 2 for (2,y) near (1,0).

By “near” (1,0) we mean a disk centred at (1,0). How do we find such disk? The domain of
f(x,y) = In(x? — y?) is given by 22 — 4% > 0. Solving 2% — y? = 0 we get y = +x. The two lines, y = x
and y = —x, divide the zy-plane into four regions. By using test points we figure out that the shaded
region in the figure below is the domain of f. We can use any disk centred at (1,0) which is contained
within this domain.

y V=X
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9. Let f(x,y) = /22 +4y? = (2% + 4y*)'/2. Note that f is defined and continuous near (3,2). The
partial derivatives of f are:

L o 2\—1/2 z 3 3
(T, y) =5 4 2x) = d f.(3,2)= =2
foley) =5 @2 4770 = e ad (3,2 = =
Lo 2\—1/2 4y 8
fy(z,y) = 5 (27 +4y7) 7 /*(8y) el fy(3,2) = ¢

Since f, and f, are continuous near (3,2), we conclude that f is differentiable at (3, 2), and therefore
f(z,y) = L(z,2)(z,y) for (x,y) near (3,2). We compute f(3,2) = +/9+ 16 = 5. Thus,

Lz (z,y) = f(3,2) + f(3,2)(z — 3) + £,(3,2)(y — 2)
3 8

= §x + 5
5T
We conclude that
3 8
Va2 +4y? = f(e,y) = L (2,y) = z2 + ¢y
for (x,y) near (3,2).
By “near” (3,2) we mean a disk centred at (3,2). Note that f is defined at all (z,y) € R?, and
the partial derivatives f, and f, are continuous as long as (z,y) # (0,0). Thus, we can use any disk
centred at (3,2) which is small enough, i.e., which does not contain (0, 0).

11. The function f(z,y) = 2%ye? — 2 is defined on all of R2. The partial derivatives f,(z,y) = 2zye?
and f,(z,y) = x%e¥ + 2?ye¥ are continuous at all (z,y), and therefore f is differentiable at all
(z,y) € R?.

To be more precise: pick a point (a,b) in R? and (in this case) any open disk B, (a,b) centred at
(a,b). The function f is defined on B, (a,b), and the partial derivatives f, and f, are continuous on
B, (a,b). Using Theorem 6, we conclude that f is differentiable at (a,b).

13. The function f(z,y) = 2%y —y? is defined on all of R?, and thus on any disk around (1, 5) that we
choose. The partial derivatives f.(z,y) = 2zy and f,(z,y) = 2* — 3y? are continuous on R?. Thus,
using Theorem 6 with any disk centred at (1,5), we conclude that f is differentiable.

From f(1,5) =5 — 5% = —120, f,(1,5) = 10, and £,(1,5) = —74 we obtain

L(1,5)(m7y) = f(175) + fm(1a5)(m - 1) + fy(175)(y - 5)
= 120+ 10(z — 1) — 74(y — 5)
=240+ 10x — 74y

15. Since 22 + % > 0, and 22 + y? = 0 if any only if z = y = 0, we conclude that the function
f(x,y) = In(2? + y?) is not defined at (0,0) only. The partial derivatives
1 2x 1 2
fr(x7y):x2+y2 2x:I2+y2 and fy(x7y):m2y:x27_€y2
are defined and continuous at all (x,y), except at (0,0). To prove differentiability of f at (1,1),
according to Theorem 6, we need an open disk centred at (1,1) which does not contain (0,0). The
largest such disk has the radius of v/2, equal to the distance from (1,1) to (0,0); see the figure below.
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17. From f(1,0) = —1, f, = 4z —y, f.(1,0) = 4, and f, = —z + 12¢°, f,(1,0) = —1, we get the
tangent plane equation

z=-1+4(x—1)+ (-1)(y —0)

z=4r—y—>5

19. From g(—2,2) = 6¢” = 6, g, = 3ye™ ™Y, g,(—2,2) = 6, and g, = 3" ¥ + 3ye™Y, g,(—2,2) = 9,
we get the tangent plane equation
z2=9(=2,2) + g2(=2,2)(x — (=2)) + 94(-2,2)(y — 2)
z2=64+6(x+2)+9y—2)
z = 6x + 9y

21. From f(0,0) =1n4,
1 2z

=-1+——22=14+——— d 0,0)=1
fﬂ’f +.T2+y+4 x +$2+y+4 an fﬁlﬁ'(?)
1 1
= d 0,0) = -
=y @ 00 =7

we compute the equation of the tangent plane:
z = f(0,0) + f2(0,0)(z — 0) + f,(0,0)(y — 0)

1
:1114+1x+1y

1
:x—i—ly—l—lnél

23. From f(0,1) =1, f, = ye‘xz(—2x), f2(0,1) =0, and f, = e, fy(0,1) = 1, we compute the
linear approximation
L(O,l)(xvy) = f(oa 1) + fm(oa 1)($ - O) + fy(oa 1)(y - 1) =140z + 1(y - 1) =Y

Thus, f(—0.1,0.9) = L,1)(—0.1,0.9) = 0.9. (A calculator value is f(—0.1,0.9) = 0.9e—(0D" ~
0.89104485.)

25. Let f(x,y) = y/2? + y2. Since 2.98 is close to 3 and 4.04 is close to 4, we will use the linear
approximation Ls 4)(x,y). From f(3,4) = V32 442 =5,

L 2\—1/2 T 3

= 5 2z = 2(3,4) = <

f 2(:1: +y°) T e and  f,(3,4) 5
__ Y _ 4
fy e and f,(3,4) = E

we compute

Therefore,

3 4
V/2.982 +4.04%2 = f(2.98,4.04) =~ L(374)(2.98,4.04) = 5(2.98) + 5(4.04) =5.02
The calculator value is 5.020159360.
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27. Let f(x,y) = xe¥. Since 2.98 is close to 3 and —0.04 is close to 0, we will use the linear
approximation L3 0)(z,y). From f(3,0) =3¢ =3, f, = €%, f,(3,0) =1, and f, = ze¥, f,(3,0) = 3,
we compute
Lz0)(z,y) = f(3,0) + f2(3,0)(z = 3) + f,(3,0)(y — 0)
=3+1(x—3)+3(y—0)
=x+ 3y
Therefore,
2.98¢7%% = f(2.98,—0.04) ~ L(3,)(2.98,—0.04) = 2.98 + 3(—0.04) = 2.87
The calculator value is 2.863152529.

29. We can answer this question with or without differentials; we will do both. Without differentials:
using S(m, h) = 0.20247m%425p0-725  we get

S(1.03m, 1.02h) = 0.20247(1.03m)°*25(1.02h)%- 72
= 0.20247(1.03)%*25m 0125 (1,02)0- 725 p0- 725
= (1.03)%4%5(1.02)° 7 (0.20247m 42> 0 729)
~ 1.027285(m, h)

Since S(1.03m,1.02h) = 1.027285(m,h) = S(m, h) + 0.027285(m, h), we conclude that the surface
area increases by 2.728%.
Using differentials: from S(m, h) = 0.20247m%42°h0-725 we find

dS = 0.20247(0.425)m ™" h* ™ dm 4 0.20247m"**°(0.725)h "> dh

Let AS = 5(1.03m,1.02h) — S(m, h). Then AS ~ dS, where the differential dS is calculated with
dm = 0.03m and dh = 0.02h:

dS = 0.20247(0.425)m =5 h%725(0.03m) + 0.20247m"42°(0.725)h%-275(0.02h)
= (0.425)(0.03)0.20247m 20725 4+ (0.725)(0.02)0.20247m 425 p0-725
= (0.02725)(0.20247m 425 p0-725)
= 0.027255(m, h)
Thus, S increases by approximately 2.725%.
When m = 75 kg and h = 1.72 m, then S(75,1.72) = 1.87940 m? and S(1.03 - 75,1.02 - 1.72) =

1.93068 m?2. The differential dS = 0.027255(75,1.72) = 0.05121 is a good approximation of the true
increase S(1.03-75,1.02 - 1.72) — S(75,1.72) = 1.93068 — 1.87940 = 0.05128.

31. The increase in the volume AV is approximated by the differential dV, given by [for the purpose
of differentiation, write V = ab(a + b)7/12 = % (a*b + ab?)]
AV = Vyda + Vydb = %(mb +b?)da + 17T—2(a2 + 2ab)db
In particular, when ¢ = 6 mm, b = 4.4 mm, da = 0.2 mm, and db = 0.3 mm, we get
4V = T [2(6)(44) + (4.4)2)(02) + T2 [(6) +2(6)(4.4)] (0.3)

T ™
= —14.432 + —26.64
B 32 + 2 6.6
~ 10.75262

Thus, the increase in volume is approximately 10.8 mm?.

33. The volume of a cylinder of radius r and height & is given by V(r, h) = 7r2h. The differential of
V is dV = 2wrhdr + nr?dh. Given that dr = 0.025r and dh = 0.025h, we get

dV = 2mrh(0.025r) + 772 (0.025h) = 0.057r2h 4+ 0.0257r*h = 0.0757r2h = 0.075V (r, h)

Thus, the volume is calculated with an approximate error of 7.5%.
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35. The change in the function Af can be approximated by
Af ~ df = 2cxydx + 3cxydy
It is given that do = —0.02z and dy = 0.02y. Thus,
df = 2cxy®(—0.02x) + 3czy?(0.02y) = cxy®(—0.04 + 0.06) = 0.02cz*y® = 0.02f(z,y)
Thus, f increases by approximately 2%.

37. To compute the partial derivatives we need to use the definition:

_1; f(h,O)—f(0,0)_ . 0—0_ . -
fa(0,0 = Jimg T = i = i 0=0

Likewise,

... f(0,h)—f(0,0) . 0-0 .
F10:0) = fmy T T = i T = im0 =0

It is given that f(0,0) = 0. Thus, the linearization of f is

Note that if y = x, then f(z,y) = f(z,7) = 2%/22% = 1/2; i.e., along the line y = x (as long as = # 0)
the value of f is 1/2. So no matter how close to (0,0) we get, i.e., no matter how small an open disk
around (0, 0) we take, the function assumes the value of 1/2 at some point in it; thus, Ly (z,y) = 0
is not a good approximation of f.

We conclude that the partial derivatives of f are not continuous at (0,0). If they were, f would
be differentiable, and L g (7, y) = 0 would have been a good approximation of f near (0,0).
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Section 6 The Chain Rule

1. Using the chain rule,
0z  0z0x 0z0y
95~ dwds ' oyds
An alternative way to write this formula is to replace the variables by their function names:
0z 0fdg Of Oh
s dwds oy s
Likewise,
82_82830 828y 8f8g df oh
ot "oz ot Toyot  owot oy ot

z=f(x,y)

2\
5/ 4\

3. Using the chain rule for E = f(M(v), N(v)), we get
dE _ 0E dM | OF dN
dv  OM dv = ON dv

5. From y = 1/2 we get 2y — 1 = 0. Let F(z,y) = xzy — 1. Since F is a polynomial, its partial
derivatives are polynomials, and hence continuous. Thus, F' is differentiable function, and the set
F(z,y) = xy — 1 = 0 represents the hyperbola y = 1/x.

