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Abstract. Algebraically closed fields, real closed fields, and pseudofinite fields

have, for every natural number n, have a finite number of extensions of degree
n; we show they share this property with all fields which, like them, satisfy

a very basic property of preservation of a type of model-theoretic dimension.

This result is attained by showing that a certain action of the group GLn on
such a field has only a finite number of orbits.

The original article appeared in The Journal of Symbolic Logic, Volume 60,

Number 2, June 1995 [4]. We have attempted to provide a translation as
faithful to the original wording as possible. The one exception is in the final

remark where we elaborate slightly for the sake of exposition. Any mistakes,

typos, or inconsistencies are likely due to the translator and should be brought
to their attention by emailing them at gcousins@nd.edu.

Dimension is the property that is conserved when one cuts something apart and
puts the pieces back together or, similarly, if we replace one piece with two of its
copies. This philosophy is what leads us to make the following definition:

Definition 1. If U and V are two definable sets in a structure M , we say the
dimension of U is less than the dimension of V , and write dim(U) ≤ dim(V ), if
there exists a partition of U into a finite number of definable subsets U1, . . . , Un

and definable functions fi : Ui → V , for 1 ≤ i ≤ n, such that the fi’s have finite
fibres (i.e. the preimage of any point is of size less than m for some fixed natural
number m).

By “definable”, we mean what others may call “interpretable”, that is to say, we
live in the structure Meq; we also allow parameters in definitions. However, we use
here the notion of dimension for sets definable without parameters in the cartesian
product of the considered structure, which will be a field K.

As in set theory without choice where we introduce the expression |U | ≤ |V |
to mean that we have an injection from U to V without worrying about defining
an entity called the “cardinality of U”, we consider the expression “dim(U) ≤
dim(V )” on its own. The important thing is the transitivity: if dim(U) ≤ dim(V )
and dim(V ) ≤ dim(W ), then dim(U) ≤ dim(W ); this implies that the relation of
“having the same dimension”, that is, dim(U) ≤ dim(V ) and dim(V ) ≤ dim(U),
is an equivalence. So, if the reader would like an object named “the dimension of
U”, take the monster model and quotient the set of all of its definable parts by this
congruence.
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In the context where this notion of dimension differs from others, we will call it
the surgical dimension. When the structure M is a field K, with algebraic closure
Kalg, we also consider the geometric dimension of a definable subset U of Kn,
which is its dimension in the sense of geometers, or even the Morley rank of the
Zariski closure of U in Kn

alg. It is also the maximum transcendence degree over K
of a tuple, maybe in an elementary extension of K, satisfying U : we see that this
notion is reasonable for a model theorists because nothing changes if we replace K
with an elementary extension.

The referee - sorry Mr. Allgood - made us see that our definition of surgical
dimension is not natural, since if f : U → V is a definable surjection with finite
fibres, it is not necessarily the case that U and V have the same dimension. We
agree, but we keep this definition in order to minimize the assumptions for the
theorem that we wish to prove.

As this dimension exists in every structure M , we can exploit it if we assume it
has particular properties; we require decent behaviour with respect to quotients, and
we describe an surgical structure as any structure M (saturated enough!) satisfying
the following property:

(1) If E is a definable equivalence relation on the elements of a definable set U ,
there are only finitely many equivalence classes modulo E which have the
same dimension as U .

In fact, we will only use this hypothesis in the following weakened form:

(2) For every definable action of a definable group G on a definable set U ,
there is only a finite number of orbits with the same dimension as U .

We observe that this property is preserved under interpretation.
In recent years, a number of surgical structures have been studied in model

theory, for example:

• finite structures;
• totally transcendental structures (since equal surgical dimension implies

equal Morley rank); in the case where the structure is just superstable,
condition 2 is true if stabilizers are (uniformly) finite (use Shelah degree);
(infinite) fields definable in these structures are algebraically closed (see [5],
[6]);
• o-minimal structures (since surgery preserves cellular dimension), which

can only define real closed or algebraically closed fields (see [3]);
• bounded, pseudo-algebraically closed structures, as defined in Hrushovski

[1][Translator’s Note: This reference seems to not exist or is under a dif-
ferent name than the one referenced in the original version of this paper.],
and in particular pseudo-finite fields (since surgery preserves S1 rank);
• certain “geometric fields” defined in Hrushovski and Pillay [2]. Note that p-

adic fields are “geometric”, but are not surgical: indeed, the p-adic integers
form a subgroup of infinite index of, and yet the same dimension as, the
additive group of the field, contradicting condition 2. Regardless, p-adic
fields satisfy the conclusion of the following theorem. It would be interesting
to find a model theoretic fact for why this is the case.

