

Lecture 20

8.3 Isomorphisms.

Definition: A linear map $T: V \rightarrow W$ is called an isomorphism if T is 1-1 and onto.

Defn: Vector spaces V and W are said to be isomorphic (write $V \cong W$) if there exists an isomorphism from V to W (or equivalently from W to V ... why? Hint: if $T: V \rightarrow W$ is an isomorphism, so is $T^{-1}: W \rightarrow V$).

Isomorphisms are very important, since isomorphic vector spaces are "the same" algebraically.

Ex: consider the map

$$T: P^n(\mathbb{R}) \rightarrow \mathbb{R}^{n+1}$$

$$T(a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0) = (a_0, a_1, \dots, a_{n-1}, a_n).$$

$$T^{-1}: \mathbb{R}^{n+1} \rightarrow P^n(\mathbb{R})$$

$$T((a_0, a_1, \dots, a_n)) = a_n x^n + \dots + a_1 x + a_0.$$

Then

$$\begin{array}{ccc} (a_n x^n + \dots + a_1 x + a_0) + (b_n x^n + \dots + b_1 x + b_0) & \xrightarrow{T} & (a_0, \dots, a_n) + (b_0, \dots, b_n) \\ \parallel & & \parallel \\ (a_0 + b_0, \dots, a_n + b_n) & \xleftarrow{T^{-1}} & (a_n x^n + \dots + (a_1 + b_1)x + (a_0 + b_0)) \end{array}$$

and

$$\begin{array}{ccc} k(a_n x^n + \dots + a_1 x + a_0) & \xrightarrow{T} & k(a_0, a_1, \dots, a_n) \\ \parallel & & \parallel \\ k a_n x^n + \dots + k a_1 x + k a_0 & \xleftarrow{T^{-1}} & (k a_0, k a_1, \dots, k a_n) \end{array}$$

So an isomorphism preserves the linear structure of a vector space; You can go back and forth, because they can be reversed i.e. they are invertible.

Proposition: Let V and W be K -vector spaces, and suppose $\dim(V)=n$. Let $\{\vec{v}_1, \dots, \vec{v}_n\}$ be a basis for V and let $\vec{w}_1, \dots, \vec{w}_n$ be any n -vector in W (not necessarily distinct). Then there is a unique linear map

$$T: V \rightarrow W$$

such that

$$T(\vec{v}_i) = \vec{w}_i \text{ for all } i.$$

Pf: For $\vec{v} \in V$, write $\vec{v} = c_1 \vec{v}_1 + \dots + c_n \vec{v}_n$

and define

$$T(\vec{v}) = T(c_1 \vec{v}_1 + \dots + c_n \vec{v}_n) = c_1 \vec{w}_1 + \dots + c_n \vec{w}_n.$$

Then T is linear, since if $\vec{u} = d_1 \vec{v}_1 + \dots + d_n \vec{v}_n$,

then

$$\begin{aligned} T(\vec{v} + \vec{u}) &= T((c_1 + d_1) \vec{v}_1 + \dots + (c_n + d_n) \vec{v}_n) \\ &= (c_1 + d_1) \vec{w}_1 + \dots + (c_n + d_n) \vec{w}_n \\ &= (c_1 \vec{w}_1 + \dots + c_n \vec{w}_n) + (d_1 \vec{w}_1 + \dots + d_n \vec{w}_n) \\ &= T(\vec{v}) + T(\vec{u}) \end{aligned}$$

and

$$\begin{aligned} T(k \vec{v}) &= T(k c_1 \vec{v}_1 + \dots + k c_n \vec{v}_n) \\ &= k c_1 \vec{w}_1 + \dots + k c_n \vec{w}_n = k(c_1 \vec{w}_1 + \dots + c_n \vec{w}_n) \\ &= k T(\vec{v}). \end{aligned}$$

Clearly $T(\vec{v}_i) = \vec{w}_i$ for all i .

Finally, T is unique: Let $S: V \rightarrow W$ be

another linear map satisfying $S(\vec{v}_i) = \vec{w}_i$.

Let $\vec{v} = c_1 \vec{v}_1 + \dots + c_n \vec{v}_n \in V$. Then

$$\begin{aligned} S(\vec{v}) &= S(c_1 \vec{v}_1 + \dots + c_n \vec{v}_n) = c_1 S(\vec{v}_1) + \dots + c_n S(\vec{v}_n) \\ &= c_1 \vec{w}_1 + \dots + c_n \vec{w}_n \\ &= c_1 T(\vec{v}_1) + \dots + c_n T(\vec{v}_n) \\ &= T(c_1 \vec{v}_1 + \dots + c_n \vec{v}_n) = T(\vec{v}). \end{aligned}$$

Hence $S = T$. \square .

Let $K = \mathbb{Q}, \mathbb{R},$ or $\mathbb{C}.$

Theorem: Let V and W be n -dimensional K -vector spaces. Then $V \cong W.$

Pf: Let $\{\vec{v}_1, \dots, \vec{v}_n\}$ be a basis for V and $\{\vec{w}_1, \dots, \vec{w}_n\}$ be a basis for $W.$ By the previous proposition, there is a unique linear map $T: V \rightarrow W$ such that $T(\vec{v}_i) = \vec{w}_i \ \forall i.$

We need to check that T is $1:1$ and onto.