7. From F(x,y) = — 2y?> — 1 = 0 we obtain 2 = 2y — 1. Might be easier if we switch axes: the curve
y = 22% — 1 is a parabola which opens toward the positive y-axis, with the vertex at (0, —1), and the
zr-intercepts at z = il/\/i Thus, = 2y?> — 1 is a parabola which opens towards the positive xz-axis;
its vertex is at (—1,0) on the y-axis, and the y-intercepts are y = +1/v/2.

9. From F(x,y) = 2%y — 1 = 0 we obtain y = 1/2?; this is a hyperbola in the first and the second
quadrants, whose asymptotes are the z-axis and the positive y-axis.

11. From F(x,y) = 22 —y? = 0 we get y* = 22 and y = +x. Thus, F(z,y) = 0 represents the pair of
intersecting lines y =z and y = —ux.

13. To understand how to apply the chain rule, we think of z = F(g(z,y), h(z,y)) as z = F(u,v),
where u = g(x,y) and v = h(z,y). Using the tree diagram below, we write the chain rule in two ways,
by using the variables u and v, and then by replacing them with the functions they represent:

0z 0z0u  0z0v OFdg  OF Oh

9z " dudzr  Ovdr  Ouds  Ovdw
Likewise,

0z 0z0u 0z0v OFdg  OF Oh

By dudy " Gudy  Oudy vy
Note that z and F represent the same function, when viewed as functions of u and v; so 9z/0u =
OF/0u and 0z/0v = OF/0v.
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z=F(u,v)
oF aF
ou v
u v
ou [\ ou ov [\ ov
ox dy Ox dy
x x oy

15. Using the chain rule,
dz _ Ozdx  Ozdy _

T o Ty (322 — 2y)(cost) + (—22)(5) = (3sin® ¢ — 10t) cost — 10sint

17. Write z = \/p? — 5g — 2 = (p> — 5¢ — 2)'/2. By the chain rule,
dz 8zd_p 32@

dt — dpdt ' dqdt

= S07 50— 2) V) (3) + %(ﬁ —5¢—2)7*(=5)(1)

2
1 6t° — 5
= (6pt® —5) = ——oru"
2¢/p? —5q—2 2¢/t8 — 5t — 2

19. By the chain rule,
dz _ Ozdz  0Ozdy

d " ordi oyt
1
= —y?e "(2t) + 2ye " (——>

L 1 2 _p 1
= —2ye yt+t—2 =—3e 1+t_2

21. We think of the number of whales as the function N = N(P,T), where P = P(t) and T = T(t).
Using the chain rule,

dN ONdP  ONdT

d 9P dt T T dt
The derivative dN/dt is the rate of change of the number of whales with respect to time. The partial
derivative ON/OP describes the rate of change of the number of whales due to the availability of
plankton (assuming that there is no change in ocean temperature), and ON/OT gives the rate of
change of the number of whales with respect to the ocean temperature (under the assumption that
the availability of plankton remains unchanged). The derivative dP/dt describes how the availability
of plankton changes over time, and d7'/dt is the rate of change in ocean temperature with respect to
time.

23. Let’s consider the term h = g(x + y?) by itself. It helps if we think of it as the composition
h = gow, where v = z + y?. Thus,
dg(z +y*) Ok  dh v , , 9
- = = — = h . ]_ =
oz Jx  dv Oz ) gty
As practice (we will not need it here):

dgla+y?) _Oh _dhov _, 2+ P
% "oy - dway W @) =@ty
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Differentiating f(z,y) = g(x) + g(x + y?). with respect to z, we get
of

Yo ! 2
5 g (x) +g'(x+y*)

Thus, (0f/02)(0,0) = ¢’(0) + ¢’(0) = 10. (The condition g(0) = 4 (which appears in the first printing
of this book) is not needed.)

25. Using the chain rule,

W (1) = owdxr Owdy

T Ocdt oyt
= 6ze?’ (—sint) + (322 — 4)ey2 (2y)(cost)
= 6 costes™ f(—sint) 4 (3cos®t — 4:)6Sir12 “(2sint) cost

No need to simplify any further; since cost appears in both factors, it follows that w’(7/2) = 0.

27. Using the product and the chain rules,
Ug(x,t) = 20t f(x — 5t) + 223 f/ (x — 5t)(1) = 22> f (v — 5t) + 2*t> f'(x — 5t)
and

ug(x,t) = 22 (3t%) f(x — 5t) + 23 f/ (x — 5t)(=5) = 32*t* f(x — 5t) — 5> f/(x — 5t)

29. Using the chain rule,
0: _0:00 0200
Ou OJadu  0bou
1 1

_ 2

a a+b3—2(1)(v)+a+b3—2(3b )(2u)

B 1 2 N vH6(u?—0v?)u
T a4+ -2 (U+6b u) v+ (u? —v2)3 -2

Likewise,
0: _0:00  0:0b
ov  dadv 9bov

o 1 )
= o oMWWt 5 B(=2)
1 u— 6(u? —v?)%v
= (u—6b%0) =
a+b3—2(u 6b%) uwv 4 (u? —v?2)3 — 2

31. By the chain rule,
0: _0z00 00y
Ou Oxdu Oyou
= ycos(xy)(2uv) + x cos(zy)(—2v")
= cos(zy) (2yuv — 22v?)
= cos(—2u*v®) (—4u*v® — 2uv°) = —6u*v® cos(—2u’v°)
and
0: _0z00 020y
Ov Jdxdv Jydv
= ycos(zy)(u?) + x cos(zy) (—8uv?)
= cos(zy) (yu® — 8zuv®)

= cos(—2u*v”) (—2uPv* — 8ulv?) = —10uv? cos(—2u*v?)



Section 6 [Solutions] V1-25

33. Using the quotient and the chain rules,
0: 000 0:0y
ou Oxdu 0Oyou

2e(1 —xy) — (¢° —y)(—y) (D)1 —zy) — (2® —y)(—2)

) w07 T —ap? 0
(e -2y —yH)2v 20 (duw — 20u0® — 250%)
(1—ay)? N (1 — 10uv?)?

and

0z 0z0x 0z0y

dv 0z ov | Oyov
_ 22(1 —=y) — (2% — y)(=y)

(1 —ay)?

2u(2x — 2%y —y?)  5(—1+2?3)

(1 —=y)? (1 —wy)?
2u (4uwv — 200?03 — 250%) + 5(—1 + 8uv?)

(1 — 10uw?)?

(-1 —=zy) — (2® —y)(—x)
(1—azy)?

(2u) + (5)

35. From 322 + 2yy’ = 0 we get y/ = —32%/2y.

37. Using the chain and the product rules in differentiating the first term, we get
e (y+ay') —2yy =0
(we™ —2y)y’ = —ye™
/ ye™?

VT T e — gy

39. We compute
cos(2x —y)(2 —y') = —sin(x — 3y)(1 — 3y)
(— cos(2z — y) — 3sin(x — 3y))y’ = —2cos(2x — y) — sin(x — 3y)
, _ 2cos(2z —y) + sin(z — 3y)
cos(2x — y) + 3sin(x — 3y)

41. Keeping y constant and differentiating with respect to x using the product and the chain rules,
we get

(1)yz+xy(1)%:0 and yz—l—xy%zo

Thus, 0z/0x = —yz/xy = —z/x. Likewise, keeping x constant and differentiating with respect to y,
0 0
x(l)z—kxy(l)a—z =0 and :nz+xya—; =0

Thus, 0z/0x = —z/y.

43. Differentiating e** — eyz = 0 with respect to « while keeping y constant, we obtain

M( 0z> 0z
e z+r— ) —eyz—=0

0x ox
(ze™ — ey) % = —ze"?
0z zer®

Or revr?r — ey
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Differentiating e** — eyz = 0 with respect to y, while keeping = fixed, we obtain

e“x%—ez—e %—O
dy yay N
(ze™ — ey) g—; =ez
0z ez

aiy - rer? — ey

45. From (22+4y?)? —22+9? = 0 we get 2 +2229% +y* —22+9? = 0, and y* + (222 +1)y? +2* —22 = 0.
Using the quadratic formula gives
5 202 —1+£VArt+422+1—4xt +422 222 —1+V822 +1
v 2 - 2
To make sure that the expression for 32 is positive, we must take the plus sign, i.e.,
= —222 — 1+ V822 +1
2

Consequently,

y::l:%\/—2z2—1+\/8x2—|— ::I:%\/—4x2—2+2\/8:1:2+1

In the last step, we multiplied and divided by v/2, and brought the v/2 from the numerator inside the
square root.

4'7. Suppose that the two parallel lines are x = 1 and z = 2. Then x — 1 = 0 and = — 2 = 0; so, let
F(x,y) = (z — 1)(x — 2) = 2% — 3z + 2. The set F(x,y) = 0 consists of the lines z = 1 and z = 2.

In the same way we can construct infinitely many functions with the required property. For
instance, the set defined by F(z,y) = 0, where F(z,y) = (x + 2y — 4)(x + 2y + 3), consists of parallel
lines © + 2y —4 = 0 and 4+ 2y + 3 = 0. (Note that F' is a polynomial, and therefore has continuous
partial derivatives.)
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Section 7 Second-Order Partial Derivatives and Applications

1. Assume that f = f(z,y); the partial derivative f, is also a function of z and y, and so
. fy(2,T4+h) — [, (2,7

h
If needed, we can further write the first derivatives as limits:

 f2T+h+h)— f(2,7T+ R _f(2, T+ hy) — f(2,7
fy(2,7+h):h111§10f( + +}2 fRT+h) fy(2’7):hlj§of( +;z f(2,7)

3. Start with a simple case; if f(z,y) = €, then f..(z,y) = e® > 0 for all (x,y) € R%. What do level
curves of f look like? From f(x,y) = e® = ¢ we get = Inc¢; the level curves are vertical lines (see
below, left). Note that they get closer to each other as ¢ advances by 1. (The z-intercepts of the level
curves are (from left to right): In(1/5) ~ —1.61, In(1/2) = —0.69, In1 = 0, In2 = 0.69, In3 = 1.10,
In4=1.39, In5=1.61.)

Let’s think a bit more about this: f,, > 0 means that (f;), > 0, i.e., the partial derivative of f,
in the direction of the positive z-axis is increasing. Consider the contour diagram below, centre (as
suggested by the diagram, level curves are evenly spaced). The rate of change of f in the z-direction
is positive at all points; in particular f,(A) > 0 and f,(B) > 0, where B is a point near A, with the
same y-coordinate at A. However, at all points the rates of increase in f in the z direction are the
same; thus f,(A) = f.(B), and consequently, f,.(A) = 0.

To make f, increase in the horizontal direction, we make the distance between the level curves
smaller as we move along the x-axis (see the figure below, right; thus, we have arrived at the idea
suggested by the contour diagram of f(x,y) = e*). To check (figure below, right): the values of f
increase as we move toward the right, thus f,(A4) > 0 and f,(B) > 0. This time, however, f,(A) <
f=(B), since the same change in the function (of 1 unit) occurs over the smaller distance at B. Thus,
fz is increasing the the z-direction, i.e., f,. > 0.

y
s 12 Y11 2 3456 123415 6 738 | > "3 4 567 8

5. No, because the term —xy? is of degree 3.

7. For instance, f(x,y) = 2+ (z —2)?2 + (z — 2)(y — 1) + (z — 2)%. Note that the extra term
h(z,y) = (z — 2)* contributes nothing to the degree-2 Taylor polynomial: its value, and the values of
its partial derivatives are either identically zero, or evaluate to zero at the point (2,1). More precisely:
h=(z—2)* hy = 4(x —2)3, hye = 12(x — 2)? all evaluate to zero at (2,1); the remaining derivatives
are hy =0, hyy =0 and hy, = 0.

