

Lecture 18.

Recap:

- Let $K = \mathbb{Q}, \mathbb{R}, \text{ or } \mathbb{C}$.
- Let V, W be K -vectorspaces
- A map $T: V \rightarrow W$ is a $(K\text{-})$ linear map if
 - i) $\forall \vec{v}_1, \vec{v}_2 \in V, T(\vec{v}_1 + \vec{v}_2) = T(\vec{v}_1) + T(\vec{v}_2)$.
 - ii) $\forall k \in K, T(k\vec{v}) = kT(\vec{v})$.
- The kernel of T is the set
$$\ker(T) = \{\vec{v} \in V : T(\vec{v}) = \vec{0}\}.$$

↳ $\ker(T)$ is a subspace of V .

↳ the nullity of T is
$$\text{nullity}(T) = \dim(\ker(T)).$$
- The range of T is the set
$$R(T) = \{\vec{w} \in W : \exists \vec{v} \in V (T(\vec{v}) = \vec{w})\}.$$

↳ $R(T)$ is a subspace of W .

↳ the rank of T is
$$\text{rank}(T) = \dim(R(T)).$$

Theorem (Rank-Nullity Theorem).

Let V be finite dimensional, and let

$$T: V \rightarrow W$$

be a linear map. Then

$$\dim(V) = \text{rank}(T) + \text{nullity}(T).$$

Proof: Let $\dim(V) = n$.

If $\text{nullity}(T) = n$, then $\ker(T) = V$ and so

$$R(T) = \{\vec{0}\}, \text{ so } \text{rank}(T) = 0. \text{ Hence}$$

$$n = \underbrace{\text{nullity}(T)}_n + \underbrace{\text{rank}(T)}_{=0}.$$

So suppose $0 \leq \text{nullity}(T) < n$. Let $i = \text{nullity}(T)$, and let S be a basis for $\ker(T)$, so

$$|S| = i. \quad (\text{so } 0 \leq i \leq n). \quad S = \{\vec{v}_1, \dots, \vec{v}_i\}.$$

By the Plus/Minus theorem, there are $n-i$ vectors

$\vec{v}_{i+1}, \dots, \vec{v}_n \in V$ such that

$$S' = S \cup \{\vec{v}_{i+1}, \dots, \vec{v}_n\}$$

is a basis for V .

It suffices to show that

$$\{T(\vec{v}_{i+1}), \dots, T(\vec{v}_n)\}$$

forms a basis for $R(T)$. Then

$$\dim(V) = n = i + (n-i)$$

- First, check that $\{T(\vec{v}_{i+1}), \dots, T(\vec{v}_n)\}$ spans $R(T)$.

↳ suppose $\vec{w} \in R(T)$. Then there is $\vec{v} \in V$ such that $T(\vec{v}) = \vec{w}$.

↳ since S is a basis for V , we can write

$$\vec{v} = c_1 \vec{v}_1 + \dots + c_i \vec{v}_i + c_{i+1} \vec{v}_{i+1} + \dots + c_n \vec{v}_n.$$

↳ hence

$$\vec{w} = T(\vec{v}) = c_1 T(\vec{v}_1) + \dots + c_i T(\vec{v}_i) + c_{i+1} T(\vec{v}_{i+1}) + \dots + c_n T(\vec{v}_n).$$

↳ since $\vec{v}_1, \dots, \vec{v}_i \in \ker(T)$

$$\vec{w} = c_{i+1} T(\vec{v}_{i+1}) + \dots + c_n T(\vec{v}_n). \quad \checkmark$$

- Next, check that $\{T(\vec{v}_{i+1}), \dots, T(\vec{v}_n)\}$ is linearly independent.

