

Lecture #1

- Complex numbers were introduced to give solutions to quadratic equations.

- For example,

$$x^2 + 1 = 0$$

has no solution in the real numbers, \mathbb{R} .

- to resolve this, we introduce i , \circ imaginary unit, and define $i^2 = -1$.

- Thus, i is a solution to $x^2 + 1 = 0$.

- the ^{field of} complex numbers $\mathbb{C} = \mathbb{R}[i]$ is the set of numbers of the form $\{a+bi : a, b \in \mathbb{R}\}$.

- Note that $\mathbb{R} \subseteq \mathbb{C}$.

- Fact (Fundamental Theorem of Algebra)

Let $x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0 = 0$ be a polynomial with $a_i \in \mathbb{C}$. Then it has n solutions in \mathbb{C} .

we usually denote complex numbers by z or w .

- Given $z = a + bi$,

$\operatorname{Re}(z) = a$ is the "real part"

$\operatorname{Im}(z) = b$ is the "imaginary part".

Ex: $\operatorname{Re}(2 - 4i) = 2$

$$\operatorname{Im}(2 - 4i) = -4.$$

so $z = \operatorname{Re}(z) + \operatorname{Im}(z)i$ for all z .

Fact: Given two complex numbers z and w , we have $z = w$ if and only if $\begin{cases} \operatorname{Re}(z) = \operatorname{Re}(w) \\ \operatorname{Im}(z) = \operatorname{Im}(w). \end{cases}$

i.e. $a + bi = c + di$ iff $a = c$ and $b = d$.

Arithmetic of Complex numbers

Let $z = a + bi$, $w = c + di$. Then

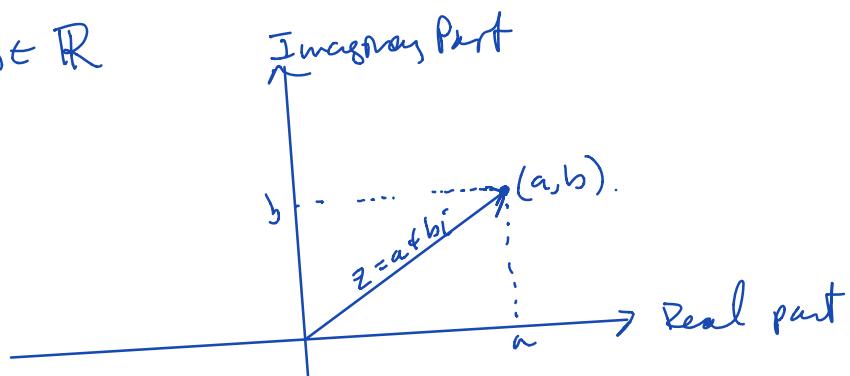
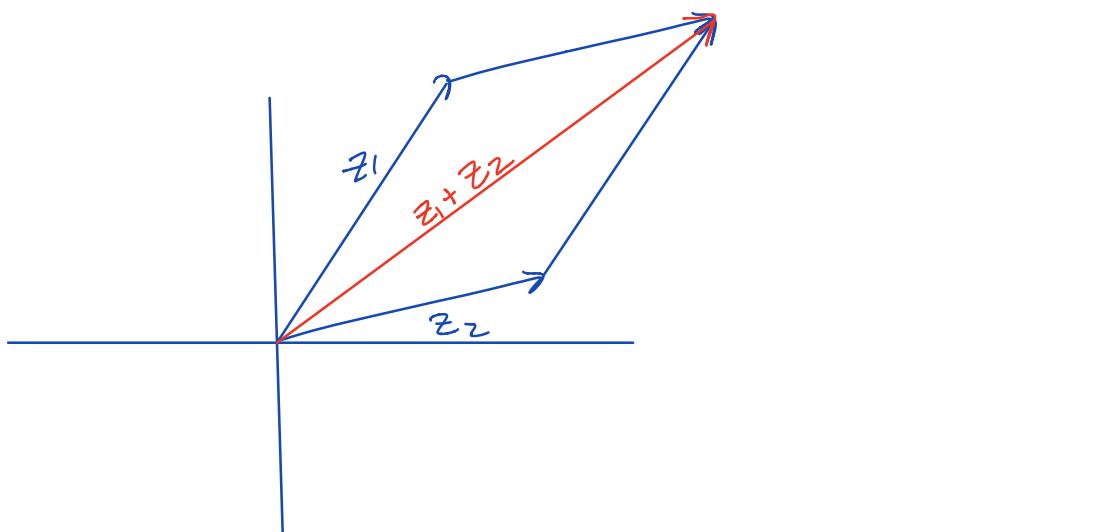
$$\begin{aligned} z + w &= (a + bi) + (c + di) \\ &= (a + c) + (b + d)i \end{aligned}$$

