

Lecture 13

Recall from last time:

Projection theorem: Let $W \subseteq V$ be a finite dimensional subspace of an inner product space V . Then for all $\vec{v} \in V$, we can write

$$\vec{v} = \vec{w}_1 + \vec{w}_2$$

$$\text{where } \vec{w}_1 = \text{proj}_W \vec{v} \in W$$

$$\text{and } \vec{w}_2 = \text{proj}_{W^\perp} \vec{v} = \vec{v} - \text{proj}$$

and

Theorem: Let W be a finite dim subspace of an inner product space V . If $\{\vec{w}_1, \dots, \vec{w}_n\}$ is an orthogonal basis for W , then for any $\vec{v} \in V$,

$$\text{proj}_W \vec{v} = \frac{\langle \vec{v}, \vec{w}_1 \rangle}{\|\vec{w}_1\|^2} \vec{w}_1 + \dots + \frac{\langle \vec{v}, \vec{w}_n \rangle}{\|\vec{w}_n\|^2} \vec{w}_n$$

$$(\text{and so } \text{proj}_{W^\perp} \vec{v} = \vec{v} - \left(\frac{\langle \vec{v}, \vec{w}_1 \rangle}{\|\vec{w}_1\|^2} \vec{w}_1 + \dots + \frac{\langle \vec{v}, \vec{w}_n \rangle}{\|\vec{w}_n\|^2} \vec{w}_n \right))$$

- we use these theorems recursively to prove the following:

Theorem: Let V be a finite dimensional inner product space. Has an orthogonal basis.

Proof:

- Let $\{\vec{u}_1, \dots, \vec{u}_n\}$ be a (any) basis for V (we have a finite basis since V is finite dimensional).
- From $\{\vec{u}_1, \dots, \vec{u}_n\}$ we want to produce an orthogonal basis $\{\vec{v}_1, \dots, \vec{v}_n\}$.
- we construct this basis in n steps.

Step 1: Let $\vec{v}_1 := \vec{u}_1$.

Step 2: We want a vector \vec{v}_2 orthogonal to \vec{v}_1 .

Let $W_1 = \text{span}(\vec{v}_1)$. Define

$$\begin{aligned}\vec{v}_2 &:= \text{proj}_{W_1^\perp} \vec{u}_2 = \vec{u}_2 - \text{proj}_{W_1} \vec{u}_2 \\ &= \vec{u}_2 - \frac{\langle \vec{u}_2, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1\end{aligned}$$

* Note! $\vec{v}_2 \neq \vec{0}$, since otherwise \vec{u}_1 and \vec{u}_2 would be linearly dependent, which is impossible!

Step 3: We want a vector \vec{v}_3 which is orthogonal to \vec{v}_1 and \vec{v}_2 . Let $W_2 = \text{span}(\vec{v}_1, \vec{v}_2)$. Note that $\{\vec{v}_1, \vec{v}_2\}$ is an orthogonal basis of W_2 . Define

$$\begin{aligned}\vec{v}_3 &:= \text{proj}_{W_2^\perp} \vec{u}_3 = \vec{u}_3 - \text{proj}_{W_2} \vec{u}_3 \\ &= \vec{u}_3 - \frac{\langle \vec{u}_3, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1 - \frac{\langle \vec{u}_3, \vec{v}_2 \rangle}{\|\vec{v}_2\|^2} \vec{v}_2\end{aligned}$$

As before $\vec{v}_3 \neq \vec{0}$, since $\vec{u}_1, \vec{u}_2, \vec{u}_3$ are linearly indep.

Step 4: We want a vector \vec{v}_4 orthogonal to $\vec{v}_1, \vec{v}_2, \vec{v}_3$.
 \vec{v}_3 . Set $W_3 = \text{span}(\vec{v}_1, \vec{v}_2, \vec{v}_3)$. Then $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$
 is an orthogonal basis for W_3 . Define

$$\vec{v}_4 := \vec{u}_4 - \frac{\langle \vec{u}_4, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1 - \frac{\langle \vec{u}_4, \vec{v}_2 \rangle}{\|\vec{v}_2\|^2} \vec{v}_2 - \frac{\langle \vec{u}_4, \vec{v}_3 \rangle}{\|\vec{v}_3\|^2} \vec{v}_3.$$

Step n: Finally, let $W_{n-1} = \text{Span}(\vec{v}_1, \dots, \vec{v}_{n-1})$.

