

Feature #4.

4.2 (Subspaces).

Let V be a vector space.

Defn: A subset $W \subseteq V$ is a subspace of V iff W is also a vector space under the same addition and scalar multiplication operation on W .

- If V is a vector space, and $W \subseteq V$ a subset, then W "inherits" some of the properties satisfied by V .
- To see that $W \subseteq V$ is a subspace, we only need to check the following axioms:
 - Axiom 1: Closure under addition.
 - Axiom 4: Existence of a zero vector.
 - Axiom 5: Existence of a inverse in W for every vector w .
 - Axiom 6: Closure under scalar multiplication.

However, we don't even need to check all of these:
Theorem: Let $W \subseteq V$. Then W is a subspace iff the following axioms hold:

- a) $W \ni$ closed under addition (Axiom 1)
- b) $W \ni$ closed under scalar mult. (Axiom 6)

Pf: If W is a subspace then it is itself a vector space. Therefore it satisfies axiom 1, and axiom 6.

On the other hand, suppose W satisfies Axiom 1 and 6. Then we need only to show that W satisfies Axiom 4 and 5. To see this, note that for $\vec{w} \in W$,

$$0 \cdot \vec{w} = \vec{0} \in W$$

$$\text{and } (-1) \vec{w} = -\vec{w},$$

so we are done. \square .

Examples:

- The zero vector space is a subspace of every vectorspace.
- A line through the origin is a subspace of \mathbb{R}^2 or \mathbb{R}^3 .
- A plane through the origin is a subspace of \mathbb{R}^3 .

Theorem: If W_1, \dots, W_k are subspaces of V . Then $\bigcap_{i=1}^k W_i$ is a subspace of V .

Another way to get subspaces: spanning sets.

If V is a vector space, and $S = \{\vec{v}_1, \dots, \vec{v}_k\} \subseteq V$,

then $\text{span}(S) = \left\{ \sum_{i=1}^k c_i \vec{v}_i : c_i \in K \right\}$ is the smallest subspace of V containing S .

- we say that $\text{Span}(S)$ is the subset generated by S .

Ex: In \mathbb{R}^3 , let $\vec{e}_1 = (1, 0, 0)$ and $\vec{e}_2 = (0, 1, 0)$.
Then $\text{span}(\vec{e}_1, \vec{e}_2)$ is the xy -plane.

Kernels:

Theorem: Let A be an $m \times n$ matrix with associated linear map $T_A: \mathbb{R}^n \rightarrow \mathbb{R}^m$. Then $\ker(T_A) = \{\vec{v} \in \mathbb{R}^n : T_A(\vec{v}) = \vec{0}\}$ is a subspace.

In fact, this is true for any linear map $T: V \rightarrow W$.
 $\ker(T)$ is a subspace of V (EXERCISE!).

Note: Spanning sets are not unique!!

4.3 Linear Independence.

- Let V be a vector space
- Defn: A set $\{\vec{v}_1, \dots, \vec{v}_n\} \subseteq V$ is called linearly independent iff no vector in the set can be written as a linear combination of the others.
- In practice the definition is not a very efficient way of checking linear independence.

- The following is usually easier:

Theorem: A set $\{\vec{v}_1, \dots, \vec{v}_n\}$ is linearly independent iff the only coefficients satisfying

$$k_1 \vec{v}_1 + \dots + k_n \vec{v}_n = \vec{0}$$

are $k_1 = k_2 = \dots = k_n = 0$.

Another way to phrase this: write $A = [\vec{v}_1 \ \vec{v}_2 \ \dots \ \vec{v}_n]$.
Then $A \vec{x} = \vec{0}$ has only $\vec{x} = 0$ as a solution.

Ex: Determine if

$$\vec{v}_1 = (1, -2, 3) \quad \vec{v}_2 = (5, 6, -1), \quad \vec{v}_3 = (3, 2, 1).$$

are linearly independent.

Soln: We form the matrix

$$A = [\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3] = \begin{bmatrix} 1 & 5 & 3 \\ -2 & 6 & 2 \\ 3 & -1 & 1 \end{bmatrix}$$

We want a solution to the equation

$$A \vec{x} = \vec{0}$$

By Gauss-Jordan A is equivalent to

$$\begin{bmatrix} 1 & 0 & 1/2 \\ 0 & 1 & 1/2 \\ 0 & 0 & 0 \end{bmatrix}$$

and so $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -1/2 t \\ -1/2 t \\ t \end{pmatrix}$ \Rightarrow the general solution.
 $t \neq 0$ gives a non-trivial solution,
so $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are not independent.

Ex: The set of polynomials of degree n is a vector space.
 $\{1, x, x^2, \dots, x^n\}$ is a spanning set.

Theorem: a) A finite set that contains $\vec{0}$ is linearly dependent.
b) A set with one vector $\{\vec{v}\}$ is indep iff $\vec{v} \neq \vec{0}$.
c) $\{\vec{v}_1, \vec{v}_2\}$ is indep iff $\vec{v}_1 \neq c\vec{v}_2$.