Expanding this idea, we realize that any function of the form f(z,y) =2+ (z —2)* + (z — 2)(y —
1) + g(z,y), where g(z,y) is a polynomial in z — 2 and y — 1 all of whose terms are of order three or
higher, has the degree-2 Taylor polynomial equal to 2 + (z — 2)? + (x — 2)(y — 1). (As above, we can
argue that g(x,y), and all its first and second order partial derivatives vanish at (2,1).)
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9. The level curves of f are horizontal. In other words, f does not change in the direction of the
r-axis, and so f, = 0 at all points in R?; in particular, f,(A4) = 0 and f,(A4;) = 0, where A; is near
A and lies on the same level curve as A. From this, we conclude that f,,(A) = 0.

In the vertical direction away from A, the values of f increase; thus, f,(A) > 0. Pick a point B
near A and vertically above it (as shown in figure below). Since f,(A) = 0 and the value of f, at
a nearby point B is also zero, it follows that f;,(A4) = 0. What is fy,(4) = (f,),(A)? f increases
in the vertical direction, thus f,(A) > 0 and f,(B) > 0. However, f,(B) > f,(A), since the same
change in f happens over a smaller distance at B. Thus, f, is increasing in the vertical direction, and

Jyy(A) > 0.
y
B
N 10
=9
A A
6
5
0 X

11. Thinking of f;,(4,1) as (fz)y(4,1), we write

. fﬂc(47 1+ h) — fﬂc(47 1) ~ fa:(47 1+ h) — fw(4a 1)
The smallest values of h we can use are h =1 and h = —1. Thus, to estimate (f;),(4,1), we need to
know f,(4,1), fz(4,2) and f,(4,0). In this exercise, we will use two estimates for each derivative, and
then take the average. To start:

f4d+h,1)— f(4,1)

fx(4,1) = ;
When h =1,
fa(4,1) & f(5.1) I f41) 3.113.5 o
When h = —1,
f(41) ~ L8D —1f<47 1) 32 —13.5 s
Thus, f.(4,1) ~ (—0.4 4 0.3)/2 = —0.05. We repeat the same routine for the remaining partial
derivatives:
£.(4,0) ~ LU4F hvof)b — f(4,0)
When h =1,
£o(4,0) ~ {30 - f(4,0) _ 29 - 28
When h = —1,
£o(4,0) = 130 —1f<470) 2328
Taking the average, f.(4,0) ~ (0.1 4 0.5)/2 = 0.3. As well,
f(42)~ L8F ’%2}1 —f(4,2)
When h =1,
£o(4,2) ~ £5:2) . f(4,2) _ 3.413.3 o
When h = -1,
L2~ G242 32233
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Taking the average, f;(4,2) =~ 0.1. We are now ready to estimate (f;),(4,1). When h =1,

()~ 2D = LG 01— (-005)

R =0.1
1 1 0.15

When h = —

fr(4v O) — fm(4a 1) 03— (7005)
(foyfa1) & SO D 032
Taking the average, (fz)y,(4,1) =~ (0.15 +0.35)/2 = 0.25.

Obviously, this is a fairly long procedure. To make it shorter, instead of calculating both forward
(h = 1) and backward (h = —1) difference quotients, we usually use forward quotients only.

=0.35

13. We will use forward difference quotients only (see the comment made at the end of the solution
of Exercise 11). To approximate f,(5,1) we use

1y(5,1) = limy h ~ h
(Forward difference quotient means that we take h > 0.) Taking h =1,

f(5,2) — f(5,1)  3.4-31

hE D= 1 =" =03
As well,
£,6,1) ~ 162 - f(6,1) _ 3.3 - 28 .
Now
(fy)z(5,1) = fy(5+h, 1}1 — fy(5,1)
When h =1,

£y(6,1) = fy(5,1) _ 0.5-03

(F)al5,1) = 22 05 g

15. Using the chain rule, we compute
ug = f'(x—st)(1) = f'(z — st)
up = f’(fc — st)(—s) = —Sf’(w — st)
Uz = [ (x — st)(1) = [ (x — st)
Uia = —sf" (@ — st)(1) = —sf"(x — st)
u = —sf"(x — st)(—s) = s> f"(x — st)

17. Write z = /22 + 32 = (2 4+ 3?)'/2. Note that z is symmetric in z and y (i.e., interchanging z
and y does not change z). This means that once we compute f,, we obtain f, by interchanging = and
y. Ditto for f,, and f,,. By the chain rule,

1
Zy = §(x2 Jryz)—1/2(2x) _ x(x2 +y2)71/2

2y = y(z® + %)

Raxx = (xz + 92)_1/2 T (_%) (x2 + yz)_3/2(2$)

—1/2

2
_ ()2 2\—3/27,.2 2 21 Y
= (z° 4+ y°) [z° +y Cc]_i(szryQ)?’/Q
2
x

T (g2 4 y2)32
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1

(1 2, 2y-3/2 R
Zgy = x( 2) (2= +y7) (2y) (22 + y2)3/2

19. This is straightforward: f, = -1, f, =0, fz2 =0, fzy = fy= =0 and f,, =0.

3 -3 — -2
- ny y oy = —X 7,

21. We compute g, = y(—1)z72 = —yz™2, g, = 271, gz = —y(—2)z

Jyz = —x72, and Gyy = 0.

23. Using the chain rule,
o = (1)1 —ay) " (—y) = y(1 —ay)
3

25. We use the fact that a degree-2 Taylor polynomial of a polynomial all of whose terms are of degree
3 or higher is zero. For instance, the degree-2 Taylor polynomials of 23 + 32%¢y? and 22° — y* + 23y
at (0,0) are zero. (This can easily be checked by calculating the values of these polynomials and
their first and second partial derivatives at (0,0).) So, take any function k(z,y). The degree-2 Taylor
polynomials of both f(z,y) = k(z,y) + 2* + 32%y? and g(z,y) = k(z,y) + 22° — y* + 23y? are equal
to the degree-2 Taylor polynomial of k(x,y).

27. Note that f is a degree-2 polynomial; thus, it is equal to its degree-2 Taylor polynomial at (0, 0)
(this fact is not true if the Taylor polynomial is based at any point other than the origin).

Alternatively, we compute the degree-2 Taylor polynomial from scratch: f(z,y) = 1—x—x2+3y?,
f(0,0) =1; fo = =1 =2z, f,(0,0) = —1; f, = 6y, f4(0,0) = 0; fow = =2, f02(0,0) = =2 f,, = 0,
f2y(0,0) = 0; and f,,, = 6, fyy(0,0) = 6. Thus,

T2(I7y) = f(07 0) + fm(oa 0)(1‘ - 0) + fy(07 0)(y - O)
43 (Fea(0,0) — 07 + 225 0,0)(x — )y — ) + £, 0,0y — )

=14 (-1)z+ (0)y + % ((—2)z* +2(0)zy + (6)y°)

=1—a—2%+3°

29. Recall that sint = ¢ — t3/3! +5/5! — .. ; thus, the degree-2 Taylor polynomial of sint at ¢t = 0
is To(t) = t. We conclude that the degree-2 Taylor polynomial of f(z,y) = sin(2x — y) at (0,0) is
Ty (x,y) = sin(2z — y).

Alternatively, we compute the degree-2 Taylor polynomial from scratch: f(z,y) = sin(2z — y),
f(0,0) = 0; fo = 2cos(2z —y), f2(0,0) = 2; f, = —cos(2z —y), fy(0,0) = —1. All second partial
derivatives involve sin(2z — y), and therefore all corresponding coefficients are zero. It follows that

TQ(xay) = f(0,0) + fr(oa())(x - 0) + fy(ovo)(y - O)
(1 0.0/~ 0 260, 0,0)(x ~ )y~ 0) + £ (0.0)(y ~ 0)?)

=0+ x4+ (—1y+ % ((0)2* + 2(0)zy + (0)y?)
=2z —vy

31. To keep track of the derivatives and their values, we use the table:



Thus
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f=e*siny 0
fo = —e Tsiny 0
fy=e""cosy el
fow = e Psiny 0
foy = fyn = —e~*cosy el
fyy = —e “siny 0

_|._

Ta(x,y) = f(1,0) + fo(1,0)(z — 1) + f,(1,0)(y — 0)
(faw(1,0)(x = 1)* + 2fuy (1,0)(z — 1)(y — 0) + fyy (1,0)(y — 0)*)

=0+0(x—1)+ely+ % (0(z — 1) +2(—e ) (z — )y + (0)y?)

33. We use the table:

Thus

f=In(1-2%-49?) 0
=208
= ioyp 0
—2y
fy = T— 22— 2 0
= —2(1 — 22 — y?) + 2z(—2z) L
T — 1_ .’132 — y2
—4dzy
Joy = fyz = m 0
_ 201 — 2% —y?) +2y(-2y) 5
foy = 1— 22— 2 -

TZ(x,y) = f(0,0) + fm(oao)(x - 0) + fy(ovo)(y - 0)
L (1 0.0/ = 0 + 21, 0.0)(@ ~ 0y = 0) + £, 0.0)(y ~ 0)2)

=0+ 0z + 0y + % ((—2)2% +2(0)zy + (—2)y?)

— 2?2

35. We compute:

f=VBr+y—1=Bz+y-1)"2

fo= %(31: +y-1)7%3) = ;(3w+y -7 (L) =

fy = %(31‘ +y—1)72(1) = %(3954'5‘} —1)712, fy(1,-1) =

fa,-1)=1

N — Do W

V1-31
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f:z:z = g <_%> (3!E + Yy — 1) 3/2(3) 2(31' +y 1)_3/27 fx(lv _1) = _Z
Foo =3 (=) Gty =D = <§Ey =172 L1 = -
=35 (=3) Ge+y= D0 = 1@y D72 L-) =
Thus,
Lo () = F(L =) + £l ~1)(@ = 1) + £, (L =D+ )
=1 3 1 L 1
14 3@y e
and

Tr(z,y) = f(1, —1) + (L, =D -1+ f,0,-DE+1)

A (D)@~ 12 426y (LD~ D+ 1) + Fy (LD + 1)
— 14 3D g (<3 - 0P fe - D+ - 1+ 1?)

At (0.9,—1), a (really good approximation of the) true value of f is f(0.9,—1) = 0.8366600265. The
linear approximation gives

3 1
L(,-1)(0.9,~1) = 14 5(0.9 — 1) + 5(~1+1) = 085

and the degree-2 Taylor approximation is

T5(0.9,—-1) =1+ g(—o&) + %(0) + % (—9(—0.1)2 ——(0) — i(o)) = 0.83875

37. We compute: f =xsiny, f(1,0) =0; f, =siny, f,(1,0) =0; f, =z cosy, f,(1,0) =1; fze =0,
fmx(lao) = 0; fmy fyac = Ccosy, fzy( ) fym(l 0) =1; and fyy = —xsiny, fyy(l 0) = 0; Thus,

T(z,y) = f(1, ) f2(1,0)(z = 1) + f,(1,0)y
( ( )(1‘—1) +2fry(170>(x_1)y+fyy(170)y2)

1
=0+0+y+50+2a-y+0)=y+(z—-1y=ay

The level curves of Th(x,y) = xy are the hyperbolas zy = ¢ or y = ¢/ (if ¢ # 0) and the pair of the
x-axis and the y-axis if ¢ = 0. The contour diagram of f(x,y) near (1,0) is below (level curves shown
are of value (from top to bottom): 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, —0.05, —0.1, —0.2, —0.3, —0.4, and
—0.5).

