

Lecture 16

Function Approximation: Fourier Series

- Consider the following approximation problem:
Given a function $f \in C[a, b]$, find the "best" approximation to f using only functions from a specified subspace of $C[a, b]$.
- Recall that $C[a, b]$ is a real inner product space with an inner product defined by

$$\langle f, g \rangle = \int_a^b f(x)g(x)dx.$$

- For two functions f and $g \in C[a, b]$, the mean square error is

$$\text{MSE} = \langle f - g, f - g \rangle = \int_a^b [f(x) - g(x)]^2 dx = \|f - g\|^2.$$

- So our approximation can be restated in terms of a least squares approximation problem:

Least Squares Approx.: Let $f \in C[a, b]$ and let $W \subseteq C[a, b]$ be a finite dimensional subspace. We want to find $g \in W$ that minimizes

$$\|f-g\|^2 = \int_a^b [f(x)-g(x)]^2 dx.$$

It turns out that, even in this context, the best approximation theorem remains valid

Theorem: Let $W \subseteq C[a, b]$ be a finite dimensional subspace, $f \in C[a, b]$. Then the function $g \in W$ that minimizes $\|f-g\|^2$ is $g = \text{proj}_W f$. (the least squares approx to f from W).

Specific Example Fourier Series.

- We consider $C[0, 2\pi]$.
- we can easily compute projectors when we have an orthogonal/orthonormal set.

Fact from Calculus: Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be a complex valued function of a real variable. Write $f(x) = f_1(x) + i f_2(x)$.

Then we define $\int_a^b f(x) dx$ as

$$\int_a^b f(x) dx = \int_a^b f_1(x) dx + i \int_a^b f_2(x) dx.$$

- Observe that, for $n \neq 0$,

$$\int_0^{2\pi} e^{inx} dx = \int_0^{2\pi} \cos(nx) dx + i \int_0^{2\pi} \sin(nx) dx = 0 + 0i = 0.$$

and $\int_0^{2\pi} e^{inx} dx = 2\pi$ if $n=0$.

- Suppose $m \neq n$ $n, m \neq 0$, then

$$(*) \quad 0 = \int_0^{2\pi} e^{inx} e^{imx} dx = \int_0^{2\pi} \cos(nx) \cos(mx) - \sin(nx) \sin(mx) dx \\ + i \int_0^{2\pi} \cos(nx) \sin(mx) + \sin(nx) \cos(mx) dx.$$

- From the imaginary part of $(*)$

$$\int_0^{2\pi} \cos(nx) \sin(mx) - \sin(nx) \cos(mx) dx = 0$$

- Substituting $-n$ for n , we get (for $m-n \neq 0$).

$$\int_0^{2\pi} \cos(nx) \sin(mx) + \sin(nx) \cos(mx) dx = 0.$$

- Adding these together gives

$$\int_0^{2\pi} \cos(nx) \sin(mx) dx = 0 \quad \text{for } m \neq n.$$

Similarly considering the real part of $(*)$,

we get

$$\int_0^{2\pi} \cos(nx) \cos(mx) dx = 0 = \int_0^{2\pi} \sin(nx) \sin(mx) dx = 0.$$

For $m = -n$, we have

$$\begin{aligned} 2\pi &= \int_0^{2\pi} e^{nix} e^{-nix} dx = \int_0^{2\pi} (\cos(nx) + i\sin(nx))(\cos(nx) - i\sin(nx)) dx \\ &= \int_0^{2\pi} \cos^2(nx) + \sin^2(nx) dx \end{aligned}$$

From calculus,

$$\begin{aligned} \int_0^{2\pi} \cos^2(nx) dx &= \int_0^{2\pi} \sin^2(nx) dx \\ \text{So } \int_0^{2\pi} \cos^2(nx) dx &= \int_0^{2\pi} \sin^2(nx) dx = \pi. \end{aligned}$$

Conclusion:

$\{1, \cos(x), \sin(x), \cos(2x), \sin(2x), \dots, \cos(nx), \sin(nx), \dots\}$
 forms an orthogonal set in $C[0, 2\pi]$ and
 $\|1\| = \sqrt{2\pi}$, $\|\cos(nx)\| = \|\sin(nx)\| = \sqrt{\pi}$

Let $W_n \subseteq C[0, 2\pi]$ be the finite dimensional
 subspace spanned by
 $\{1, \cos(x), \sin(x), \dots, \cos(nx), \sin(nx)\}$.

- Some of these functions are orthogonal it is easy to compute projections:

Let $f \in C[0, 2\pi]$. Then

$$\text{Proj}_{W_n} f = a_0 + (a_1 \sin(x) + \dots + a_n \sin(nx)) + (b_1 \cos(x) + \dots + b_n \cos(nx))$$

where

$$a_0 = \frac{\langle f, 1 \rangle}{\|1\|^2} = \frac{\langle f, 1 \rangle}{2\pi}$$

$$a_k = \frac{\langle f, \sin(kx) \rangle}{\|\sin(kx)\|^2} = \frac{\langle f, \sin(kx) \rangle}{\pi}.$$

$$b_k = \frac{\langle f, \cos(kx) \rangle}{\|\cos(kx)\|^2} = \frac{\langle f, \cos(kx) \rangle}{\pi}$$

Ex: Let $f(x) = x \notin W_n$.

$$\text{Then } \text{Proj}_{W_n}(x) = \pi - 2 \left(\sin(x) + \frac{\sin(2x)}{2} + \dots + \frac{\sin(nx)}{n} \right).$$

Theorem: Let $f \in C[0, 2\pi]$. Then

$$a_0 + a_1 \sin(x) + a_2 \sin(2x) + \dots + b_1 \cos(x) + b_2 \cos(2x) + \dots$$

converges to $f(x)$ with respect to $\|\cdot\|$

i.e. $\|f - \text{proj}_{W_n} f\| \rightarrow 0$ as $n \rightarrow \infty$.

Remark: Let $W \subseteq [0, 2\pi]$ be
 $\text{span} \{1, \cos(nx), \sin(nx) \mid n=1, 2, \dots\}.$

By the previous theorem, $W^\perp = \{0\}$,
but $\{0\}^\perp = [0, 2\pi]$, so

$$W^{\perp\perp} = [0, 2\pi].$$

However $W \neq [0, 2\pi]$, since $x \notin W$.

Here $W \subsetneq W^{\perp\perp}$.