

Lecture #12

Recall: A basis B for an inner prod. Space

V is called:

i) orthogonal iff for all $\vec{v}, \vec{w} \in B$ if $\vec{v} \neq \vec{w}$ then $\langle \vec{v}, \vec{w} \rangle = 0$.

ii) orthonormal iff B is orthogonal and, for all $\vec{v} \in B$, $\|\vec{v}\| = 1$.

Theorem: Let $S = \{\vec{v}_1, \dots, \vec{v}_n\}$ be a basis for V and $\vec{u} \in V$.

i) If S is orthogonal then

$$\vec{u} = \frac{\langle \vec{u}, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1 + \frac{\langle \vec{u}, \vec{v}_2 \rangle}{\|\vec{v}_2\|^2} \vec{v}_2 + \dots + \frac{\langle \vec{u}, \vec{v}_n \rangle}{\|\vec{v}_n\|^2} \vec{v}_n$$

ii) If S is orthonormal, then

$$\vec{u} = \langle \vec{u}, \vec{v}_1 \rangle \vec{v}_1 + \dots + \langle \vec{u}, \vec{v}_n \rangle \vec{v}_n.$$

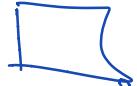
Proof: i) Since $\{\vec{v}_1, \dots, \vec{v}_n\}$ is a basis, we may uniquely write $\vec{u} = c_1 \vec{v}_1 + \dots + c_n \vec{v}_n$ for some scalars c_i .

Thus, it suffices to show that $c_i = \frac{\langle \vec{u}, \vec{v}_i \rangle}{\|\vec{v}_i\|^2}$ for all $1 \leq i \leq n$. To see this, let i be arbitrary. Then

$$\begin{aligned}
 \langle u, v_i \rangle &= \langle c_1 \vec{v}_1 + \dots + c_n \vec{v}_n, v_i \rangle \\
 &= c_1 \cancel{\langle \vec{v}_1, v_i \rangle} + \dots + c_i \cancel{\langle \vec{v}_i, v_i \rangle} + \dots + c_n \cancel{\langle \vec{v}_n, v_i \rangle} \\
 &= c_i \langle v_i, v_i \rangle = c_i \|v_i\|^2.
 \end{aligned}$$

$$\text{Solving for } c_i, \quad c_i = \frac{\langle u, v_i \rangle}{\|v_i\|^2}.$$

For ii) we use the same proof but by normality $\|v_i\|^2 = 1$ and so $c_i = \langle u, v_i \rangle$.



As a consequence of the last theorem, if $s = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ is an orthogonal basis for V , and $\vec{u} \in V$, then the vector of coordinates of u w.r.t $(\vec{v})_s = \left(\frac{\langle \vec{u}, \vec{v}_1 \rangle}{\|v_1\|^2}, \dots, \frac{\langle \vec{u}, \vec{v}_n \rangle}{\|v_n\|^2} \right)$.

And if s is orthonormal, then

$$(\vec{u})_s = (\langle \vec{u}, \vec{v}_1 \rangle, \dots, \langle \vec{u}, \vec{v}_n \rangle).$$

Ex: Recall from last time that $\vec{v}_1 = \left\langle \frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right\rangle$, $\vec{v}_2 = \left\langle 0, 1, 0 \right\rangle$, $\vec{v}_3 = \left\langle \frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}} \right\rangle$. $\vec{v}_1, \vec{v}_2, \vec{v}_3$ is an orthonormal basis for \mathbb{R}^3 . Let $u = (1, 1, 1)$ be a vector. Then we can write

$$\vec{u} = \left(\frac{1}{\sqrt{2}} + 0 + \frac{1}{\sqrt{2}} \right) \vec{v}_1 + (0 + 1 + 0) \vec{v}_2 + \left(\frac{1}{\sqrt{2}} + 0 - \frac{1}{\sqrt{2}} \right) \vec{v}_3$$

$$= \frac{2}{\sqrt{2}} \vec{v}_1 + \vec{v}_2$$

$$\text{So } (\vec{u})_S = \left(\frac{2}{\sqrt{2}}, 1, 0 \right).$$

Producing orthogonal Bases

- For many applications we want an orthogonal or orthonormal basis.
- We want to give a method for producing an orthogonal basis. To do this we need to introduce

Theorem (Projection Theorem) If W is a finite dimensional subspace of an I.P.S. V , then every $\vec{v} \in V$ can be expressed uniquely as

$$\vec{v} = \vec{w}_1 + \vec{w}_2$$

where $\vec{w}_1 \in W$ and $\vec{w}_2 \in W^\perp$.