The goal of this note is to understand in general context a clear property exhib-
ited by all these examples:
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Theorem 2. Surgical fields are perfect and have, for every n, a finite number of
extensions of degree n.

Translator’s Note. Surgical fields are then fields of type (F) as defined by Serre in
Galois Cohomology [7].

It is easy to show perfection: K is our surgical field; if it is infinite of characteristic
p, Kp is definably isomorphic to K, so of the same dimension; if it were a proper
subfield of K, it would be an subgroup of the additive group of K of infinite index,
which is incompatible with condition 2. K is therefore perfect, and this is also true
if it is finite!

Let L be a separable extension of K of degree n. By the primitive element
theorem, L is generated over K by a single element α. By α1, . . . , αn, we denote
the conjugates of α (in the algebraic closure of K). The field N = K(α1, . . . , αn) is
a normal, separable (i.e. Galois) extension of K of degree n!. By the fundamental
theorem of Galois theory, there are a finite number of intermediate fields in between
K and N , each corresponding to a subgroup of the Galois group of the extension
N/K. It remains to show that there are only a finite number of possibilities for N .

This undertaking will demand several pages. We start with two lemmas clarifying
the relationship between the surgical dimension and the algebraic dimension.

Lemma 3. For any field K, every non-empty, Zariski open subset of Kn has the
same surgical dimension as Kn.

Proof. In a finite structure, everything has the same dimension. We suppose, there-
fore, that K is infinite. Let U ⊆ Kn be a Zariski open subset and let F be its
complement. We translate F piecewise into U , via an induction argument on the
geometric dimension of F .

Translator’s Note. Clearly dim(U) ≤ dim(Kn). From the argument, we conclude
that dim(Kn) ≤ dim(U), since we may partition Kn into the disjoint union U t F
and U maps into U via the identity, and F maps into U via a series of translations.

The result is clear if the geometric dimension of F is zero, that is, if F is finite,
so we assume F has strictly positive dimension.

Let G be a closed, irreducible subset of Kn
alg. For every a ∈ Kn

alg, if a + G

is different from G, then the intersection G ∩ (a + G) has (geometric) dimension
strictly less than that of G. Furthermore, those a such that a + G = G form an
algebraic subgroup of (K+

alg)n whose connected component is necessarily a Kalg-
vector subspace of the latter; if G is non-empty, this vector space is of dimension
(in any sense of the word) less than the dimension of G.

Let F ′ be the Zariski closure of F in Kn
alg, which, by hypothesis, is non-empty

and not all of Kn
alg. If (a + F ′) ∩ F ′ is of the same dimension, say d as F ′, then

it is the case that translation by a exchanges two irreducible components of F ′ of
dimension d. The set of a ∈ Kn

alg that have his property form a set V1 ∪ . . . ∪ Vk,
where each Vi is an equivalence class modulo a vector subspace of dimension greater
or equal to d, but strictly less than n. The intersection of any such Vi with Kn

is either empty, or an affine space of of dimension less than d: in fact, the linear
dimension, which is calculated via determinants, does not increase as one goes up
from K to Kalg, or even to any other extension of K. As a consequence, since K
is infinite, the Vi ∩ Kn cannot cover Kn, and so one can find a ∈ Kn such that
(a+F ′)∩F ′ is of dimension less than d. We translate F \(a+F ) by −a into U , and
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by the induction hypothesis applied to (a + F ) ∩ F , we can translate (a + F ) ∩ F
piecewise into its complement, which is U ∪ (F \ (a+F )): each piece is divided into
two, one which translates into U , and one that translates into F \ (a + F ), which
can then be translated into U by a new translation. And voila. �

Lemma 4. Let K be a field and U a definable subset of Kn. Then dim(U) ≤
dim(Kd), where d is the geometric dimension of U .