(1,0)

39. To approximate 1.01 In 1.08 we use the degree-2 Taylor polynomial of f(x,y) = zIny at the point
(z=1,y=1).
We compute: f = zlny, f(1,1) = 0; f, = Iny, f:(1,1) = 0; f, = x/y, f,(1,1) = 1; foe = 0,
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fma:(la ]—) = 0; fmy = fym = 1/ya fzy(]-’]-) =1 and fyy = 7$/y27 fyy(la 1) =-1L Thus,
TQ(mvy) = f(L 1) + fm(la 1)(1‘ - 1) + fy(L 1)(y - 1)

43 (el D@ = 17 4200y (L)@~ D= 1) + (1)~ 1?)
=0+0+(y—1)+%(0+2(x—1)(y—1)—1(y—1)2)

1
=y—l+@-Dy-1)-5-1)7
It follows that
1.01 In1.08 = f(1.01,1.08) ~ T5(1.01,1.08)

=1.08— 14 (1.01 — 1)(1.08 — 1) — =(1.08 — 1)% = 0.07760

!
2
A true value (actually a very good approximation) is f(1.01,1.08) = 0.07773065155.

0.9%-0.05" we yge the degree-2 Taylor polynomial of f(z,y) = ¢ ~¥" at the point

41. To approximate e
(x=1,y=0).

We compute: f =™ V", f(1,0) = 5 fo = 2we™ V', fo(1,0) = 2¢; fy = ~2ye” V", f,(1,0) = 0;
foz = 277V 4 220e” TV (22), f2e(1,0) = 6e; foy = fya = 22€” 7YV (=2y), fzy(1,0) = 0; and

fyy = —2e7" V" — 2yev” V7 (—2y), fyy(1,1) = —2¢; Thus,
Tg(i,y) = f(l,O) + fﬂc(lvo) T = 1) + fy(170)y
45 (a1, 0)(@ = 12 2y (1,02 = g + Fyn(1,0057)
=e+2e(r—1)+ % (6e(z —1)* — 2ey?)

=e[l+2(x—1) +3(x—1)% — 47
It follows that
097005 — £(0.9,0.05) &~ T5(0.9,0.05)
=e[l +2(0.9—1)+3(0.9 —1)* — (0.05)%] ~ 2.249378213
A true value (actually a very good approximation) is f(0.9,0.05) = 2.242295236.

43. Think of it this way: imagine that we have two slots ___ ___ and have to place the name of a
variable in each slot. Consider two situations: (a) the mixed second partial derivatives are not equal
(i.e., Theorem 11 does not hold), and (b) Theorem 11 holds, i.e., the mixed partial derivatives are
equal.

Case (a): if a function has 3 variables, then we have 3 options to fill in the first slot, and 3 options
to fill in the second slot; thus there are 32 = 9 possible arrangements, i.e., 9 distinct second derivatives
(xx, 2y, T2, YT, Yy, Y2, 27, 2y, and 2z). In the case of n variables, there are n? distinct second partial
derivatives.

Case (b): of the nine possibilities listed in (a), xy = yx, xz = zz, and yz = zy. Thus, there are
6 distinct second partial derivatives of a function of three variables. We could have calculated this in
the following way: of the total of 32 possibilities, there are 32 — 3 derivatives that involve two distinct
variables. Since the order does not matter, we need to remove half of them: (3% — 3)/2 = 3. Thus,
there is a total of 32 — 3 = 6 derivatives. If a function has n variables, then: the total number of
second derivatives is n? and the number of derivatives involving the same variables (such as zz, yy,
zz and so on) is n. Thus, there are n? — n derivatives that involve two distinct variables. We need to
remove one half of those, so there is a total of

2 n*—n _n*+n _ n(n+1)

2 2 2

distinct second-order derivatives.
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Section 8 Partial Differential Equations

1. Let f(x) = 2% — 1; then u(z,t) = f(z — 3t) = (x — 3t)?2 — 1, and so u is a travelling wave of speed
3 (units).

From u; = 2(x — 3t)(—3) and u, = 2(x — 3t) we conclude that u is a solution of the partial
differential equation us(z,t) = —su,(z,t) with s = 3. That’s fine, but all this means is that u(z, t) could
be a travelling wave. Note that we proved that a travelling wave u satisfies us(z, t) = —su,(x, t), but we
did not prove it the other way around: namely, we did not show that a solution of u;(x,t) = —su,(z,t)
is necessarily a travelling wave.

3. This is a straightforward calculation: f, = 4a® — 122y?, f., = 1222 — 12y%; f, = —122%y + 493,
and f,, = —12z2% + 12y2. Clearly, fiz + fyy = 0.

5. From f, = e”siny, fus = e*siny, f, = e*cosy, and f,, = —e“siny we get fuo + fyy = 0.

7. We compute:

foe— (- X))o
Tzl \Te) Tty

2zy
_ 2 2\—2 _
fee = —y(=1)(z" +y°) (2$)—W
I, = 1 1 1 la T
Tl n e 1L ora a?+y?
2xy
_ 2, 2\-2/0 N\ _
fyy =2(=1)(2" +y7) (29)**x2+y2

Clearly, fie + fyy = 0.

9. From c(z,t) = A8t we get ¢;(x,t) = BeAtBt ¢ (x,t) = AeA* Bt and cpp(x,t) = A2eA7T5E
Thus

B B
ci(z,t) = BeAr+Bt = ﬁAQGAC”Bt = ﬁcm(x,t)

Thus, c(z,t) = eA*+B¢ satisfies the diffusion equation (8.4) with o = B/A2.

11. Tt is assumed that u; = —su,. Differentiating with respect to ¢, we get uy; = —sug, and
differentiating with respect to z, we get us; = —Suy,. Assuming that the partial derivatives u,; and
Uy, are continuous, it follows that wu,; = wu,; (see Theorem 11 in Section 7). Combining the above
equations, we get

Upy = —SUgt = —SUty = —5(—5Upy) = §Upy

Thus, u satisfies the wave equation (8.2) with a? = 5.

13. The partial derivatives are computed to be u; = 3sin2xcos3t, uy = —9sin2xsin3t, u, =
2 cos 2x sin 3t, and u,, = —4sin 2z sin 3t. Thus,
9 9
Uy = —9sin 2z sin 3t = 1 (—4sin 2z sin 3t) = 7 Uae

That is, u satisfies the wave equation (8.2) with a? = 9/4.

15. A straightforward differentiation yields
up = "2 (=2) + 2(z + 2t)(2) = —2e" " + 4(x + 2t)
gy — 2e°72H(—=2) +4(2) = 4" £ 8
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Uy = "2 4 2z + 2t)
Upy = "2 42
Thus,
U = 4" 4 8 = 4(e® 2 4+ 2) = duy,
Thus, u(z,t) = e~ + (x + 2t)? satisfies the wave equation (8.2) with a? = 4.

17. (a) From u(x,t) = sinxz sin 2t we get u,(x,t) = cosx sin 2t, Uy, (x,t) = — sinx sin 2¢, and so

Uge(7/4,0.5) = —sin(mr/4) sin 2(0.5) = —\/75 sinl &~ —0.595
Thus, when t = 0.5, at the location x = 7/4, the string is concave down.
(b) From u(z,t) = sinz sin 2t we get uz(x,t) = 2s8inz cos 2t, ugy(x,t) = —4sinx sin 2¢, and so
u(m/4,0.5) = 2sin(r/4) cos 1 = V2cos 1 ~ 0.764
u(7/4,0.5) = —4sin(r/4)sinl = —2v/2sin 1 ~ —2.380

When ¢ = 0.5, at the location 2z = /4, the speed of the string is positive, so it moves upward. The
fact that uy is negative means that it is decelerating, i.e., it is slowing down.
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Section 9 Directional Derivative and Gradient

1. By the definition of the directional derivative,

2+ h(1/v5), =3 + h(2/v5)) — f(2,-3)

Duf(2,-3) = lim it

h—0 h
oy (2+ h/V5)% — (=3 +2h/V5) -7
= hmo h

3. At all points on the contour curve through (a,b) the function f has the same value (equal to
f(a,b)). Thus, the rate of change of f along this contour curve is zero. Intuitively: the tangent line
through (a,b) approximates the contour curve, and thus the rate of change of f along the tangent is
approximated by zero. (To make this argument work, we need to assume that f is differentiable.)

5. The maximum value of the directional derivative at (2,3) is |V f(2,3)| = v42 + 12 = V/17. Since
4 < /17, there is a direction u where Dy f(2,3) = 4. From D, f(2,3) = 4 we get (keep in mind that
u is a unit vector)

IV f(2,3)] - [[u]l - cosf = 4
V17 cos =4

cost) = ——

av
Using a calculator, we find that 6 ~ 0.25 (radians). Thus, there are two directions where Dy, f(2,3) = 4:
they make an angle of approximately 0.25 radians with respect to Vf(2,3).

7. Think of the curve given by F(z,y) = 0 as a level curve of value zero of the function F(x,y).
At a point (a,b), the gradient VF(a,b) = (Fy(a,b), Fy(a,b)) is perpendicular to the level curve (and,
therefore, perpendicular to the tangent line). Thus, any non-zero vector perpendicular to VF(a,b)
can serve as a direction vector of the tangent line; take, for instance, v = (—F,(a,b), F;(a,b)). The
slope of the line whose direction is given by v is —Fy(a,b)/F,(a,b). Using the point-slope form, we
obtain the equation of the tangent line:

9. At B, we have f(B) = 1. Moving in the direction of v =i+ j we meet the level curve of value 2
at the point C' = (3,3); thus, f(C) = 2. The distance between B and C' is /2, and so
[ —fB) _2-1_ 1
Duf(B) ~ = =

11. At C, we have f(C) = 2. Moving in the direction of v = —i+ 2j we meet the level curve of value
0 at the point (2,5); thus, f(2,5) = 0. The distance between C' and (2,5) is v/12 4 22 = /5, and so
f(2,5) - f(C) _0-2 2
Du C ~ = =

13. We see that f(F) = —2. Moving in the direction of v = —2i + j we meet the level curve of value
—1 at the point D = (3.5,5); thus, f(D) = —1. The distance between E and D is /22 + 12 = /5,
and so

SO -fE) _ —1-(=2) 1
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15. See the figure below. Keep in mind two facts: (a) the gradient vector is perpendicular to a contour
curve (in this case, the contour curve of value 1) and points in the direction of increasing values of the
function (in this case, in the direction toward the contour curve of value 2). (b) The closer (farther
apart) the two contour curves are, the larger (smaller) the magnitude of the gradient vector.

