

Section 24

Recall that a real matrix $A \in \mathbb{R}^{m \times n}$ is orthogonal if $A A^T = A^T A = I$.

Equivalently $A \in \mathbb{R}^{m \times n}$ is orthogonal if the columns of A are orthonormal.

Theorem: Let $(V, \langle \cdot, \cdot \rangle)$ be a finite dimensional real inner product space and let $B = \{\vec{b}_1, \dots, \vec{b}_n\}$ and $B' = \{\vec{b}'_1, \dots, \vec{b}'_n\}$ be orthonormal bases for V . Then $P_{B \rightarrow B'} \in \mathbb{R}^{n \times n}$ is orthogonal.

Pf.: Recall that

$$P_{B \rightarrow B'} = \left[[\vec{b}_1]_{B'}, \dots, [\vec{b}_n]_{B'} \right]$$

Since B' is orthonormal,
 $\vec{b}_i = \langle \vec{b}_i, \vec{b}'_1 \rangle \vec{b}'_1 + \langle \vec{b}_i, \vec{b}'_2 \rangle \vec{b}'_2 + \dots + \langle \vec{b}_i, \vec{b}'_n \rangle \vec{b}'_n$.

$$\text{and so } [\vec{b}_i]_{B'} = \begin{bmatrix} \langle \vec{b}_i, \vec{b}'_1 \rangle \\ \langle \vec{b}_i, \vec{b}'_2 \rangle \\ \vdots \\ \langle \vec{b}_i, \vec{b}'_n \rangle \end{bmatrix}$$

Hence $P_{B \rightarrow B'} = \begin{bmatrix} \langle \vec{b}_1, \vec{b}'_1 \rangle & \langle \vec{b}_2, \vec{b}'_1 \rangle & \dots & \langle \vec{b}_n, \vec{b}'_1 \rangle \\ \langle \vec{b}_1, \vec{b}'_2 \rangle & \langle \vec{b}_2, \vec{b}'_2 \rangle & \dots & \langle \vec{b}_n, \vec{b}'_2 \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \langle \vec{b}_1, \vec{b}'_n \rangle & \langle \vec{b}_2, \vec{b}'_n \rangle & \dots & \langle \vec{b}_n, \vec{b}'_n \rangle \end{bmatrix}$

By the same reasoning,

$$P_{B' \rightarrow B} = \begin{bmatrix} \langle \vec{b}'_1, \vec{b}_1 \rangle & \langle \vec{b}'_2, \vec{b}_1 \rangle & \dots & \langle \vec{b}'_n, \vec{b}_1 \rangle \\ \langle \vec{b}'_1, \vec{b}_2 \rangle & \langle \vec{b}'_2, \vec{b}_2 \rangle & \dots & \langle \vec{b}'_n, \vec{b}_2 \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \vec{b}'_1, \vec{b}_n \rangle & \langle \vec{b}'_2, \vec{b}_n \rangle & \dots & \langle \vec{b}'_n, \vec{b}_n \rangle \end{bmatrix}$$

$$= (P_{B \rightarrow B'})^T.$$

But also, $P_{B' \rightarrow B} = (P_{B \rightarrow B'})^{-1}$,

Hence $(P_{B \rightarrow B'})^T = (P_{B \rightarrow B})^{-1}$.

So $P_{B \rightarrow B'}$ is orthogonal. \square .

7.2 Orthogonal Diagonalization

Recall that A is diagonalizable if there is an invertible matrix P and a Diagonal

matrix D such that $A = P^{-1}DP$.

- In general, it is difficult to determine if a matrix is diagonalizable.
- Today, we aim to show that all real symmetric matrices are diagonalizable in a nice way.

Defn. Let A and B be square real matrices. We say that A and B are orthogonally similar if there is an orthogonal matrix P such that $B = P^{-1}AP$.

If A is orthogonally similar to a diagonal matrix D , then we say A is orthogonally diagonalizable.

Theorem: Let A be a real $n \times n$ matrix. TFAE:

- A is orthogonally diagonalizable
- A has an orthonormal set of n eigenvectors (i.e. \mathbb{R}^n has an orthonormal basis of eigenvectors of A).
- A is symmetric.