$$\begin{aligned}
 z \cdot w &= (a+bi)(c+di) \\
 &= ac + adi + bci + bdi^2 \quad (\text{foil!}) \\
 &= ac + (ad+bc)i + bd(-1) \\
 &= (ac-bd) + (ad+bc)i
 \end{aligned}$$

Special case: if $c \in \mathbb{R}$, then $c z = c(a+bi) = ac + bci$.

$$z - w = z + (-1)w = (a - c) + (b - d)i$$

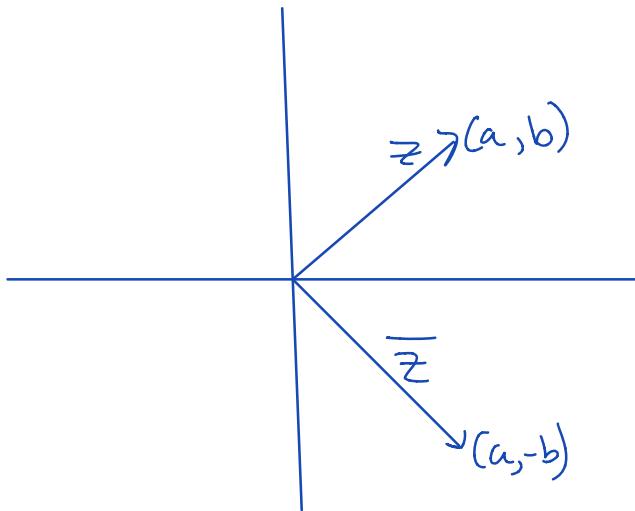
To each complex number $z = a+bi$ you can associate a real vector $(a, b) \in \mathbb{R}^2$



Complex Conjugation

Given a complex number $z = a + bi$, the complex conjugate is defined to be

$$\bar{z} = a - bi$$



Note that $z = \bar{z}$ iff $z \in \mathbb{R}$ i.e. z is real.

- The modulus / absolute value of a complex number z is defined to be

$$\begin{aligned}\sqrt{z\bar{z}} &= \sqrt{(a+bi)(a-bi)} \\ &= \sqrt{a^2 - b^2 i^2} = \sqrt{a^2 + b^2} \\ &= \sqrt{a^2 + b^2}\end{aligned}$$

- The modulus of z is the length of the vector (a, b) !
- If $z = a$ is a real number, then $|z| = |a|$.

Inverses: \mathbb{C} is a field. That means we can add, multiply, and divide.

- For $z \in \mathbb{C}$, we define $z^{-1} = \frac{1}{z}$ to be the complex number such that $z\left(\frac{1}{z}\right) = 1$.

- If $z = a + bi$ and $\frac{1}{z} = c + di$, we have

$$1 = (a + bi)(c + di) = (ac - bd) + (ad + bc)i = 1 + 0i$$

This gives two equations in two variables (c and d)

$$ac - bd = 1$$

$$ad + bc = 0$$

which has a unique solution (exercise!)

$$c = \frac{a}{|z|^2} \quad d = \frac{-b}{|z|^2}$$

which gives

$$\frac{1}{z} = \frac{\bar{z}}{|z|^2}.$$

Therefore, given two complex numbers z, w ,

$$\frac{z}{w} = z \left(\frac{1}{w} \right) = \frac{z \bar{w}}{|w|^2}$$

Theorem: For any complex numbers z, z_1, z_2 ,

$$1) \overline{z_1 + z_2} = \bar{z}_1 + \bar{z}_2$$

$$2) \overline{z_1 z_2} = \bar{z}_1 \bar{z}_2$$

$$3) \overline{\left(\frac{1}{z} \right)} = \frac{1}{\bar{z}}$$

$$4) \overline{\bar{z}} = z.$$

$$5) |\bar{z}| = |z|$$

$$6) |z_1 z_2| = |z_1| |z_2|$$

$$7) |z_1 + z_2| \leq |z_1| + |z_2|.$$