i \

3;11 % _\2<
2r-15 /\' N\,
EEVEN

0 1 2 3 4 5 6

17. From Vf(z,y) = (32%y + 2y2, 23 + 4oy — 3y?) we get Vf(1,3) = (27, —14). The unit vector in
the direction of v =2i +jis u = v/||v| = (2i+j)/v5 = (2/v5)i + (1/V/5)j. Thus

2 4 14 4
d 40 ~ 17.8885

Duf(1,3) = Vf(1,3) - u=(27i — 14j) - (%H \/%J) = E E-

19. From
Vi) = (3 )70 56 A ) = ()
we get Vf(—2,-2) = (-2/8,-2/8) = (—1/4,—1/4). The unit vector in the direction of v = —i+jis
w=v/|v] = (- +§)/v2 = (—1/v/D)i + (1/V2)}. Thus
Duf(=2,-2) = Vf(~2,-2) -u=(—1/4,-1/4) - (-1/v2,1/V2) =0

21. From
9 1 5 27

we get Vf(3,5) = (In25,6/5 4 2) = (In25,16/5). The unit vector in the direction of v = 8i + 6j is
u=v/|v|]| = (8i + 6§)/10 = (4/5)i + (3/5)j. (Note that |[v|| = /82 + 62 = v/100 = 10.) Thus
3 16

4
Duf(3,5) = Vf(3.5) u=(In25,16/5) - (4/5.3/5) = zIn25 + = — ~ 4.4951

23. From V f(x,y) = 6yi + 62j we get Vf(1,2) = 12i+ 6j and |V f(1,2)| = ||12i + 6j|| = 6[[2i +1i| =
61/5. Denoting by u the unit vector whose direction makes an angle 6 with respect to Vf(1,2), we
get
D,f(1,2) <2
V(L2 [[al - cos 6 < 2
6v5cosf < 2

cosf < 2
6v/5
Using a calculator, we find that cos@ = 2/6v/5 when 6 ~ 1.421 radians.

So, in the directions whose angle with respect to V f(1,2) is larger than 1.421 radians (and smaller
than or equal to 7 radians) the directional derivative of f is smaller than 2.
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25. From
— _ 2x 272
Vi) = oyt -2 = (2,20
we get Vf(2,—1) = (4,8) and [|[Vf(2,-1)| = ||(4,8)]| = 4]|/(1,2)|]| = 4v/5. The maximum rate of

change of f at (2,—1) is 4V/5; it occurs in the direction of the gradient Vf(2,—1) = (4,8); the
corresponding unit direction is u = V (2, —1)/[|V (2, =1)|| = (4,8)/4v5 = (1/v/5,2//5).

27. From

_ l —1/2 2\ _ (Y 2
we get Vf(1,2) = (1,13) and [|[Vf(1,2)] = [I(1,13)|| = V12 + 132 = /170. The maximum rate
of change of f at (1,2) is v/170; it occurs in the direction of the gradient Vf(1,2) = (1,13); the
corresponding unit direction is uw = Vf(1,2)/||Vf(1,2)| = (1/v/170,13/4/170).

29. Starting at A, where f(A) = —1, and moving in the direction perpendicular to the level curve of
value —1 toward the larger values of f, we meet the level curve of value 2 after covering the distance
of about 1/2 units. At B, the value of f is 1. Moving in the direction perpendicular to the level curve
of value 1 toward the level curves of larger values, we meet the level curve of value 2 after walking
the distance a bit larger than one unit. So, at A the function f increases by about 2 units over the
distance of 1/2 units. At B, f increases by about 1 unit over the distance larger than 1 unit. Thus,

IVFA > (VB

31. The function f(z,y) measures the distance between a point with coordinates (z,y) and the origin.
The level curves of f are given by /22 + 42 = ¢, i.e., 2% + 3? = ¢?; thus, they are concentric circles
centred at the origin (makes sense, since f is the distance from the origin). The gradient of f is

Vi) = (5 )70, 56 4 D)) ) = o)

2 /22 + 72
Note that V f(z,y) is a unit vector, parallel to the position vector of a point (x,y). Thus: all gradient

vectors are of the same length (since the distance changes in the same way at all points) and point
radially away from the origin; see the figure below.

y

~

33. It is given that Dy f(1,3) = 10, where u is the unit vector from (1,3) to (2,2). We compute
u=(1,-1)/v2 = (1/v2,~1/v/2). The gradient of f at (1,3) is Vf(1,3) = (f.(1,3), f,(1,3)). Now

D, f(1,3) =10
Vf(1,3)-u=10
1 1

£2(1,3) = £,(1,3) = 10V2
It is also given that Dy f(1,3) = 6, where u is the unit vector from (1, 3) to (2, 3). Since u = (1,0) =
Duf(1,3) = f.(1,3), and so f.(1,3) = 6. From f,(1,3) — f,(1,3) = 10v/2 it follows that f,(1,3)
6 — 10v/2. Thus, Vf(1,3) = (6,6 — 10v/2).

i
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35. (a) The gradient of P is
VP(z,y) = 40627 " (—42)i + 40e 27"~ (—2y)j = —80e 27"~ (2zi + yj)

and VP(1,0) = —80e~2(2i) = —160e~2i. The unit vector in the direction of i—j is (1/v/2)i— (1/v/2)j.
Thus, the rate of change of the pressure at the point (1,0) in the direction i — j is

1, 1 ) 160e 2
e i) =
ViV V2
(b) The pressure increases most rapidly in the direction of VP(1,0), which is —i. It decreases most
rapidly in the opposite direction, which is i.

Dy P(1,0) = VP(1,0) - u = (—160e %) - ( ~ 15.311

(¢) The maximum rate of increase in P at (1,0) is
[VP(1,0)|| = || — 160e™2i|| = 160e? ~ 21.654

(d) The rate of change of pressure is zero in the directions perpendicular to the gradient, i.e., in the
directions of the vectors j and —j.

37. (a) Note that T'(z,y) > 0 for all (x,7). As well, since 2% + 3> > 0, we get 2% + y? + 4 > 4 and
120 120
T - 0 0 00— =
(z,9) 2+y?+4 - 4 30
Thus, 0 < T'(x,y) < 30 for all (z,y) in R2. The level curve of T' of value ¢ is given by
120

l'2 +y2 +4
120
$2 + y2 —+ 4 = 7

120
x2+y2= T—

=cC

The contour diagram consists of concentric circles (centred at the origin); a level curve of value ¢ has
the radius of \/120/c — 4, if 0 < ¢ < 30 (otherwise, a level curve is an empty set). See the figure
below, left (the level curve of value ¢ = 30 has the radius 0 (i.e., is a point); when ¢ = 24 the radius is
1, when ¢ = 20 the radius is \/5, when ¢ = 10 the radius is \/g, and when ¢ = 1 the radius is \/ﬁ)

(b) We compute

240
(22 +y? +4)2
Recall that v = (x,y) is the position vector of a point (z,y) (i.e., the vector from (0,0) to (x,y)). The

gradient VT'(z,y) points in the opposite direction, toward the origin. All gradient vectors whose tails
are on the same circle (say, 22 + y? = r?) have the same magnitude, equal to

240 240r

214 24

Thus, when = 1 their length is 240/5 = 48, when r = /2 their length is 40v/2 ~ 56.6 when r = /8
their length is 20v/8 ~ 56.6, and when r = /116 their length is approximately 21.5; see the figure
below, right (we did not show the true size of the gradient vectors.)

VT(z,y) = (120(=1)(2* + y* +4)7*(22),120(-1)(2* + y* + 4)7*(2y)) = — (z,y)

IVT| =

y c=30 y

N

%
D

(c) Since gradient vectors point toward the origin, the warmest point is the origin. There, T(0,0) =
120/4 = 30.
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(d) In (a) we showed that 0 < T'(z,y) < 30, i.e., T cannot be larger that 30. Thus, 7'(0,0) = 120/4 = 30
is the maximum.

39. Let f(z,y) = ¢¥ — 2xy> + 4x; we think of the given curve as a contour curve of f of value 5. The
gradient of f is Vf(x,y) = (23> + 4, e¥ — 62y?). Since the vector V£(1,0) = (4,1) is perpendicular
to the contour curve (i.e., to the given curve) at the point (1,0), we can take any vector perpendicular
to it as a direction vector of the tangent line. Take, for instance, v .= (—1,4). The equation of the
tangent line (in parametric form) is

r=1+t-1)=1-¢
y=0+1t(4) =4t
where ¢ € R. Substituting ¢t = y/4 from the second equation into © = 1 — ¢, we get z = 1 — y/4,
dr =4 —y and y = —4x + 4.
Alternatively: the slope of the line whose direction vector is (—1,4) is 4/(—1) = —4. Using the
point-slope form, we obtain y — 0 = —4(x — 1), i.e., y = —4dx + 4.
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Section 10 Extreme Values

1. A linear function f(x,y) = ax + by + ¢ (where at least one of a or b is non-zero) has no extreme
values. Thus, we could draw a contour diagram of a linear function. Few more examples are provided
in the pictures below.

43 210 1 2 3 4 2 0 1
y // y y3 \%3
7 T x /OI\1 \ x

3. Calculating f, = 42° — 4y? and f, = —8zy, we see that f,(0,0) = 0 and f,(0,0) = 0; so (0,0) is
indeed a critical point of f. To show that it is a saddle point, we will show that it is neither a local
minimum point nor a local maximum point.

When y = 0, then fi(x) = f(x,0) = 2*. Thus, the values of f along the z-axis suggest that f
has a local minimum at x = 0. Along the curve y? = 23, we get fo(x) = 2* — 42(23) = —32*. This
suggests that f has a local maximum at x =0 (i.e., at (0,0)). We are done.

Alternatively, consider the values of f along y = x; we get f3(z) = x* — 423. Using one-variable
calculus, we see that fi(r) = 42® — 1222 = 42?(x — 3). For small values of x on either side of 0,
1% is negative. Thus, f3 is decreasing both before and after 0, and so 0 is neither a minimum nor a
maximum of f3. Since the graph of f(z,y) contains the curve fs, we conclude that f(0,0) is neither
minimum nor maximum of f.

5. Pick an open disk of radius r centred at the origin. No matter what r we take, the vertical strip
will contain points whose distance from the origin is larger than r, i.e., which not belong to the open
disk. See the figure below.

Y

0

7. The gradient of f is non-zero at all points in R?; thus, f has no critical points.

9. There are five critical points, see the figure below.
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Consider the point A: along one direction, the gradient points towards A, and along the perpendicular
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direction, it points away from A. Thus, A is a saddle point.

The gradient vectors around B point away from B, indicating that f increases in the directions
away from B; thus, B is a local minimum. The same argument proves that C is a local minimum.
The gradient vectors point toward D and F, indicating that f has a local maximum values at these
two points.

11. The partial derivatives of z are: z, = 2z, 2y = —2Y, 2pe = 2, 2oy = 0, and zy, = —2. Thus,
D(x,y) = zaazyy — 22, = —4; from D(0,0) = —4 < 0 we conclude that z has a saddle point at (0,0).

13. To find the critical points, we solve the system f, = 2z — 5y = 0 and f, = —5x — 2y = 0.
Substituting y = 2x/5 (which we obtained from the first equation) into the second equation, we get
—5x —4x/5 =0 and —29z/5 = 0, i.e.,, © = 0. It follows that y = 0, and so (0,0) is the only critical
point. (Note that f, and f, are defined at all (z,y) € R?.)