1-1: Let $\vec{v} \in \ker(T).$ WTS: $\vec{v} = 0.$ Since $\{\vec{v}_1, \dots, \vec{v}_n\}$

is a basis, we can write

$$\vec{v} = c_1 \vec{v}_1 + \dots + c_n \vec{v}_n.$$

Since $\vec{v} \in \ker(T),$

$$\begin{aligned}\vec{0} &= T(\vec{v}) = c_1 T(\vec{v}_1) + \dots + c_n T(\vec{v}_n) \\ &= c_1 \vec{w}_1 + \dots + c_n \vec{w}_n.\end{aligned}$$

Since $\{\vec{w}_1, \dots, \vec{w}_n\}$ is a basis for $W, c_1 = \dots = c_n = 0.$

Hence $\vec{v} = 0. \quad \checkmark$

Onto: Let $\vec{w} \in W$ be arbitrary. We want to find $\vec{v} \in V$ such that $T(\vec{v}) = \vec{w}.$

Since $\{\vec{w}_1, \dots, \vec{w}_n\}$ is a basis for $W,$ there are unique $c_1, \dots, c_n \in K$ such that

□

$$\vec{w} = c_1 \vec{w}_1 + \dots + c_n \vec{w}_n.$$

Let $\vec{v} = c_1 \vec{v}_1 + \dots + c_n \vec{v}_n \in V$ (same scalars!).

Then

$$\begin{aligned} T(\vec{v}) &= T(c_1 \vec{v}_1 + \dots + c_n \vec{v}_n) \\ &= c_1 T(\vec{v}_1) + \dots + c_n T(\vec{v}_n) \\ &= c_1 \vec{w}_1 + \dots + c_n \vec{w}_n = \vec{w}. \quad \checkmark \end{aligned}$$

Kernel $T: V \rightarrow W$ is an isomorphism and so

$$V \cong W. \quad \square.$$

Corollary: Let $K = \mathbb{Q}, \mathbb{R}$, or \mathbb{C} . Let

V be a K -vector space with $\dim(V) = n < \infty$

Then $V \cong K^n$.

Pf: Apply the previous theorem. \square .

Notation: If $V \cong K^n$, $\vec{v} \in V$, and B is a basis for K^n , then $[\vec{v}]_B$ is the matrix of coordinates of \vec{v} with respect to B . The map

$$V \rightarrow K^n$$

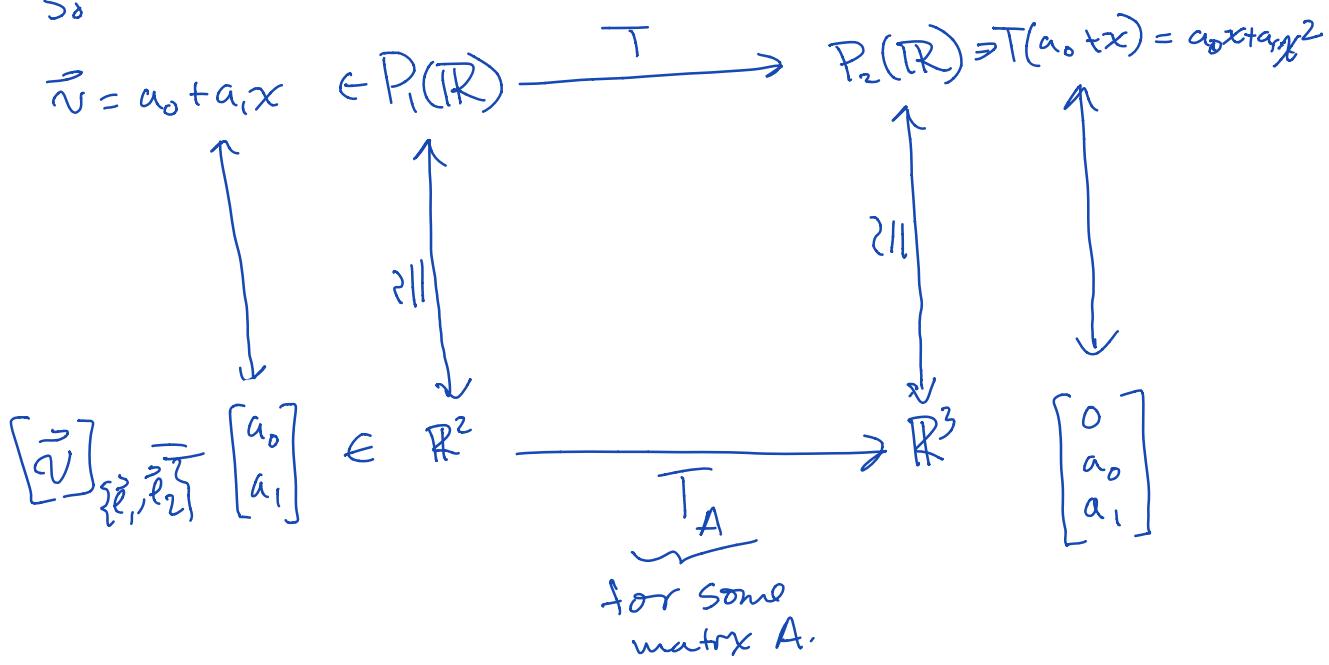
 $\vec{v} \mapsto [\vec{v}]_B$ B is an isomorphism.

As an application, we can represent linear maps of finite-dimensional vector spaces.

Ex: Let $T: P_1(\mathbb{R}) \rightarrow P_2(\mathbb{R})$ be defined
by $T(p(x)) = x p(x)$.

We have that $P_1(\mathbb{R}) \cong \mathbb{R}^2$ and $P_2(\mathbb{R}) \cong \mathbb{R}^3$

So



$$A = \begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \\ z_1 & z_2 \end{bmatrix}, \quad A \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 0 \\ a_0 \\ a_1 \end{bmatrix}$$

$$\text{So we get } x_1 a_0 + x_2 a_1 = 0.$$

$$y_1 a_0 + y_2 a_1 = a_0.$$

$$z_1 a_0 + z_2 a_1 = a_1.$$

for any a_0, a_1 . Hence $A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$.

U →