

lecture 17.

We are moving on to chapter 8.

General linear Transformations.

- Recall that for an $m \times n$ matrix A , we have a map $T_A : \mathbb{R}^n \rightarrow \mathbb{R}^m$

defined by $T_A(\vec{v}) = A\vec{v}$. which has the following linear properties:

$$T_A(\vec{u} + \vec{v}) = T_A(\vec{u}) + T_A(\vec{v}), \quad T_A(k\vec{v}) = k T(\vec{v})$$

- In fact, for any map $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ satisfying these linear properties there is an $m \times n$ matrix such that $T = T_A$. (How to do this?).
- From here we can define more general linear transformations.

Definition: Let V, W be V spaces. A map $T : V \rightarrow W$ is called a linear map iff it satisfies the following two properties for all $\vec{u}, \vec{v} \in V$ and all scalars k :

1) (Homogeneity) $T(k\vec{u}) = k T(\vec{u})$.

2) (Additivity) $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$.

If $W = V$, then $T: V \rightarrow V$ is called a linear operator on V .

• Note that, combining these two properties

$$T(c_1\vec{v}_1 + \dots + c_n\vec{v}_n) = c_1T(\vec{v}_1) + \dots + c_nT(\vec{v}_n).$$

Theorem: Let T be a linear transformation.

Then 1) $T(\vec{0}) = \vec{0}$.

2) $T(\vec{v} - \vec{u}) = T(\vec{v}) - T(\vec{u})$.

Pf: Easy. \square

Examples:

i) matrix transforms.

ii) The zero map: $T(\vec{v}) = \vec{0} \forall \vec{v}$.

iii) The map $T: P_n \rightarrow P_{n+1}$ defined by

$$T(p(x)) = xp(x).$$

is linear.

iv) Let $\vec{v} \in \mathbb{R}^n$. Define a map $\mathbb{R}^n \rightarrow \mathbb{R}$

by $\langle \cdot, \vec{v} \rangle: \mathbb{R}^n \rightarrow \mathbb{R}$
 $\quad \quad \quad : \vec{u} \mapsto \langle \vec{u}, \vec{v} \rangle$.

(maps from $\mathbb{R}^n \rightarrow \mathbb{R}$ are called linear functionals).

Theorem: Let $T: V \rightarrow W$. Let $S = \{\vec{v}_1, \dots, \vec{v}_n\}$ be a basis of V . Then for any $\vec{v} \in V$, we can express the image as

$$T(\vec{v}) = c_1 T(\vec{v}_1) + \dots + c_n T(\vec{v}_n)$$

for some constants c_1, \dots, c_n .

In other words, T is determined by how it acts on a basis!

Proof: use linearity and properties of bases. \square

Ex: Let $V = C^1(-\infty, \infty)$ the space of continuously differentiable functions. Then

$$\begin{aligned} D: V &\rightarrow C^0(-\infty, \infty) \\ &: f(x) \mapsto \frac{d}{dx} f(x). \end{aligned}$$

is a linear map.

Definition: Let $T: V \rightarrow W$ be a linear map.

The kernel of T is

$$\ker(T) = \{\vec{v} \in V : T(\vec{v}) = \vec{0}\}.$$

The range of T is the set

$$R(T) = \{\vec{w} \in W | (\exists \vec{v} \in V) T(\vec{v}) = \vec{w}\}.$$

Ex: What is $\ker(D)$, $D: C([-2, 2]) \rightarrow C([-2, 2])$
 $(D(f)) = 0$, f is differentiable, so $f = c$ a constant.

Theorem Let $T: V \rightarrow W$ be a linear map.

- 1) $\ker(T)$ is a subspace of V .
- 2) $R(T)$ is a subspace of W .

Pf: 1). $\ker(T) \subseteq V$, so we need only to check that it's closed under addition and scalar multiplication.

Let $\vec{u}, \vec{v} \in \ker(T)$. Then

$$\begin{aligned} T(\vec{u} + \vec{v}) &= T(\vec{u}) + T(\vec{v}) \\ &= \vec{0} + \vec{0} = \vec{0}. \end{aligned}$$

so $\vec{u} + \vec{v} \in \ker(T)$.

Let $\vec{v} \in \ker(T)$, k a scalar. Then

$$T(k\vec{v}) = kT(\vec{v}) = k\vec{0} = \vec{0}.$$

so $k\vec{v} \in \ker(T)$.

Hence $\ker(T)$ is a subspace.

2) $R(T) \subseteq W$, so we only need to check that $R(T)$ is closed under addition and scalar multiplication.

↳ Let $\vec{w}_1, \vec{w}_2 \in R(T)$.

↳ By definition, there are $\vec{v}_1, \vec{v}_2 \in V$ such that $T(\vec{v}_1) = \vec{w}_1$ and $T(\vec{v}_2) = \vec{w}_2$.

↳ Then $\vec{w}_1 + \vec{w}_2 = T(\vec{v}_1) + T(\vec{v}_2)$ by linearity
 $= T(\vec{v}_1 + \vec{v}_2) \in R(T)$.

↳ Let $\vec{w} \in R(T)$, $k \in \text{color.}$

↳ Since $\vec{w} \in R(T)$ there is $\vec{v} \in V$ such that $T(\vec{v}) = \vec{w}$.

↳ Then $k\vec{w} = kT(\vec{v})$ by linearity
 $= T(k\vec{v}) \in R(T)$.

So $R(T) \subseteq W$ is a subspace.

□.

Definition: Let $T: V \rightarrow W$. If $\ker(T)$ is finite dimensional, then the nullity of T is defined to be $\text{nullity}(T) = \dim(\ker(T))$.

If $R(T)$ is finite dimensional, then the rank of T is defined to be

$\text{rank}(T) = \dim(R(T))$.

Important Theorem: (Rank-Nullity).

Let $T: V \rightarrow W$ be a linear map with $\dim(V) < \infty$ (W may have arbitrary dimension).

Then $\dim(V) = \text{rank}(T) + \text{nullity}(T)$.

Pf: Next time!