[Alternatively, for those familiar with basics of linear systems: the determinant of the homogeneous
system f, = 2x — 5y = 0 and f, = —5x — 2y = 0 is —29 # 0, and so the system has only the trivial
solution z = 0 and y = 0.]

From fpe =2, fey = —5 and f,, = —2 we obtain D(z,y) = fuefyy — f2, = —4 — (=5)% = —29.
Since D(0,0) = —29 < 0, we conclude that (0,0) is a saddle point.

15. To find critical points, we solve the system

fo= ye*’”h?”2 + xye*“j*f(flr) = y67127y2(1 —22%) =0
fy= ze Y 4 xyef"”2792(—2y) = xeﬂ”ty(z(l —-24%)=0
ie.,
y(1—22%) =0
z(1-2y°) =0

The first equation implies that y = 0 or 1 — 22? = 0, i.e., 22 = 1/2 and = = :l:l/\/i. Substituting
y = 0 into the second equation we get x = 0. Thus, (0,0) is a critical point.

Substituting z = +1/v/2 into the second equation we get (1/1/2)(1—2y2) = 0, which implies that
1—2y%? =0 and y = +1/1/2. We obtained four more critical points: (1/v/2,1/v2), (=1/v2,1/v/2),
(1/v/2,-1/3/2), and (—1/+/2,—1/+/2). There are no more critical points, as f, and f, are defined for
all (z,y) € R%

Now the second partials:

frw = ye™ 7V (=20) (1 = 2%) + ye™ Y (~dx)

= —Qxye_”z_yQ(l — 222 +2) = —2xye_“2_y2(3 —2x?)
Fay =" V(1= 22%) 4 ye ™ TV (~29)(1 — 227)

= eV (1 - 222)(1 — 20?)

e g2 g2
fyy =2e™" 7V (=2y)(1 = 2%) + we™" TV (—4y)

= —2xye_12_y2(1 — 2% 4+ 2) = —2xye_12_y2(3 —24?)

and therefore

D(amy) _ fzxfyy _ IZy _ 4x2y2(3 o 21}2)(3 o 2y2)e—2x2_2y2 - 6_2x2_2y2(1 . 21‘2)2(1 o 2y2)2
We now test each critical point. Since D(0,0) = 0—1 = —1 < 0, it follows that (0,0) is a saddle
point. For the remaining four critical points,

D(£1/v2,+1/V2) = 4= = (2)(2)e 2 —e2(0) = 4e 2 >0

1
2

N =

Note that
Joz = fxy[267127y2(3 —22%)] = —ay - [positive quantity when z = +1/v/2]
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Thus,

faz(1/7/2,1/1/2) < 0; so f has a relative maximum at (1/v/2,1/v/2)
faoa(=1/V/2,-1/V/2) < 0; so f has a relative maximum at (—1/v/2, —1/v/2)
foa(=1/3/2,1/v/2) > 0; so f has a relative minimum at (—1/v/2,1/v/2)
faz(1/7/2,=1/3/2) > 0; so f has a relative minimum at (1/v/2, —1/+/2)

17. To find critical points, we solve the system
fo = (322 — l)efy2 =0

fy = (23 — x)eny(—Qy) =0

From the first equation we get 322 — 1 = 0; thus, 22 = 1/3 and x = +1//3. Note that the factor

23 — z in the second equation is not zero when 2 = £1/+/3. Thus, fy = 0 implies that y = 0, and so

there are two critical points: (1/v/3,0) and (—1/+/3,0). (There are no other critical points, since f,
and f, are defined for all (z,y) € R%)

The second partial derivatives of f are
fra = 6™V
foy = (327 — 1)e_y2(—2y) = —2y(32?% — 1)(3_?’2
fo = =)l (~2)(~29) + eV (-2)] = (@® —w)e ™V (~2) (2" + 1)

Thus,
D(z,y) = foxfyy — r2y
= 6ze Y’ (2% — :10)6_92(—2)(—2312 + 1)e_y2 - (—2y(3x2 - 1)63_3’2)2
= —12(2? — 2?)(—2¢° + 1)6_2?’2 — 4y* (3% — 1)26_27’2
From

D(il/\/§,0)=—12<é—%>~1-1—0>0

fee(1/4/3,0) = 6(1/4/3) > 0, and f..(—1/4/3,0) = 6(—1/v/3) < 0 we conclude that f has a local
maximum at (—1/+/3) and a local minimum at (1//3).

19. The system of equations for the critical points is
fz=cosy=0
fy=—xsiny =0
The first equation implies that y = 7/2 + 7k, where k is an integer. At all these values siny # 0,

and thus from the second equation it follows that # = 0. The critical points are (0,7/2 + 7k).
(There are no other critical points since f, and f, are defined for all (z,y) € R?.) From fu, = 0,

fay = —siny, and f,, = —xcosy we compute D(z,y) = foufyy — f2, = —sin?y. The fact that
D(0,7/2 + 7k) = —sin®(7/2 + 7k) = —(£1)> = —1 < 0 means that all critical points are saddle
points.

21. Writing f(z,y) = +y + 2 'y~ !, we get

fo=1+(-1D2z %y ' '=1-—==0, and =z

fu=1+(-Dy 227 '=1-— =0, and 2y°=1

Substituting y = 1/2% (which we obtained from the first equation) into the second equation, we get

1 2
x(ﬁ) -t
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and so 1/2% =1, 2> = 1 and = 1. From y = 1/2? we compute y = 1, and so (1, 1) is a critical point.

(There are no other critical points, as the first partial derivatives are defined at all (x,y) where
f is defined; i.e., there are no points in the domain of f where one or both partial derivatives do not
exist.)

We compute fr, = —(=2)z 3y~ = 2/2%y, foy, = —273(=1)y~2 = 1/2%y?, and (by symmetry)
Jyy = 2/xy3. Tt follows that

D(:L‘,y) = fmfyy - zzy
2 2 1 4 1 3

By ayd (2222 ahyt o afyt T oyt
Since D(1,1) =3 > 0 and fy,(1,1) =2 > 0 we conclude that f has a relative minimum at (1,1).

23. To avoid working with the square root, we minimize the distance squared, f(z,y) = 22 + 2.
For the points on the curve, zy = 1 and y = 1/x. Thus, we are asked to minimize the function (of
one variable) f(z) = 22 + 1/22. (An alternative way of solving this question is to use the Lagrange
multipliers method, which is covered in the next section. Actually this question is out of place here.)

From f'(x) = 22 — 2/2® = 0 we get 20 — 2 = 0, 2* — 1 = 0 and 2% = 1. Thus, there are two
critical numbers, & = +1. (Note that f’(z) is defined at all points in the domain of f(x).) Since
f’(x) = 2+ 6/x* and f”(+1) = 8 > 0, both critical points represent local minimum of f. The
minimum value of f is f(+1) = 2, and so the minimum distance is v/2. The points (1,1) and (—1, 1)
on xy = 1 are the two points that are closest to the origin.

25. (a) It is assumed that the ecosystem consists of the three species A, B and C only. The numbers
a, b and c represent the percentages of the three species in the total population, and thus must add up
tol. From a+b+c=1we get c = 1—a—0band thus H(a,b) = —alna—blnb—(1—a—0)In(1—a—0).
(b) We compute:
1 1
H,(a,b)=—Ina—a- P (-)Inl—a—-b)—(1—a—"0)- m(—l)
=—lna+In(l —a—0>)

by symmetry, Hy(a,b) = —Inb+ In(1 —a — b). To find critical points, we solve

H,(a,b)=—Ina+In(l—a—-0)=0

Hy(a,b) = —Inb+In(l —a—>b) =0
which simplifies to a = 1 —a —b and b = 1 —a — b. Thus a = b; using the first equation, we get
a=1-2a,3a=1and a=1/3.So (1/3,1/3) is a critical point of H(a,b).

The second partials are

1 1 1 1
Hy=—""4+——(-1)=— -4 ——
“ a+1—a—b( ) (a+1—a—b)

1 1
71—a—b(_1)7_1—a—b

1 1 1 1
Hy = =g+ 5D =+ (ﬁm)

Hab

and thus
D(a,b) = HyoHy, — HZ,

(L, 1 L, 1 1
\a 1—-a-b)\b 1—-a-—0b (1—a—0)?

It follows that D(1/3,1/3) = (6)(6) —9 =27 > 0 and H,,(1/3,1/3) = —(6) < 0,80 (a =1/3,b=1/3)
is indeed a maximum. From ¢ = 1 —a — b we get ¢ = 1/3. The Shannon index achieves its largest
value when the three species are represented in equal proportion in the total population.
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27. Because it is a polynomial, f is continuous on S; the set S is closed and bounded. From
fa=y—3=0and f, =2+ 1 =0 it follows that f has only one critical point, (—1,3). This point
belongs to S, and f(-1,3) = (-1)(3) — 3(-1) +3 = 3.

The boundary of S consists of four line segments.

Along the segment y = 0, —2 < z < 1, the function f is equal to f(z,0) = —3z. This is a decreasing
function, so its extremes occur at the boundary points of the segment —2 <z < 1: f(—2,0) = 6 and
f(1,0) = -3.

Along the segment = 1,0 <y < 3, f is equal to f(1,y) = 2y — 3. This is an increasing function,
and its extremes occur at the endpoints: f(1,0) = —3 and f(1,3) = 3.

Along y = 3, =2 < x < 1, the function f is equal to f(z,3) = 3. Thus, f(z,3) = 3 for all
x € [—2,1].

Along x = —2,0 <y <3, fisequal to f(—2,y) = —2y+6+y = —y+ 6. Since this is a decreasing
function, its extreme values are f(—2,0) =6 and f(—2,3) = 3.

It follows that the absolute maximum of f on S is f(—2,0) = 6 and the absolute minimum is

£(1,0) = —3.

29. Note that f is continuous on S (as a product of a polynomial and an exponential function), and
S is closed and bounded. The system of equations f, = e¥ =0 and f, = ze¥ = 0 has no solutions, as
no point (z,y) satisfies both equations.

The boundary of S consists of four line segments.

Along the segment y = —3, —1 < 2 < 1, the function f is equal to f(x,—3) = xe=3. This is
an increasing function of x, and so its extremes occur at the endpoints of the interval [—1,1] for x:
f(=1,-3) = —e? and f(1,-3) = e 3.

Along the segment z = 1, —3 < y < 3, the function f is equal to f(1,y) = e¥. This is an increasing
function of y, and so its extremes occur at the endpoints of the interval [—3,3] for y: f(1,-3) =e~?
and f(1,3) = e3.

Along the segment y = 3, —1 < z < 1, the function f is equal to f(z,3) = ze3. This is an
increasing function of x, and so its extremes occur at the endpoints of the interval [—1,1] for x:
f(=1,3) = —¢® and f(1,3) = €3.

Along the segment z = —1, —3 < y < 3, the function f is equal to f(—1,y) = —e¥. This is
a decreasing function of y, and so its extremes occur at the endpoints of the interval [—3, 3] for y:
f(—=1,-3) = —e73 and f(-1,3) = —€>.

We conclude that the absolute maximum of f on S is f(1,3) = e® and the absolute minimum is
f(—1,3) = —¢.

