

Lecture #11

Definition: Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Let $W \subseteq V$ be a subspace of V . The orthogonal complement of W , the set of vectors orthogonal to every vector in W :

$$W^\perp = \{ \vec{v} \in V : \langle \vec{v}, \vec{w} \rangle = 0 \text{ for all } \vec{w} \in W \}.$$

Theorem: Let $W \subseteq V$. Then:

- 1) W^\perp is a subspace of V .
- 2) $W \cap W^\perp = \{ \vec{0} \}$.

Pf: 1) $W^\perp \subseteq V$, so we only need to check that W^\perp is closed under addition and scalar multiplication.

i) Addition: Let $\vec{v}_1, \vec{v}_2 \in W^\perp$. Let $\vec{w} \in W$ be arbitrary. Then

$$\langle \vec{v}_1 + \vec{v}_2, \vec{w} \rangle = \langle \vec{v}_1, \vec{w} \rangle + \langle \vec{v}_2, \vec{w} \rangle = 0 + 0 = 0. \quad \checkmark$$

ii) Scalar multiplication: Let k be a scalar, $\vec{v} \in W^\perp$. Then for $\vec{w} \in W$ arbitrary,

$$\langle k\vec{v}, \vec{w} \rangle = k \langle \vec{v}, \vec{w} \rangle = k \cdot 0 = 0. \quad \checkmark$$

2). Let $\vec{v} \in W \cap W^\perp$. Then $\langle \vec{v}, \vec{v} \rangle = 0$. By positivity, $\vec{v} = \vec{0}$.

Hence $W \cap W^\perp = \{ \vec{0} \}$. \square .

Fact (Without Proof): Let $W \subseteq V$ be such that $\dim(W) < \infty$. Then $(W^\perp)^\perp = W$

Remark In general this is not true. If $\dim(W) = \infty$, then we only have that $W \subseteq (W^\perp)^\perp$.

Connection to matrices

Theorem: Let A be an $m \times n$ matrix (real or complex).

① Then $\ker(T_A) = \text{null}(A) \cong$ the orthogonal complement of the row space.

② $\text{null}(A^T) \cong$ the orthogonal complement of the column space of A (not A^T !).

Gram-Schmidt + and QR decomposition (6.3).

Defn: Let S be a set of vectors in an inner product space. We say that

i) S is orthogonal if $\forall \vec{v}, \vec{w} \in S, \langle \vec{v}, \vec{w} \rangle = 0$.

ii) S is orthonormal if S is orthogonal and $\|\vec{v}\| = 1$ for all $\vec{v} \in S$.

Ex: Let $\vec{v}_1 = (1, 0, 1)$, $\vec{v}_2 = (0, 1, 0)$, $\vec{v}_3 = (1, 0, -1)$.

Then $S = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is orthogonal wrt dot product, since

$$\langle \vec{v}_1, \vec{v}_2 \rangle = (1)(0) + (0)(1) + (1)(0) = 0 \quad \langle \vec{v}_1, \vec{v}_3 \rangle = (1)(1) + (0)(0) + (1)(-1) = 1 - 1 = 0.$$

$$\langle \vec{v}_2, \vec{v}_3 \rangle = (0)(1) + (1)(0) + (0)(-1) = 0.$$

- Often, especially for computational reasons, it is desirable to have an orthonormal set.
- Given an orthogonal set, we can get an orthonormal set by normalizing each vector.

Fact: Let \vec{v} be any vector in an inner product space. Then $\vec{u} = \frac{\vec{v}}{\|\vec{v}\|}$ is a unit vector.

Pf. $\|\vec{u}\| = \left\| \frac{\vec{v}}{\|\vec{v}\|} \right\| = \frac{1}{\|\vec{v}\|} \cdot \|\vec{v}\| = 1$.

Ex: Let $\vec{v}_1 = (1, 0, 1)$, $\vec{v}_2 = (0, 1, 0)$, $\vec{v}_3 = (1, 0, -1)$

Then an orthonormal set is

$$\vec{u}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|} = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right), \vec{u}_2 = \frac{\vec{v}_2}{\|\vec{v}_2\|} = (0, 1, 0)$$

$$\vec{u}_3 = \frac{\vec{v}_3}{\|\vec{v}_3\|} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}} \right).$$

Note that rescaling does not change orthogonality. If $\langle \vec{u}, \vec{v} \rangle = 0$, then $\langle k\vec{u}, \vec{v} \rangle = k\langle \vec{u}, \vec{v} \rangle = 0$ for any scalar k .

Theorem: Let $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ be an orthogonal set of non-zero vectors. Then $\{\vec{v}_1, \dots, \vec{v}_n\}$ is linearly independent.

Pf: Suppose

$$c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n = \vec{0}.$$

Let $1 \leq i \leq n$ be arbitrary. Then

$$\begin{aligned} 0 &= \langle \vec{0}, \vec{v}_i \rangle = \langle c_1 \vec{v}_1 + \dots + c_n \vec{v}_n, \vec{v}_i \rangle \quad \text{by linearity in first coord.} \\ &= \langle c_1 \vec{v}_1, \vec{v}_i \rangle + \langle c_2 \vec{v}_2, \vec{v}_i \rangle + \dots + \langle c_n \vec{v}_n, \vec{v}_i \rangle \quad \vee \\ &= c_1 \langle \vec{v}_1, \vec{v}_i \rangle + \dots + c_i \langle \vec{v}_i, \vec{v}_i \rangle + \dots + c_n \langle \vec{v}_n, \vec{v}_i \rangle \quad \cancel{\text{by orthogonality}} \\ &= c_i \langle \vec{v}_i, \vec{v}_i \rangle \quad \text{by orthogonality.} \end{aligned}$$

Now, since $\vec{v}_i \neq \vec{0}$, $\langle \vec{v}_i, \vec{v}_i \rangle \neq 0$ by the positivity axiom. Hence $c_i = 0$. Since i was arbitrary,

$$c_1 = c_2 = \dots = c_n = 0. \quad \square.$$

Defn: we say that a basis B is orthonormal basis if the set of basis vectors B is orthonormal. we say a basis B is an orthogonal basis if all the vectors are orthogonal.

Ex: the standard basis
 $\vec{e}_1 = (1, 0, \dots, 0), \dots, \vec{e}_n = (0, 0, \dots, 0, 1)$

- $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ is an orthonormal basis for K^n ($K = \mathbb{Q}$ or \mathbb{R}).
- Recall that if $S = \{\vec{v}_1, \dots, \vec{v}_n\}$ is a basis for V , then any vector $\vec{u} \in V$ can be expressed uniquely as

$$\vec{u} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n.$$

- The typical way to find the coefficients is to solve the corresponding linear system

$$\vec{u} = [\vec{v}_1 \ \vec{v}_2 \ \dots \ \vec{v}_n] \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

- However if S is orthogonal or orthonormal, it's even easier: