

Lecture 14

Application of GS.: QR decomposition.

- QR decomposition is a technique for decomposing certain matrices in a nice way.
- Useful in many numerical applications

Question: Let A be an $m \times n$ matrix with linearly independent column vectors. Let

Q be the matrix obtained by applying G.S. to the columns of A . How are A and Q related?

- Let $A = [\vec{v}_1 | \vec{v}_2 | \dots | \vec{v}_n]$ and let

$Q = [\vec{q}_1 | \vec{q}_2 | \dots | \vec{q}_n]$
where $\{\vec{q}_1, \dots, \vec{q}_n\}$ is the orthonormal set obtained by applying Gram-Schmidt to $\{\vec{v}_1, \dots, \vec{v}_n\}$.

- Recall that
- $$\vec{v}_1 = \langle \vec{v}_1, \vec{q}_1 \rangle \vec{q}_1 + \langle \vec{v}_1, \vec{q}_2 \rangle \vec{q}_2 + \dots + \langle \vec{v}_1, \vec{q}_n \rangle \vec{q}_n.$$
- $$\vec{v}_2 = \langle \vec{v}_2, \vec{q}_1 \rangle \vec{q}_1 + \langle \vec{v}_2, \vec{q}_2 \rangle \vec{q}_2 + \dots + \langle \vec{v}_2, \vec{q}_n \rangle \vec{q}_n$$
- $$\vdots$$
- $$\vec{v}_n = \langle \vec{v}_n, \vec{q}_1 \rangle \vec{q}_1 + \langle \vec{v}_n, \vec{q}_2 \rangle \vec{q}_2 + \dots + \langle \vec{v}_n, \vec{q}_n \rangle \vec{q}_n$$

So

$$\underbrace{[\vec{v}_1 | \vec{v}_2 | \dots | \vec{v}_n]}_A = \underbrace{[\vec{q}_1 | \vec{q}_2 | \dots | \vec{q}_n]}_Q \underbrace{\begin{bmatrix} \langle \vec{v}_1, \vec{q}_1 \rangle & \dots & \langle \vec{v}_n, \vec{q}_1 \rangle \\ \langle \vec{v}_1, \vec{q}_2 \rangle & \dots & \langle \vec{v}_n, \vec{q}_2 \rangle \\ \vdots & & \vdots \\ \langle \vec{v}_1, \vec{q}_n \rangle & \dots & \langle \vec{v}_n, \vec{q}_n \rangle \end{bmatrix}}_R.$$

- Note that R is an $n \times n$ matrix.
- However, by the Gram-Schmidt construction,
 $\langle v_i, q_j \rangle = 0$ for all $i \neq j$ and so.

$$R = \begin{bmatrix} \langle \vec{v}_1, \vec{q}_1 \rangle & \langle \vec{v}_2, \vec{q}_1 \rangle & \dots & \langle \vec{v}_n, \vec{q}_1 \rangle \\ 0 & \langle \vec{v}_2, \vec{q}_2 \rangle & \dots & \langle \vec{v}_n, \vec{q}_2 \rangle \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \langle \vec{v}_n, \vec{q}_n \rangle \end{bmatrix}.$$

an upper triangular square matrix.

- Note also that for all i , $\langle \vec{v}_i, \vec{q}_i \rangle \neq 0$

and so R is necessarily invertible.

- $A = QR$ is called the QR-decomposition of A .

Theorem: (QR Decomposition) If A is an $m \times n$ matrix with (nearly) independent columns, then A can be factored as $A = QR$ where Q is an $m \times n$ matrix with orthonormal column vectors, and R is an invertible upper triangular matrix.

Example: Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$.

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

Apply GS with normalization to get

$$\vec{q}_1 = \begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix} \quad \vec{q}_2 = \begin{bmatrix} -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix} \quad \vec{q}_3 = \begin{bmatrix} 0 \\ -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}.$$

$$\text{Now, } R = \begin{bmatrix} \langle \vec{v}_1, \vec{q}_1 \rangle & \langle \vec{v}_2, \vec{q}_1 \rangle & \langle \vec{v}_3, \vec{q}_1 \rangle \\ 0 & \langle \vec{v}_2, \vec{q}_2 \rangle & \langle \vec{v}_3, \vec{q}_2 \rangle \\ 0 & 0 & \langle \vec{v}_3, \vec{q}_3 \rangle \end{bmatrix} = \begin{bmatrix} \frac{3}{\sqrt{3}} & \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}.$$

So

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{3}{\sqrt{3}} & \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Least Squares approximation.

- Suppose we have a linear system

$$A\vec{x} = \vec{b}$$

which we know to be inconsistent.

- Since we cannot find an exact solution we want to find a solution which is as good as possible.

- This means that we want to make the error as small as possible, the error being $\|\vec{b} - A\vec{x}\|$.

- Such a solution is called a "least squares" solution, since if we write

$$\vec{b} - A\vec{x} = \begin{bmatrix} e_1 \\ \vdots \\ e_n \end{bmatrix} \leftarrow \text{"error."}$$

then minimizing $\|\vec{b} - A\vec{x}\|$ (wrt the standard inner product) is equivalent to minimizing

$$e_1^2 + e_2^2 + \dots + e_n^2$$

- Note: For every vector $\vec{x} \in \mathbb{R}^n$, $A\vec{x}$ is in the column space of A (i.e.

a linear comb of the columns of A , $\text{col}(A)$).

- Therefore, a least square solution of $A\vec{x} = \vec{b}$ is a vector $A\vec{x} \in \text{col}(A)$ which is as close to \vec{b} as possible.
- It turns out this is always the projection of \vec{b} onto $\text{col}(A)$ i.e.

$$A\vec{x} = \text{proj}_{\text{col}(A)} \vec{b}.$$

Theorem (Best Approximation)

Let W be a finite dimensional subspace of an inner product space V . For any $\vec{b} \in V$, $\text{proj}_W \vec{b}$ is the best approximation of \vec{b} from W

in the sense that

$$\|\vec{b} - \text{proj}_W \vec{b}\| < \|\vec{b} - \vec{w}\|$$

for every $\vec{w} \in W$ such that $\vec{w} \neq \text{proj}_W \vec{b}$.

Pf: Let $\vec{w} \in W$ be arbitrary.

Then we can write

$$\vec{b} - \vec{w} = (\vec{b} - \text{proj}_W \vec{b}) + (\underbrace{\text{proj}_W \vec{b} - \vec{w}}_{\in W}).$$

Now $\text{proj}_W \vec{b} \in W$ and $\vec{w} \in W$, so $\text{proj}_W \vec{b} - \vec{w} \in W$

Also, $\vec{b} - \text{proj}_W \vec{b} \in W^\perp$, so

$\vec{b} - \text{proj}_W \vec{b}$ and $\text{proj}_W \vec{b} - \vec{w}$ are orthogonal.

• By the generalized Pythagorean theorem,

$$\|\vec{b} - \vec{w}\|^2 = \|\vec{b} - \text{proj}_w \vec{b}\|^2 + \|\text{proj}_w \vec{b} - \vec{w}\|^2.$$

If $\vec{w} \neq \text{proj}_w \vec{b}$, then $\|\text{proj}_w \vec{b} - \vec{w}\|^2 > 0$,

so then

$$\|\vec{b} - \text{proj}_w \vec{b}\|^2 < \|\vec{b} - \vec{w}\|^2,$$

and hence

$$\|\vec{b} - \text{proj}_w \vec{b}\| < \|\vec{b} - \vec{w}\|$$

as required. □.