31. Note that f is continuous on S (as the composition of a logarithm function with a polynomial
which is positive for all (x,y) € R?); as well, the set S is closed and bounded. The system of equations
2 2y

x\Ly - — =0 d R =— 2 =0
fo(@,9) 224+ y?+1 and £y (z,y) 24+ y?+1

has one solution, (x = 0,y = 0). Thus, f has only one critical point; the value of fis f(0,0) =1In1 = 0.

The boundary of S consists of four line segments.

Along the segment y = 0, 0 < z < 1, the function f is equal to f(x,0) = In(2? + 1). This is an
increasing function if > 0, and so its extremes occur at the endpoints of the interval [0,1] for x:
£(0,0) =In1=0and f(1,0) =1n2.

Along the segment z = 1, 0 < y < 1, the function f is equal to f(1,y) = In(y? + 2). This is an
increasing function of y (if y > 0, as it is here) and so its extremes occur at the endpoints of the
interval [0,1] for y: f(1,0) =In2 and f(1,1) =1n3.

Along the segment y = 1, 0 < x < 1, the function f is equal to f(x,1) = In(2? + 2). This is
the same situation (with = replacing y) as the previous line segment. Thus, the extremes are at
f(0,1) =In2 and f(1,1) =In3.

Along the segment z = 0, 0 < y < 1, the function f is equal to f(0,y) = In(y? + 1). This is the
same situation (with y replacing x) as the first line segment we analyzed. The extremes occur at the
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endpoints of the interval [0,1] for y: f(0,0) =0 and f(0,1) =In2.
We conclude that the absolute maximum of f on S is f(1,1) = In3 and the absolute minimum is
£(0,0) = 0.

33. Note that T is continuous on S (as the product of a polynomial and an exponential function); as
well, the set S is closed and bounded. The system of equations

T.(v,y) =4zeV =0 and T,(z,y) = 22%Y =0

is satisfied for = 0, and for any value y in [0.1]. Thus, all points (0,y), 0 < y < 1 are critical points
for T; at all these points, T(0,y) = 0. To avoid analyzing f along the four boundary segments, we
argue as follows: T'(x,y) = 2x2eY is the product of 222 and e¥. The largest value of 222 on [0,1] is
equal to 2 and occurs at = 1; the largest value of ¢ on [0, 1] is e, and occurs at y = 1. Thus, the
largest value of T is T'(z = 1,y = 1) = 2e. The smallest value of T is 0, and it occurs at all points
(0,y), where 0 <y < 1.

For completeness, we analyze the values of f on the four boundary line segments of S.

Along the segment y = 0, 0 < x < 1, the function f is equal to f(z,0) = 2z2. This is an increasing
function, and so its extremes occur at the endpoints of the interval [0,1] for z: f(0,0) = 0 and
F(1,0) = 2.

Along the segment x = 1, 0 < y < 1, the function f is equal to f(1,y) = 2¢¥. This is an increasing
function of y, and so its extremes occur at the endpoints of the interval [0,1] for y: f(1,0) = 2 and
f(1,1) = 2e.

Along the segment y = 1, 0 < 2 < 1, the function f is equal to f(x,1) = 2ex?. The extremes are
at f(0,1) =0 and f(1,1) = 2e.

Along the segment z = 0, 0 <y < 1, the function f is equal to f(0,y) = 0.

We conclude that the absolute maximum of 7' on S is f(1,1) = 2e and the absolute minimum is
0. Thus, the warmest point is (1, 1), and the coldest points lie on the segment that bounds S from the
left: {(0,y) [0 <y <1}

35. (a) From (f1), = 423 = 0 and (f1), = 4y®> = 0 it follows that (0,0) is a critical point of f;.
Likewise, from (f2), = —423 = 0 and (f2), = 4y = 0 we conclude that (0, 0) is a critical point of fs,
and from (f3), = 82® =0 and (f3), = —4y® = 0 it follows that (0, 0) is a critical point of f3.
(b) We compute (f1)zz = 1222, (f1)ay = 0, (f1)yy = 12y?; thus D = 1442y and D(0,0) = 0.
For fo, (fo)ex = —122%, (f2)zy = 0, (f2)yy = 12¢%; thus D = —1442%y? and D(0,0) = 0. For fs,
(f3)ax = 242%, (f3)ay = 0, (f3)yy = —12y?; thus D = —288z%y* and D(0,0) = 0.
(c) Since fi(x,y) = z* +y* > 0 for all (z,y), it follows that f1(0,0) = 0 is a local minimum.
Substituting z = 0 into fa, we get f2(0,y) = 14 + y*; f2(0,%) has a minimum at y = 0; when
y =0, we get fo(r,0) = 14 — 2*; fo(x,0) has a maximum at x = 0. Thus, fo(z,y) has a saddle point
at (0,0).
When z = 0, the f3(0,y) = —y* has a maximum at y = 0. When y = 0, the f3(x,0) = 2z* has a
minimum at = 0. Thus, f3(z,y) has a saddle point at (0,0).

37. (a) Since —2 < x < 2 and —2 < y < 2, it follows that f(z,y) = /22 +y2 < V22 + 22 = /8;
however, there is no point (z,y) in S where fi(z,y) = /8. Thus, f does not have an absolute
maximum.

Alternatively, think of f as the distance from a point (z,y) in S to the origin. The distance from
(2,2) to the origin is /22 + 22 = /8. Using points in S, we can get as close to (2,2) as needed (thus
making the values of f close to v/8). However, since (2,2) is not in S, we cannot make f equal to v/8.

The fact that f does not have an absolute maximum does not violate the conclusion of Theorem

21, since the theorem does not apply (the assumption on the closeness of S is not satisfied).
(b) Since —1 < sinzsiny < 1, it follows that —1 < fo(z,y) < 1. The absolute maximum of fs is 1,
and occurs at the points in .S where both sinz = 1 and siny = 1 or both sinx = —1 and siny = —1:
(x =m/2,y =7/2) and (x = —7/2,y = —7/2). The absolute minimum of f5 is —1, and occurs at the
points (x = —7/2,y = 7/2) and (x = 7/2,y = —7/2) in S.
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(c) If we remove the assumption on closeness of S the statement of the Theorem 21 might, or might
not hold.

39. The domain of f is R If z,y > 0, then f(z,y) = |z| + |y| =  + y. The system f, =1, f, =1
gives no critical points. If 2 > 0 and y < 0 then f(z,y) = |z| + |y| = v —y. Again, f, =1, f, = —1
gives no critical points. In the same way we check the remaining two cases, not getting any critical
points. Note that f, does not exist when x = 0, and f,, does not exist when y = 0. Thus, all points
of the form (x,0) and (0,y) where  and y are real numbers, are critical points of f.

41. We are looking for the line y = ma + b which best fits the given data, in the sense that m and b
minimize the function

f(m,b) = ((=2m +b) — 2)> + (Im +b) — 1)® + ((0m + b) — 4)?
=(=2m+b—2)2+(m+b—1)*+ (b—4)?
The partial derivatives of f are
fn =2(=2m 4 b —2)(=2) + 2(m + b — 1) = 10m — 2b + 6
fo=2(=2m+b—2)+2(m+b—1)+2(b—4) = —2m + 6b — 14
To find critical points, we solve the system (divide both f,, = 0 and f, = 0 by 2):
m—b+3=0
—-m+3b—-7=0
Multiplying the first equation by 3 and adding to the second, we get 14m + 2 = 0 and m = —1/7.
Substituting m = —1/7 into the first equation, we get —5/7 —b+ 3 =0, i.e., b = 16/7. Thus, there is
only one critical point, (m = —1/7,b = 16/7). The regression line is y = —z:/7 + 16/7.
To show that this critical point yields a minimum for f, we apply the second derivatives test. From

Jmm =10, fop = fom = —2, and fy, = 6, we compute D = frm for — f2, = (10)(6) — (—=2)* =56 > 0
Since fm = 10 > 0, the critical point we obtained is indeed a minimum.

43. We are looking for the line y = ma + b which best fits the given data, in the sense that m and b
minimize the function

fm,b) = ((0m +b) —0)2 + (0m +b) — 1)* + ((Im +b) — 1)* + ((2m + b) — 2)?
=02+ (b-1)*+(m+b—1)2+2m+b—2)?
The partial derivatives of f are
fm=2(m4+b—1)+22m+b—2)(2) = 10m + 6b — 10
fo=204+20—-1)+2(m+b—1)+22m+b—2)=6m+ 8> —8
To find critical points, we solve the system (divide both f,,, = 0 and f, = 0 by 2):
dm+3b—-5=0
3m+4b—4=0
Multyplying the first equation by —4, the second equation by 3 and adding them up we get —11m+8 =
0 and m = 8/11. Substituting m = 8/11 into the second equation, we get 24/11 + 4b — 4 = 0, i.e.,
4b = 20/11 and b = 5/11. Thus, there is only one critical point, (m = 8/11,b = 5/11). The regression
line is y = 8x/11 + 5/11.
To show that this critical point yields a minimum for f, we apply the second derivatives test. From
fomm = 10, fop = fom = 6, and fi, = 8, we compute D = frm foo — 2, = (10)(8) — (6)2 = 44 > 0
Since fim = 10 > 0, the critical point we obtained is indeed a minimum.

45. Define the function
F(m,b) = ((mx1 +b) = y1)* + ((ma2 +b) —y2)? + - + (may +b) — ya)?
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To find critical points, we solve the following equations:
fm =2((ma1 +b) — y1)a1 + 2((ma2 + b) — y2)z2 + -+ + 2((mn, + ) — yn) T
=2 (mx? +bxy — Y1 + mx% 4+ bxo — xoyo + - - + mxi + bx,, — xnyn)
=2(m(z+a5+ - +a2)+blxr+azo+ - +x,) — (T1Y1 + T2y2 + -+ Tpyn)) =0
and
fo=2((mx1 +b) — 1) + 2((ma2 +b) — y2) + -+ + 2((man +b) — yn)
=2m(x1+a2+-+x,) +20b+0+ - +D0) —2(p1 +y2+- -+ yn) =0
(in the second term b is added n times). Dividing both equations by 2 we obtain
m(xi +ad 4 ap) b @+ @) = Ty Taye o Ty
m(ry+ x4+ x,) Fn=y1 + Y2+ +Yn
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Section 11 Optimization with Constraints

1. The level curves of f are concentric circles (22 + y?)~1 = ¢, i.e., 2% + y? = 1 /¢, where ¢ > 0. The
constraint line y = 2x intersects all level curves orthogonally (i.e., at the point where y = 2z intersects
a level curve, the line y = 2z is perpendicular to the tangent to the constraint curve). Consequently,
the constraint curve is never parallel to the tangent to a level curve, and so f does not have a minimum
or maximum subject to the constraint 2x —y = 0.

3. We are looking for the points on the constraint curve where the constraint curve (actually the
tangent to the constraint curve) is perpendicular to the gradient of f. There are two such points, their
approximate location is indicated in the figure below.
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Recall that the gradient vectors indicate the direction of the (largest) increase in the values of f. At
the points on the constraint curve near A, the values of f are larger than f(A), since the curve moves
in the direction of the gradient. Thus, f has a minimum at A subject to the given constraint. Near
B, the constraint curve moves opposite of the gradient, and so the values of f along it decrease. Thus,
f(B) is a maximum of f subject to the given constraint.

