--- title: "R Lecture 1" output: html_notebook --- Let's run the following chunks of code and see what they do! The following initializes a variable as NULL which is like a blank placeholder. ```{r} y<-NULL ``` ```{r} y ``` Here I assign the value 5 to the variable y: ```{r} y<-5 ``` ```{r} y ``` Here are some boolean assignments. ```{r} x<-TRUE z<-FALSE ``` ```{r} x z ``` We can use boolean connectives like "&" or "&&" (AND), "|" or ||" (OR), and "!" (Negation) ```{r} x&z z||x !x ``` You can test whether a variable is of a given type with functions like "is.logical()", "is.numeric()", "is.na()", "is.factor()" ```{r} is.logical(x) is.logical(y) is.numeric(y) ``` Here, I create a vector called "greg_vect" ```{r} greg_vect<-c(1,1,2,3,5,8,13, 21, 34, 55) ``` ```{r} greg_vect ``` ```{r} test_vect<-c(1,2,3,4,5) test_vect ``` Here, I create a new data frame by reading in a .csv file: ```{r} gregs_df<-read.csv("example.csv") gregs_df ``` View the top few rows of a dataframe with "head()" ```{r} head(gregs_df) ``` ```{r} gregs_df$Random.number.1 ``` Indexing vectors: ```{r} greg_vect[1:4] ``` Here we create a boolean vector which is true wherever greg_vect is even. ```{r} even<-greg_vect%%2==0 even length(even) ``` Now, we can return the entries of greg_vect that are even: ```{r} greg_vect[even] ``` ```{r} odd<-greg_vect%%2==1 odd ``` ```{r} greg_vect[odd] ``` ```{r} greg_vect[greg_vect>5] ``` Some operations on numbers: ```{r} 2*5 2+5 2^5 log(42) 129389873287%%42 log(2+3*(4+8)^42) ``` Some operations on vectors: ```{r} length(greg_vect) ``` ```{r} sum(greg_vect) ``` ```{r} prod(greg_vect) ``` Let's make a stem and leaf plot (note: the $ let's me select a specific column from my data frame): ```{r} stem(gregs_df$Random.number.1) ``` That's interesting... pretty even... WHY? (Hint: I used Excel's RAND() function). ```{r} hist(greg_vect, breaks = 100) ``` ```{r} hist(gregs_df$Random.number.1,breaks = 1000) ``` Box Plots: ```{r} boxplot(gregs_df$Random.number.2) ``` Make a scatter plot: ```{r} plot(x=gregs_df$Random.Number.3,y=gregs_df$Random.Number.4, xlab = "More stuff", ylab = "Other stuff") title("Stuff") ``` ```{r} summary(gregs_df$Random.number.1) ``` ```{r} factortable<-table(gregs_df$The.best.people) factortable ``` ```{r} mean(greg_vect) ``` ```{r} summary(gregs_df$Random.number.1) ``` ```{r} fivenum((gregs_df$Random.number.2)) ``` ```{r} barplot(factortable) title("The best People") ``` ```{r} pie(factortable) ``` ```{r} head(gregs_df) ``` ```{r} test2<-c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19, 20) ``` ```{r} pairity<-test2%%2 pairity ```