

Lecture 22

8.5 Change of Basis and Similarity.

Change of Basis

- Let $K = \mathbb{Q}, \mathbb{R}$, or \mathbb{C} .
- Let V be a K -vector space, $\dim(V) = n < \infty$
- Let V be a K -vector space, $\dim(V) = n < \infty$, with two bases, $B = \{\vec{u}_1, \dots, \vec{u}_n\}$ and $B' = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$.
- Question: How are B and B' related?
- Consider the identity operator $I: V \rightarrow V$ defined by $I(\vec{v}) = \vec{v}$ for all $\vec{v} \in V$.
- From the last lecture we have, for any $\vec{v} \in V$

$$\begin{array}{ccc} \vec{v} & \xrightarrow{I} & \vec{v} \\ \downarrow & & \downarrow \\ K^n & \ni [\vec{v}]_B & \xrightarrow{[I]_{B',B}} [\vec{v}]_{B'} \in K^n \end{array}$$

Definition: $P_{B \rightarrow B'} := [I]_{B',B}$ is called the transition matrix from B to B' .

Ex: In \mathbb{R}^2 , the sets

$$B = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} \text{ and } B' = \left\{ \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \begin{bmatrix} 7 \\ 2 \end{bmatrix} \right\}$$

standard basis

are bases for \mathbb{R}^2 . Then, by the above

$$I(\begin{bmatrix} 1 \\ 0 \end{bmatrix}) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 4 \\ 1 \end{bmatrix} + (-1) \begin{bmatrix} 7 \\ 2 \end{bmatrix}$$

$$\hookrightarrow \text{so } [I(\begin{bmatrix} 1 \\ 0 \end{bmatrix})]_{B'} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}.$$

$$I(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = -7 \begin{bmatrix} 4 \\ 1 \end{bmatrix} + 4 \begin{bmatrix} 7 \\ 2 \end{bmatrix}$$

$$\hookrightarrow \text{so } [I(\begin{bmatrix} 0 \\ 1 \end{bmatrix})]_{B'} = \begin{bmatrix} -7 \\ 4 \end{bmatrix}.$$

$$\text{Hence } P_{B \rightarrow B'} = \begin{bmatrix} 2 & -7 \\ -1 & 4 \end{bmatrix}$$

Note: For any $\vec{v} \in \mathbb{R}^n$

$$P_{B \rightarrow B'} [\vec{v}]_B = [\vec{v}]_{B'}$$

For example, let B, B' be as in the last example. What is $\begin{bmatrix} 2 \\ 3 \end{bmatrix}_{B'}$?

$$\begin{bmatrix} 2 \\ 3 \end{bmatrix}_B = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \text{ since } \begin{bmatrix} 2 \\ 3 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\text{Then } \begin{bmatrix} 2 \\ 3 \end{bmatrix}_{B'} = \begin{bmatrix} 2 & -1 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -17 \\ 10 \end{bmatrix}.$$

And indeed

$$-17 \begin{bmatrix} 4 \\ 1 \end{bmatrix} + 10 \begin{bmatrix} 7 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \checkmark$$

• Of course, we can go "backwards"

$$P_{B' \rightarrow B} = \begin{bmatrix} I \end{bmatrix}_{B, B'} = \begin{bmatrix} [\vec{v}_1]_B \dots [\vec{v}_n]_B \end{bmatrix}.$$

$$\text{Ex: } B' = \left\{ \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \begin{bmatrix} 7 \\ 2 \end{bmatrix} \right\}, \quad B = \{\vec{e}_1, \vec{e}_2\}.$$

$$\text{Then } P_{B' \rightarrow B} = \begin{bmatrix} [\vec{v}_1]_B & [\vec{v}_2]_B \end{bmatrix} = \begin{bmatrix} 4 & 7 \\ 1 & 2 \end{bmatrix}.$$

$$\text{Note that: } \begin{bmatrix} 4 & 7 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

This is to be expected, since, as I is invertible
 and so from last time $P_{B \rightarrow B'}$ is invertible
 and $(P_{B \rightarrow B'})^{-1} = P_{B' \rightarrow B}$.

Similarly:

Recall that matrices A and B are similar
 if there is an invertible matrix P such that
 $B = PAP^{-1}$.