5. We are looking for the points on the constraint curve where the constraint curve (i.e., the tangent
to the constraint curve) is perpendicular to the gradient of f. One point, labeled A in the figure below,
satisfies this property.
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Recall that the gradient vectors indicate the direction of the (largest) increase in the values of f.
Walking away from A along the constraint curve, we move in the direction opposite of the gradient,
and so the values of f decrease. Thus, f(A) is a maximum of f subject to the given constraint.

7. If the two constraints are identical, then it’s actually a single constraint. Otherwise (because they
are lines), the two constraint curves either intersect at one point (in which case the set of values of f
among which we need to pick the smallest and the largest values is reduced to one value), or do not
intersect at all (in which case the set of values of f among which we need to pick the smallest and the
largest values is empty).

9. The level curves of f are the circles 2% + y? = ¢ (of radius /¢, centred at the origin). Several level
curves and the constraint curve are shown in the figure below.



V1-50

Functions of Several Variables [Solutions]

constraint curve

(a) Walking around the constraint curve, we meet the level curves of values between 0 and 4. Thus
the minimum of f subject to the given constraint is 0 (occurs at (0,0)), and the maximum is 4 (occurs
at (0,2)).
(b) Let g(z,y) = 2% + (y — 1)?; the constraint can be written as g(x,y) = 1. Note that both f and g
are polynomials, and thus all of their partial derivatives are continuous. We compute V f = 2zi + 2yj
and Vg = 2zi+ 2(y — 1)j. The equation Vf = AVg implies that 2z = 22\ and 2y = 2(y — 1)\.

Rewriting the first equation as 2z(A — 1) = 0, the solutions are z = 0 (in which case A can be any
real number) or A = 1. Substituting A = 1 into 2y = 2(y — 1)\, we get 2y = 2y — 2 and 0 = —2. Thus,
A cannot be 1; so, x = 0.

Substituting # = 0 into the constraint equation, we get (y — 1) = 1, y> =2y + 1 = 1 and
y? — 2y = 0. Thus, y = 0 and y = 2, and we obtained two candidates for extremes, (0,0) and (0,2).

From Vg = 2zi+ 2(y — 1)j = 0 it follows that © = 0 and y = 1; i.e., Vg is zero only at (0, 1).
However, (0,1) does not belong to the constraint curve (checking part (b) of Algorithm 2). The
constraint curve is a circle (which has no endpoints), so we do not get any new candidates for extreme
values from part (c) of Algorithm 2. Finally, the circle is a closed and bounded set, so assumption (2)
is satisfied.

We compute f(0,0) = 0 and f(2,0) = 4 and conclude that f(2,0) = 4 is the maximum and
£(0,0) = 0 is the minimum of f subject to the given constraint.

11. Let g(z,y) = 2? +y?; the constraint can be written as g(x,y) = 9. Both f and g are polynomials,
and thus all of their partial derivatives are continuous. We find V f = 322i+ 3y2j and Vg = 2zi + 2yj.
The equation V f = AVg implies that

322 =22\ and x(3z —2\) =0

3y> =2y\ and y(3y —2)\) =0
The first equation implies that either z = 0 or 3z = 2); the second equation implies that either y = 0
or 3y = 2.

Substituting = 0 into the constraint equation we get y?> = 9 and y = £3. Likewise, y = 0 implies
that = £3. Thus, (0, 3), (0,—3), (3,0) and (—3,0) are candidates for extreme values.

Substituting x = 2A/3 and y = 2)\/3 into the constraint, we obtain

4N? N an:
9 9
i.e., 8\ = 81 and A = +9/+/8. In this case,
2 29 29 n 3
37 73V U322 TR
Thus, there are two more candidates for the extremes: (3/v/2,3/v/2) and (—-3/v/2, —3/v/2).

From Vg = 2zi 4 2yj = 0 it follows that x = 0 and y = 0; i.e., Vg is zero at the origin only.
However, (0,0) does not belong to the constraint curve (we are checking part (b) of Algorithm 2). The
constraint curve is a circle (which has no endpoints), so we do not get any new candidates for extreme
values from part (c) of Algorithm 2. Finally, the circle is a closed and bounded set, so assumption (2)
is satisfied.

The values of f at the points we obtained are: f(0,3) = 3% = 27, f(0,-3) = (=3)3 = —27,
f(37 O) =3 = 27, f(*ga O) = (73)3 =27,

f(3/V2,3/V2)

9

_ 2 2 54T
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and, similarly, f(—3/v/2,—3/v2) = —27/+/2. Thus f(0,3) = 27, and f(3,0) = 27, are the maximum,
and f(0,—3) = —27, and f(—3,0) = —27, are the minimum of f subject to the given constraint.

13. Let g(x,y) = 2z — y; the constraint can be written as g(x,y) = 0. Both f and g are polynomials,
and thus all of their partial derivatives are continuous. We find V f = 22i — 2yj and Vg = 2i — j. The
equation Vf = AVg implies that

2r =2\ and x =\
—2y=—-X and 2y=A\

Combining the two equations, we get © = 2y. Substituting x = 2y into the constraint, we get 2(2y) —
y =0, and y = 0. Thus, = 0 as well, and so (0,0) is a candidate for an extreme value.

Note that Vg = 2i — j # 0; as well, the constraint curve (the line y = 2x) has no endpoints
(checking parts (b) and (c) of Algorithm 2). Thus, we do not get any new candidates for extreme
values. The line is not a bounded set, so assumption (2) is not satisfied (which means that f might,
or might not have extreme values subject to the given constraint).

The value of f at the only point we found is f(0,0) = 0. On the constraint curve y = 2z, f is
equal to f(x,y = 22) = 22 — (21)? = —322. Thus, f(0,0) is a maximum. The expression —3z% can
be made smaller than any negative number, thus f does not have a minimum subject to the given
constraint.

15. Let g(z,y) = 2® — y?; the constraint can be written as g(x,y) = 1. Its graph is a hyperbola
with asymptotes y = +x and z-intercepts (£1,0). Both f and g are polynomials, and thus all of their
partial derivatives are continuous. We find Vf = 2zy%i + 22%yj and Vg = 2xi — 2yj. The equation
Vf = AVg implies that

22y? = 2x\ and x(y> —\) =0
2%y = —2y\ and y(z? + ) =0

The first equation implies that either = 0 or y? = ); the second equation implies that either y = 0
or #2 = —\.

Substituting = 0 into the constraint equation we get —y? = 1, which has no solutions in real
numbers. When y = 0, then 22 = 1 and x = 41. Thus, (1,0) and (—1,0) are candidates for extreme
values.

Substituting 22 = —\ and y? = X into the constraint equation 2 — % = 1, we get —\ — (\) = 1,
ie., A\ = —1/2. From 22 = —\ we conclude that there are no solutions for z.

From Vg = 2xi — 2yj = 0 it follows that z = 0 and y = 0; i.e., Vg is zero at the origin only.
However, (0,0) does not belong to the constraint curve (we are checking part (b) of Algorithm 2). The
constraint curve has no endpoints, so we do not get any new candidates for extreme values from part
(c) of Algorithm 2. The hyperbola x? —3? = 1 is not a bounded set, so assumption (2) is not satisfied
(which means that f might, or might not have extreme values subject to the given constraint).

The values of f at the points we obtained are: f(1,0) = 0 and f(—1,0) = 0. Since f(z,y) =
22y? > 0, we conclude that f(1,0) = 0 and f(—1,0) = 0 represent the minimum of f subject to the
given constraint. The function f has no maximum, as its values can be made larger than any number.
Alternatively, substituting y? = 2 — 1 (the constraint) into f(x,y) = 22y?, we get f(z) = 2%(2? — 1),
which approaches infinity as x approaches infinity.

17. Let g(x,y) = 2% + 2y?%; the constraint can be written as g(z,y) = 2. Writing the constraint as
22/2 +y? = 1, we see that its graph is an ellipse. Both f and g are polynomials, and thus all of their
partial derivatives are continuous. We find Vf = yi+ (x 4+ 1)j and Vg = 2zi + 4yj. The equation
V[ = AVg implies that y = 2z and =+ 1 = 4yA. Computing A from both equations, we get A = y/2x
and A\ = (z 4 1)/4y; thus
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and 4y? = 2x(x + 1) or 2y? = 22 + z. Substituting 2y? = 22 +  into the constraint equation we get
22+ (22 + x) = 2, and 222 + x — 2 = 0. Using the quadratic formula,

—1+V17
T
and so z ~ 0.78078 and = ~ —1.28078. Now we use 2y?> = 22 + z to find y. When x ~ 0.78078 then
292 ~ 1.39040 and y ~ £0.83379. When = ~ —1.28078 then 2y ~ 0.35962 and y ~ +0.42404. Thus,
(0.78078,0.83379), (0.78078, —0.83379), (—1.28078,0.42404) and (—1.28078, —0.42404) are candidates
for the extreme values.

From Vg = 2zi + 4yj = 0 it follows that z = 0 and y = 0; i.e., Vg is zero at the origin only.
However, (0,0) does not belong to the constraint curve (we are checking part (b) of Algorithm 2).
The constraint curve is an ellipse (which has no endpoints), so we do not get any new candidates
for extreme values from part (c) of Algorithm 2. Finally, the circle is a closed and bounded set, so
assumption (2) is satisfied.

The values of f at the points we obtained are:

£(0.78078,0.83379) ~ 1.48480
£(0.78078, —0.83379) ~ —1.48480
£(—1.28078,0.42404) ~ —0.11906
£(—1.28078,0.42404) ~ 0.11906

Thus, f(0.78078,0.83379) ~ 1.48480 is the maximum, and f(0.78078, —0.83379) ~ —1.48480 the
minimum of f subject to the given constraint.

Q

19. We are asked to find a minimum of T'(z,y) = 222 + y? + 120 subject to 22 4+ y* = 6.

Let g(z,y) = 22 +y?; the constraint can be written as g(x,y) = 6. Both T and g are polynomials,
and thus all of their partial derivatives are continuous. We find VT = 4zi + 2yj and Vg = 2xi + 2yj.
The equation V1" = A\Vg implies that

4 =2zA and x(2—X)=0
2y=2y\ and y(1-A)=0
The two equations imply that x = 0 and y = 0.

Substituting = 0 into the constraint equation we get > = 6 and y = +v/6. Likewise, y = 0
implies that 2 = +v/6. Thus, (0,v/6), (0, —v/6), (v/6,0) and (—/6,0) are candidates for the extreme
values.

From Vg = 2zi 4+ 2yj = 0 it follows that x = 0 and y = 0; i.e., Vg is zero at the origin only.
However, (0,0) does not belong to the constraint curve (we are checking part (b) of Algorithm 2). The
constraint curve is a circle (which has no endpoints), so we do not get any new candidates for extreme
values from part (c) of Algorithm 2. Finally, the circle is a closed and bounded set, so assumption (2)
is satisfied.

The values of the temperature T at the points we obtained are: T/(0,v/6) = 126, T(0, —/6) = 126,
T(v/6,0) = 132, and T(—+/6,0) = 132. Thus, the coldest points on the rim are (0,/6) and (0, —v/6),
where the temperature is T = 126.