Pf. a) \Rightarrow b).

Assume that $P^T A P = \begin{bmatrix} \lambda_1 & & & 0 \\ & \ddots & & \\ & & \lambda_n & \\ 0 & & & \ddots & \ddots & \lambda_n \end{bmatrix}$

- write $P = [\vec{v}_1 | \dots | \vec{v}_n]$.
- Then $AP = PD \Rightarrow A\vec{v}_j = \lambda_j \vec{v}_j, 1 \leq j \leq n$.
- Hence the \vec{v}_i are eigenvectors of A , and since they are columns of P are orthonormal, A has an orthonormal set of eigenvectors.

b) \Rightarrow c) . Suppose A is orthogonally diagonalisable.
Then $A = PDP^T$ for orthogonal matrix P and diagonal matrix D .

$$\begin{aligned} \text{Then } A^T &= (PDP^T)^T = (P^T)^T (PD)^T \\ &= P D^T P^T = P D P^T \text{ (since } D \text{ is symmetric)} \end{aligned}$$

$$\text{Hence } A^T = A. \checkmark$$

c) \Rightarrow a) Hard. See exercise 31, chapter 7. 2. \square

b) \Rightarrow a): See section on diagonalisability.

Theorem: Let A be a real, symmetric matrix.

Then

- a) The eigenvalues of A are real.
- b) eigenvectors corresponding to distinct eigenvalues are orthogonal.

Pf:

a) Let $\lambda \in \mathbb{C}$ be an eigenvalue of A .

W.T.S: $\lambda \in \mathbb{R}$.

Let $\vec{v} \in \mathbb{C}^n$ be a non-zero eigenvector of A .

Let $\langle \cdot, \cdot \rangle: \mathbb{C}^n \times \mathbb{C}^n \rightarrow \mathbb{C}$ be the complex Euclidean inner product.

compute $\langle A\vec{v}, \vec{v} \rangle$ in two ways.

$$1) \langle A\vec{v}, \vec{v} \rangle = \langle \lambda\vec{v}, \vec{v} \rangle = \lambda \langle \vec{v}, \vec{v} \rangle. \quad \checkmark$$

$$2) \langle A\vec{v}, \vec{v} \rangle = \langle \vec{v}, \bar{A}^T \vec{v} \rangle = \langle \vec{v}, A\vec{v} \rangle \\ = \langle \vec{v}, \bar{\lambda}\vec{v} \rangle \\ = \bar{\lambda} \langle \vec{v}, \vec{v} \rangle.$$

Since $\langle \vec{v}, \vec{v} \rangle \neq 0$, $\lambda = \bar{\lambda}$. Hence $\lambda \in \mathbb{R}$.

b). Let $\lambda \neq \mu$ be eigenvalues of A .

Let $A\vec{v} = \lambda\vec{v}$ and $A\vec{w} = \mu\vec{w}$, $\vec{v} \neq 0, \vec{w} \neq 0$.

$$(A\vec{v}) \cdot (\vec{w}) = (\vec{v} \cdot \vec{w}) \cdot \vec{w} = \lambda(\vec{v} \cdot \vec{w}).$$

But also

$$\begin{aligned} A\vec{v} \cdot \vec{w} &= (A\vec{v})^T \vec{w} = \vec{v}^T A^T \vec{w} \\ &= \vec{v} \cdot (A^T \vec{w}) \\ &= \vec{v} \cdot (A\vec{w}) \quad (\text{by symmetry}) \\ &= \vec{v} \cdot \mu \vec{w} \\ &= \mu(\vec{v} \cdot \vec{w}). \end{aligned}$$

$$\begin{aligned} \text{Hence } 0 &= \lambda(\vec{v} \cdot \vec{w}) - \mu(\vec{v} \cdot \vec{w}) \\ &= (\lambda - \mu)(\vec{v} \cdot \vec{w}). \end{aligned}$$

Since $\lambda - \mu \neq 0$ it must be that $\vec{v} \cdot \vec{w} = 0$.