Similar matrices arise in the following question:

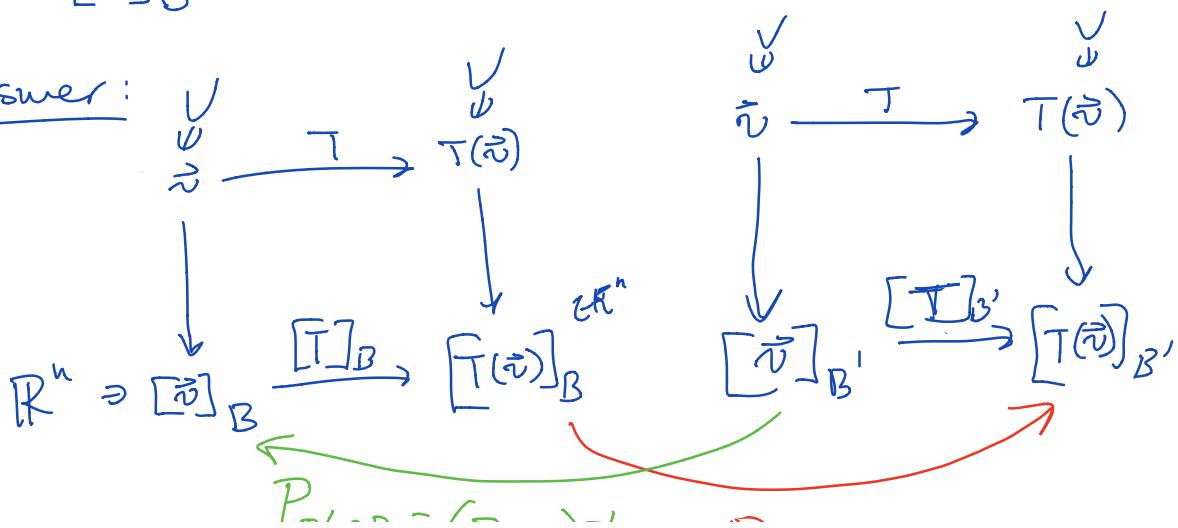
Similar matrices arise in the following question:

Question: Let $T: V \rightarrow V$ be a linear operator.

Let B and B' be bases for V . How

are $[T]_B$ and $[T]_{B'}$ related?

Answer:



$${}^{B' \rightarrow B} - (P_{B \rightarrow B'})^{-1} \quad P_{B \rightarrow B'}$$

- So "chasing the diagram" see that

for $\vec{v} \in V$,

$$\begin{aligned} [T]_{B'} [\vec{v}]_{B'} &= P_{B \rightarrow B'} [T]_B P_{B' \rightarrow B} [\vec{v}]_B \\ &= P_{B \rightarrow B'} [T]_B (P_{B \rightarrow B'})^{-1} [\vec{v}]_B \end{aligned}$$

- That is, $[T]_{B'}$ and $[T]_B$ are similar matrices!

- In fact we have the following theorem:

Theorem Let V be a vector space with $\dim(V) = n$. Then two $n \times n$ matrices C and D are similar if and only if $C = [T]_B$ and $D = [T]_{B'}$ for some linear operator $T: V \rightarrow V$ and bases B and B' of V . Furthermore if $D = P C P^{-1}$. Then $P = P_{B \rightarrow B'}$

Significance:

- If C and D are matrices, then:
 - ↳ C and D have the same determinant, characteristic poly, eigenvalues, and dimension of eigenspaces.
- Therefore given a linear operator $T: U \rightarrow V$ and a basis B of V , we can define:
 - ↳ $\det(T) = \det([T]_B)$
 - ↳ λ is an eigenvalue of T iff λ is an eigenvalue of $[T]_B$.
 - ↳ the eigenspace of λ is $\ker(\lambda I - T)$.
- More generally, if $T: V \rightarrow V$ is a linear operator, then λ is an eigenvalue if there exists $\vec{v} \in V$ such that $T(\vec{v}) = \lambda \vec{v}$. The vector \vec{v} is an eigenvector of λ .

Ex: Let $V = C^\infty(-\infty, \infty)$, the set of functions with continuous derivatives of any order (i.e. the smooth functions).

Then let $D: V \rightarrow V$ be $D(f) = f'$.

Then for any λ , if $f = e^{\lambda x}$, then

$D(f) = \lambda e^{\lambda x}$ so λ is an eigenvalue of D with eigenvector $e^{\lambda x}$.