Proof. Let U ′ be the Zariski closure of U in Kn
alg; since U ′ is fixed setwise by all K-

automorphisms of Kalg, it is defined by a set polynomial equations with parameters
in K. Let p be a generic point of U ′, that is, a type over Kalg of rank d concentrating
on U ′. Let a = (a1, . . . , an) be a realization of p in some elementary extension of
Kalg. The coordinates of a are algebraic over d of them; to simplify notation, we
suppose the first a1, . . . , ad are algebraically independent over Kalg, whereas a is
algebraic over Kalg(a1, . . . , ad).

By compactness, and the fact that U ′ cannot contain a point of transcendence
degree d + 1, there exists an integer k such that (a1, . . . , ad) has no more than
k extensions to an n-tuple of U ′. The subset U ′1 of U ′ of points whose first d
coordinates have no more than k extensions to an n-tuple of U ′ is a definable subset
of Kn

alg. By quantifier elimination, U ′1 is definable by a quantifier-free formula in

the language of fields (geometers would call such a set “constructible”), and with
parameters in K. The intersection U ′1 ∩ Kn is therefore a definable subset over
K. Here, we do an induction on the Morley rank and degree of U ′ to obtain a
decomposition of U into U1, . . . , Ur, such that for each Ui there is a projection
πi : Ui → Kd such that πi has finite fibres (i.e. size less than k). �

We now proceed with the proof of our theorem by elimination of imaginaries.

Proof of Theorem 2. We consider the group GLn(Kalg) of n-by-n invertible matri-
ces with coefficients in the algebraic closure of K and its subgroup S, isomorphic
to the permutation group Sn, consisting of the permutation matrices, i.e. those
matrices formed by permuting the columns of the identity matrix. Two matrices
are congruent modulo S acting on the right if and only if one is a permutation of
the columns of the other.

Since the theory of algebraically closed fields eliminates imaginaries, the quotient
of GLn(Kalg) by the right action of S can be identified with a definable subset U
of some cartesian power of Kalg: we have, therefore, a definable surjection F :
GLn(Kalg)→ U(Kalg) such that F (X) = F (Y ) if and only if one is a permutation
of the columns of the other. By quantifier elimination, U is definable by a quantifier-
free formula, and furthermore, is definable without parameters, since both GLn and
S are definable without parameters. Similarly, the action of GLn on U is definable
by a quantifier-free formula without parameters.

For the reader unfamiliar with the notion of elimination of imaginaries, we ex-
plicitly work through the case of n = 2; to a matrix with rows (x, y;u, v), F
assigns five values, A = xy, B = x + y, C = uv, D = u + v, E = xv + yu,
that characterize a permutation of it’s columns: only the matrix (y, x; v, u) has
the same value under F . The set U is the subset of K5

alg defined by the equation

E2 + BDE + AD2 + CB2 − 4AC = 0 and the inequality E2 − 4AC 6= 0. As
for the action of a matrix M = (a, b; c, d) on U , it transforms (A,B,C,D,E) into
(a2A+ b2C+abE, aB+ bD, c2A+d2C+ cdE, cA+dD, 2acA+ 2bdC+ (ad+ bc)E).
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Going down now to K; the intersection U(K) in U(Kalg) with Km remains a
definable set in K, on which the action of GLn(K) is still definable; for this action,
the stabilizer of a point will never have more than n! elements, since this action
extends to the algebraic closure of K. However, there is no reason why this action
should have only one orbit!

Now we calculate dimensions. As U(Kalg) has the same Morley rank as GLn(K),
which is n2, Lemma 4 tells us that the surgical dimension of U(K) is less than or

equal to that of Kn2

. By Lemma 3, GLn(K), since it is Zariski open in Kn2

,

has the same surgical dimension as Kn2

, and that dimension is less than or equal
to the surgical dimension of U(K), since, as each stabilizer of a point in U(K)
is finite, each orbit of a point of the action of GLn(K) on U(K) has the same
surgical dimension as GLn(K). In other words, GLn(K) and U(K) have the same
surgical dimension. If, as we assumed, that our field K is surgical, then the action
of GLn(K) on U(K) has a finite number or orbits.

It remains to show the relevance of the proceeding considerations to the initially
posed problem.

