---
title: "Jan25"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
Similating the central limit theorem:
Normal data sample size 4
```{r}
n <- 4
data.norm <- matrix(rnorm(n*10000, mean=5, sd=2),
nrow=10000)
means.norm <- rowMeans(data.norm)
hist(means.norm, breaks=100, col="green",
prob=T)
lines(seq(0,10,by=0.01),
dnorm(seq(0,10, by=0.01), mean=5, sd=1),
col="red", lwd=2)
lines(seq(0,10,by=0.01),
dnorm(seq(0,10, by=0.01), mean=5, sd=2))
```
Sample Size 25
```{r}
# Increase n to 25
n <- 25
data.norm <- matrix(rnorm(n*10000, mean=5, sd=2),
nrow=10000)
means.norm <- rowMeans(data.norm)
hist(means.norm, breaks=100, col="green",
prob=T)
lines(seq(0,10,by=0.01),
dnorm(seq(0,10, by=0.01), mean=5, sd=0.4),
col="red", lwd=2)
```
Non-normal data: exponential
Sample size 4
```{r}
n <- 4
data.exp <- matrix(rexp(n*10000, 1),ncol=n)
means.exp <- rowMeans(data.exp)
hist(means.exp, breaks=100, col="green",
prob=T)
lines(seq(0,10,by=0.01),
dnorm(seq(0,10, by=0.01), mean=1, sd=0.5),
col="red", lwd=2)
```
Sample size 25
```{r}
n <- 25
data.exp <- matrix(rexp(n*10000, 1),ncol=n)
means.exp <- rowMeans(data.exp)
hist(means.exp, breaks=100, col="green",
prob=T)
lines(seq(0,10,by=0.01),
dnorm(seq(0,10, by=0.01), mean=1, sd=0.2),
col="red", lwd=2)
```
sample size 100
```{r}
n <- 100
data.exp <- matrix(rexp(n*10000, 1),ncol=n)
means.exp <- rowMeans(data.exp)
hist(means.exp, breaks=100, col="green",
prob=T)
lines(seq(0,10,by=0.01),
dnorm(seq(0,10, by=0.01), mean=1, sd=0.1),
col="red", lwd=2)
```