--- title: "Linear Regression in R example" output: html_notebook --- Let's create some data: ```{r} predictor.var<-runif(15, -10, 10) predictor.var ``` ```{r} response.var<-3+2*predictor.var+rnorm(15,0,1) response.var ``` ```{r} my.data<-data.frame(predictor.var,response.var) my.data ``` ```{r} plot(my.data) ``` Let's use R to create a linear model: ```{r} my.model<-lm(my.data$response.var~my.data$predictor.var) summary(my.model) ``` What we see is that the linear regression predicts that the intercept is beta_0_hat=3.1178 (true beta_0=3) and predicts that the slope is beta_1_hat=2.1221 (true beta_1=2). Notice also that the R^2 value is 0.8269, which is quite high. This suggest that our fit is very good. We can plot the data with the fitted least squares line using the abline() function: ```{r} plot(my.data) abline(my.model) ``` ```{r} response.var.2<-runif(15,-10,10) ``` ```{r} my.data.2<-data.frame(predictor.var,response.var.2) plot(my.data.2) ``` ```{r} my.model.2<-lm(my.data.2$response.var.2~my.data.2$predictor.var) summary(my.model.2) ``` ```{r} plot(my.data.2) abline(my.model.2) ```