For this, we recall our n-tuple ᾱ = (α1, . . . , αn) of elements in the algebraic
closure of K, which are conjugate and separable over K. To ᾱ, we associate a
matrix A for which the ith-column, which we write as a row to be economical with
paper, is (1, αi, α

2
i , . . . , α

n−1
i ); the determinant of this matrix is a Vandermonde

determinant, nightmare of DEUG students; it is non-zero since the αi are distinct.
The value of F (A) is not changed by permuting the αi, so that, as the extension

K(α1, . . . , αn)/K is separable, each of its coordinates is in K: F (A) is in U(K).
Therefore, if we assume the field K is surgical, GLn(K) has a finite number of

orbits in U(K); if we take another tuple ᾱ′ to which we associate a matrix A′, if
F (A) and F (A′) are in the same GLn(K) orbit, then we can find M ∈ GLn(K)
such that A′ = MAB, where B is a permutation matrix. This implies that α and
α′ generate the same extension of K. The theorem is proven. �

Remark 5. Dr. Zoé Chatzidakis has proposed an alternate proof for our theorem.
It is more direct, but it uses the full strength of property (1) instead of only its
consequence, property (2), for group actions.

Let K a surgical field and let U be the set of tuples ā = (a0, . . . , an−1), such
that the polynomial Pā(x) = xn + an−1x

n−1 + . . .+ a0 is irreducible over K. U is
a definable subset of Kn.

Consider the equivalence relation E on U given by āEb̄ if and only if Pā(x)
and Pb̄(x) generate isomorphic extensions of K; this means that Pb̄(x) has a zero
modulo Pā(x) and so the equivalence relation E is definable. As an extension of
degree n has no more than n! conjugates over K, it is enough to show that there
are only a finite number of degree n extensions up to isomorphism; furthermore, if
K is perfect all extensions are primitive: we want to show that E has only finitely
many classes; for that, it suffices to show that each of these classes is of the same
surgical dimension as Kn.

It is clear if U is empty; if not, we consider ā ∈ U , as well as the zeros α1, . . . , αn

of Pā(x), which live in the algebraic closure of K. It is easy to see that the tuples
(x0, . . . , xn−1) ∈ Kn such that β1 = x0 + x1α1 + . . . xn−1α

n−1
1 generates the same

extension as α1 form a Zariski open subset V of Kn: it suffices to express that
1, β1, β

n−1
1 are linearly independent over K. Observe that any K-conjugate of β1

is of the form βi = x0 + x1αi + . . . xn−1α
n−1
i for some i. Let Q(x) be the minimal
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polynomial of β1 over K. We can write

Q(x) = xn +

n∑
i=1

(−1)iei(β1, . . . , βn)xn−i,

where ei(y1, . . . , yn) is the ith-elementary symmetric polynomial. Consider the
polynomial map G(x0, . . . , xn−1) whose ith-coordinate function is given by

ei(x0 + x1α1 + . . . xn−1α
n−1
1 , . . . , x0 + x1αn + . . . xn−1α

n−1
n ),

which is a polynomial in x0, . . . , xn with coefficients which are symmetric polynomi-
als in α1, . . . , αn. Since every symmetric polynomial P (y1 . . . , yn) can be expressed
uniquely as R(e1(y1, . . . , yn), . . . , en(y1, . . . , yn)) for some R(ȳ) ∈ K[y1, . . . , yn],
and since ei(α1, . . . , αn) = ai, we have that G(x0, . . . , xn−1) is a polynomial map
with parameters in ā ∈ K. Observe that, for (v0, . . . , vn−1) ∈ V , G(v0, . . . , vn−1)
determines an irreducible polynomial for which each root is of the form v0 + v1αi +
. . . + vn−1α

n−1
i for some i, and so G is a polynomial map from V to the E-class

of ā. Furthermore, for b̄Eā, the fibre G−1(b̄) is precisely the set of permutations
of the tuple of zeros of the polynomial Pb̄(x), and so the fibres are size n!. Thus,
we have a polynomial map with finite fibres from V to the E-class of ā and the
conclusion follows from Lemma 3.

Thanks. This article was written when the first author was a guest of the Univer-
sité Claude Bernard (Lyon 1); he wants to eagerly thank the mathematical faculty
of this university, which received him as professor first class, third grade, during
the month of May of the year 1994.

Added in proof. The same methods show the the conclusion of the theorem holds
for any field F such that Th(F ) has ordinal valued Shelah degree.
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