Take $\vec{v}_n = \vec{u}_n - \left(\sum_{i=1}^{n-1} \frac{\langle \vec{u}_n, \vec{v}_i \rangle}{\|\vec{v}_i\|^2} \vec{v}_i \right)$.

Then $\{\vec{v}_1, \dots, \vec{v}_n\}$ is an orthogonal basis for V .

optional Step: For $1 \leq i \leq n$, let

$$\vec{s}_i := \frac{\vec{v}_i}{\|\vec{v}_i\|}$$

then $\{\vec{s}_1, \vec{s}_2, \dots, \vec{s}_n\}$ is an orthonormal basis for V . \square .

The proof is an algorithm called Gram-Schmidt.
 (G.S.)

Ex: Let $P_3(\mathbb{R})$ be the real inner product space
 of degree at most 3 polynomials with real coefficients.
 We can equip $P_3(\mathbb{R})$ with the inner product

$$\langle p, q \rangle = \int_{-1}^1 p(x)q(x)dx.$$

Observe that the standard basis $\{1, x, x^2, x^3\}$ is not orthogonal wrt. to this innerproduct use G.S. to find an orthogonal basis:

Step 1: $\vec{v}_1 = 1$.

Step 2: $\vec{v}_2 = x - \frac{\langle x, 1 \rangle}{\|1\|^2} \cdot 1$

$$= x - \frac{\int_{-1}^1 x dx}{\int_{-1}^1 1^2 dx} \cdot 1 = x - \frac{\frac{x^2}{2} \Big|_1^0}{2} = x$$

Step 3: $\vec{v}_3 = x^2 - \frac{\langle x^2, 1 \rangle}{\|1\|^2} \cdot 1 - \frac{\langle x^2, x \rangle}{\|x\|^2} \cdot x$

$$= x^2 - \frac{\int_{-1}^1 x^2 dx}{\int_{-1}^1 1 dx} \cdot 1 - \frac{\int_{-1}^1 x^2 x dx}{\int_{-1}^1 x^2 dx} \cdot x$$

$$= x^2 - \frac{\frac{x^3}{3} \Big|_{-1}^1}{2} \cdot x$$

$$= x^2 - \frac{\frac{2}{3}}{2} = x^2 - \frac{1}{3}$$

Step 4: $\vec{v}_4 = x^3 - \frac{\int_{-1}^1 x^3 dx}{\int_{-1}^1 1 dx} - \frac{\int_{-1}^1 x^3 x dx}{\int_{-1}^1 x^2 dx} - \frac{\int_{-1}^1 x^3 (x^2 - \frac{1}{3}) dx}{\int_{-1}^1 (x^2 - \frac{1}{3})^2 dx}$

$$= x^3 - \frac{(2/5)}{(3/2)} x - \frac{\left(\frac{x^6}{6} - \frac{x^4}{12} \right) \Big|_1^9}{\left(x^4 - \frac{2}{3}x^2 + \frac{1}{9} \right) \Big|_1^9}$$

$$= x^3 - \frac{4}{15}x$$

Exercise: Normalize these polynomials.

Note that if you apply G.S. to an orthogonal set $\{\vec{v}_1, \dots, \vec{v}_n\}$ then it returns the same set.

Note that we can combine G.S. with a previous result to prove:

Theorem: Let $W \subseteq V$ be a finite dimensional subspace of an inner product V , then every orthogonal set of nonzero vectors in W can be enlarged to an orthogonal basis for W .

Pf.: Let $S = \{\vec{v}_1, \dots, \vec{v}_n\} \subseteq W$ be an orthogonal set of nonzero vectors. Then S must be linearly independent. Therefore, we can expand S to a new set

$$S' = \{\vec{v}_1, \dots, \vec{v}_n, \vec{w}_1, \dots, \vec{w}_s\}$$

which is (nearly) independent. (Plus/minus Theorem).

We may assume S' is a basis for W .

Applying G.S. to S' gives an orthogonal basis for W . \square