- These vectors are usually denoted as
- These vectors are usually denoted as
- $\vec{w}_1 = \text{proj}_W \vec{v}$ the orthogonal projection of \vec{v} onto W .
- and $\vec{w}_2 = \text{proj}_{W^\perp} \vec{v}$ the orthogonal projection of \vec{v} onto W^\perp .
- These projections can be computed via the following theorem:

Theorem: Let W be a finite dimensional subspace of an I.P.S. V .

a) If $\{\vec{v}_1, \dots, \vec{v}_n\}$ is an orthogonal basis for W

and \vec{u} is any vector in V , then

$$\text{proj}_W \vec{u} = \frac{\langle \vec{u}, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1 + \dots + \frac{\langle \vec{u}, \vec{v}_n \rangle}{\|\vec{v}_n\|^2} \vec{v}_n$$

b) If $\{\vec{v}_1, \dots, \vec{v}_n\}$ is orthonormal basis for W , then

$$\text{proj}_W \vec{u} = \langle \vec{u}, \vec{v}_1 \rangle \vec{v}_1 + \dots + \langle \vec{u}, \vec{v}_n \rangle \vec{v}_n.$$

Pf: Let $\vec{u} \in V$. By the projection theorem,

we can write $\vec{u} = \vec{w}_1 + \vec{w}_2$ where

$$\vec{w}_1 = \text{proj}_W \vec{u}$$

$$\vec{w}_2 = \text{proj}_{W^\perp} \vec{u}.$$

By a previous result, we have

$$\text{proj}_W \vec{u} = \vec{w}_1 = \frac{\langle \vec{w}_1, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1 + \dots + \frac{\langle \vec{w}_1, \vec{v}_n \rangle}{\|\vec{v}_n\|^2} \vec{v}_n.$$

Now, since $\vec{w}_2 \in W^\perp$, we have

$$\langle \vec{w}_2, \vec{v}_1 \rangle = \dots = \langle \vec{w}_2, \vec{v}_n \rangle = 0,$$

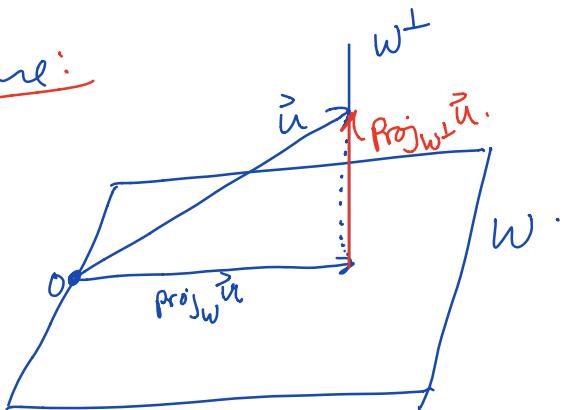
and so, by linearity in the first variable,

$$\text{proj}_W \vec{u} = \frac{\langle \vec{w}_1 + \vec{w}_2, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1 + \dots + \frac{\langle \vec{w}_1 + \vec{w}_2, \vec{v}_n \rangle}{\|\vec{v}_n\|^2} \vec{v}_n$$

$$= \frac{\langle \vec{u}, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1 + \dots + \frac{\langle \vec{u}, \vec{v}_n \rangle}{\|\vec{v}_n\|^2} \vec{v}_n$$

as required.

Picture:



Ex: Consider \mathbb{R}^3 with the dot product. Let $\vec{v}_1 = (0, 1, 0)$ $\vec{v}_2 = \left(-\frac{4}{5}, 0, \frac{3}{5}\right)$. Let $W = \text{Span}\{\vec{v}_1, \vec{v}_2\}$.
Let $\vec{v}_1 = (0, 1, 0)$ $\vec{v}_2 = \left(-\frac{4}{5}, 0, \frac{3}{5}\right)$ orthonormal.

Let $\vec{u} = (1, 1, 1)$. Then

$$\begin{aligned}\text{Proj}_W \vec{u} &= (\vec{u} \cdot \vec{v}_1) \vec{v}_1 + (\vec{u} \cdot \vec{v}_2) \vec{v}_2 \\ &= (0+1+0) \vec{v}_1 + \left(-\frac{4}{5}+0+\frac{3}{5}\right) \vec{v}_2 = \vec{v}_1 + \frac{-1}{5} \vec{v}_2 \\ &= (0, 1, 0) + \left(\frac{4}{25}, 0, \frac{3}{25}\right) = \left(\frac{4}{25}, 1, \frac{3}{25}\right)\end{aligned}$$

So, how to find $\text{Proj}_{W^\perp} \vec{u}$?
we know that $\vec{u} = \text{Proj}_W \vec{u} + \text{Proj}_{W^\perp} \vec{u}$, hence

$$\begin{aligned}\text{Proj}_{W^\perp} \vec{u} &= \vec{u} - \text{Proj}_W \vec{u} \\ &= (1, 1, 1) - \left(\frac{4}{25}, 1, \frac{3}{25}\right) \\ &= \left(\frac{21}{25}, 0, \frac{28}{25}\right).\end{aligned}$$

Theorem: Let V be a finite dimensional inner product space. Then V has an orthogonal basis (and hence an orthonormal basis, by normalizing).

Proof: Next time!