

lecture 15:

- Recall from last time that we are trying to find a least squares solution to

$$A\vec{x} = \vec{b}$$

where $A \in \mathbb{R}^{m \times n}$ and $A\vec{x} = \vec{b} \in \mathbb{R}^m$
possibly inconsistent.

- A "least squares solution" is a vector \vec{v} that minimizes $\|A\vec{v} - \vec{b}\|$
- For any vector \vec{v} , $A\vec{v} \in \text{col}(A)$, and so from the "Best Approximation Theorem" we want to find \vec{v} such that $A\vec{v} = \text{proj}_{\text{col}(A)} \vec{b}$ (such a \vec{v} always exists, since $\text{proj}_{\text{col}(A)} \vec{b} \in \text{col}(A)$).
- Thus, finding a least squares solution to $A\vec{x} = \vec{b}$ is equivalent to solving $A\vec{x} = \text{proj}_{\text{col}(A)} \vec{b}$. $(*)$
- we can avoid computing $\text{proj}_{\text{col}(A)} \vec{b}$ by rewriting $(*)$ as $\vec{b} - A\vec{x} = \vec{b} - \text{proj}_{\text{col}(A)} \vec{b}$.

- multiplying both sides by A^T , we have

$$A^T(\vec{b} - A\vec{x}) = A^T(\vec{b} - \text{proj}_{\text{col}(A)}\vec{b}).$$

- Now, $\vec{b} - \text{proj}_{\text{col}(A)}\vec{b} \in \text{col}(A)^\perp$ and hence
(by an earlier result: text Theorem 4.8.7(b))
 $\vec{b} - \text{proj}_{\text{col}(A)}\vec{b} \in \text{null}(A^T)$ and hence

$$A^T(\vec{b} - A\vec{x}) = 0.$$

Equivalently

$$\underbrace{A^T A \vec{x} = A^T \vec{b}}$$

- the normal equation of the system.

- Note that $A^T A$ is a symmetric, $n \times n$ matrix.
- We have shown the following:

Theorem: For any linear system $A\vec{x} = \vec{b}$, the associated normal system

$$A^T A \vec{x} = A^T \vec{b}$$

is consistent, and all solutions are least squares solutions of $A\vec{x} = \vec{b}$. Furthermore, for any least squares solution \vec{x} ,

$$A\vec{x} = \text{proj}_{\text{col}(A)}\vec{b}.$$

Ex: Consider the over-determined system

$$\begin{aligned}x_1 - x_2 &= 4 \\3x_1 + 2x_2 &= 1 \\-2x_1 + 4x_2 &= 3.\end{aligned}$$

Then we can express the system as a matrix equation

$$\underbrace{\begin{bmatrix} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{bmatrix}}_A \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_x = \underbrace{\begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix}}_b.$$

$$A^T A = \begin{bmatrix} 1 & 3 & -2 \\ -1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 14 & -3 \\ -3 & 21 \end{bmatrix}$$

and

$$A^T b = \begin{bmatrix} 1 & 3 & -2 \\ -1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 10 \end{bmatrix}$$

So the associated normal system B

$$\begin{bmatrix} 14 & -3 \\ -3 & 21 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 10 \end{bmatrix}$$

$\det(A^T A) = (14)(21) - 9 = 285 \neq 0$, so there is a unique least-squares solution.

$$(A^T A)^{-1} = \frac{1}{285} \begin{bmatrix} 21 & 3 \\ 3 & 14 \end{bmatrix}.$$

$$\text{So } \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \frac{1}{285} \begin{bmatrix} 21 & 3 \\ 3 & 14 \end{bmatrix} \begin{bmatrix} 1 \\ 10 \end{bmatrix} = \frac{1}{285} \begin{bmatrix} 51 \\ 143 \end{bmatrix} = \begin{bmatrix} 17/285 \\ 143/285 \end{bmatrix}$$

While there is not always a unique (see text) least-squares solution, we can characterize when there is.

Theorem: Let A be $m \times n$. TFAE:

- 1) The columns of A are linearly independent.
- 2) $A^T A$ is invertible.

Theorem: Let A have linearly independent columns. Then $A\vec{x} = \vec{b}$ has a unique least-squares solution $\vec{x} = (A^T A)^{-1} A^T \vec{b}$.

Furthermore,

$$\text{Proj}_{\text{col}(A)} \vec{b} = A(A^T A)^{-1} A^T \vec{b} = A \vec{x}.$$

Note that if A is square and invertible,

Then

$$\text{Proj}_{\text{col}(A)} \vec{b} = A(A^T A)^{-1} A^T \vec{b} = A A^{-1} A^{-1} A^T \vec{b} = \vec{b}.$$

Relation to QR decomposition

In practice, one often uses QR-decomp to find least squares solutions.

Theorem: Let A be an $m \times n$ matrix with linearly independent columns. Suppose $A = QR$. Then the system $A \vec{x} = \vec{b}$ has a unique least squares solution given by

$$\vec{x} = R^{-1} Q^T \vec{b}.$$

Pf: By the previous solution, $A \vec{x} = \vec{b}$ has a unique least squares solution

$$\vec{x} = (A^T A)^{-1} A^T \vec{b}.$$

letting $A = QR$, we have

$$\begin{aligned}\vec{x} &= ((QR)^T QR)^{-1} (QR)^T \vec{b} \\ &= (R^T Q^T QR)^{-1} R^T Q^T \vec{b}\end{aligned}$$

Since the columns of Q are orthonormal, $Q Q^T = I$

so

$$\begin{aligned}\vec{x} &= (R^T R)^{-1} R^T Q^T \vec{b} \\ &= R^{-1} R^T R^T Q^T \vec{b} \\ &= R^{-1} Q^T \vec{b}.\end{aligned}\quad \square$$