↳ suppose

$$c_{i+1} T(\vec{v}_{i+1}) + \dots + c_n T(\vec{v}_n) = \vec{0} \in W.$$

↳ since T is linear

$$T(c_{i+1} \vec{v}_{i+1} + \dots + c_n \vec{v}_n) = \vec{0}$$

in other words,

$$c_{i+1} \vec{v}_{i+1} + \dots + c_n \vec{v}_n \in \ker(T).$$

↳ since S is a basis for $\ker(T)$, we can write

$$c_1 \vec{v}_1 + \dots + c_i \vec{v}_i = c_{i+1} \vec{v}_{i+1} + \dots + c_n \vec{v}_n$$

and so

$$c_1 \vec{v}_1 + \dots + c_i \vec{v}_i - c_{i+1} \vec{v}_{i+1} - \dots - c_n \vec{v}_n = \vec{0}.$$

Since $\{\vec{v}_1, \dots, \vec{v}_n\}$ is a basis for V , it is linearly independent, and hence

$$c_1 = c_2 = \dots = c_n = 0.$$

$$\hookrightarrow \text{so } c_{i+1} = \dots = c_n = 0.$$

- Hence $\{T(v_{i+1}), \dots, T(v_n)\}$ is a basis for $R(T)$ and so $\text{nullity}(T) = i$, $\text{rank}(T) = n - i$. \square

8.2 Compositions and Inverses.

Let $T: V \rightarrow W$ be a linear transformation

Defn: T is one-to-one (injective) if it maps distinct vectors in V to distinct vectors in W , i.e. if $\vec{v}_1 \neq \vec{v}_2$ then $T(\vec{v}_1) \neq T(\vec{v}_2)$. Equivalently, T is injective if $T(\vec{v}_1) = T(\vec{v}_2) \Rightarrow \vec{v}_1 = \vec{v}_2$.

Defn: T is onto (aka surjective) if $R(T) = W$. i.e. everything "gets hit" by T .

Theorem: Let $T: V \rightarrow W$. Then T is injective/one-to-one.

$$\ker(T) = \vec{0}.$$

Pf. Suppose T is injective. Let $\vec{v} \in \ker(T)$. Then $T(\vec{v}) = \vec{0}$.
 Also $T(\vec{0}) = \vec{0}$. Since T is injective, $\vec{v} = \vec{0}$. \checkmark

On the other hand suppose that $\ker(T) = \{\vec{0}\}$. Let $\vec{v}_1, \vec{v}_2 \in V$ and suppose that $T(\vec{v}_1) = T(\vec{v}_2)$.

• Then $T(\vec{v}_1) - T(\vec{v}_2) = \vec{0}$.

• By injectivity $T(\vec{v}_1 - \vec{v}_2) = \vec{0}$, so $\vec{v}_1 - \vec{v}_2 \in \ker(T)$.

• Since $\ker(T) = \{\vec{0}\}$, $\vec{v}_1 - \vec{v}_2 = \vec{0}$. Hence $\vec{v}_1 = \vec{v}_2$. So

T is one-to-one. \square .

Theorem: Let $T: V \rightarrow W$ be linear. Suppose that V and W are finite dimensional with the same dimension.

Then TFAE:

- 1) T is 1-1/injective.
- 2) $\ker(T) = \{\vec{0}\}$
- 3) T is onto/surjective.

Pf.: we already know that 1) and 2) are equivalent. So we just need to check that 2) and 3) are equivalent:

Let $\dim(V) = \dim(W) = n$.

↪ suppose $\ker(T) = \{\vec{0}\}$. Then $\text{nullity}(T) = 0$. By the rank-nullity theorem

$$n = \dim(V) = 0 + \text{rank}(T).$$

↪ so $\text{rank}(T) = n$, so $\dim(R(T)) = n$.

↪ since $R(T) \subseteq W$ and $\dim(W) = n = \dim(R(T))$, it follows that

$$R(T) = W. \quad \checkmark$$

↪ On the otherhand, suppose T is onto, i.e., $R(T) = W$.

↪ Then by the rank-nullity theorem, $\dim(\ker(T)) = 0$.

↪ hence $\ker(T) = \{\vec{0}\}$. ✓

□.