

Feature #5

4.4 Coordinates and Basis

- a line is 1-dimensional
- a plane is 2-dimensional
- the room is three dimensional.

Definition: Let V be a vector space. We say that V is finite dimensional if there is a finite set $\{\vec{v}_1, \dots, \vec{v}_n\} \subseteq V$ such that $\text{span}(\vec{v}_1, \dots, \vec{v}_n) = V$.

If V is not finite dimensional, we say that V is infinite dimensional.

Definition: Let $B = \{\vec{v}_1, \dots, \vec{v}_n\} \subseteq V$, a finite dimensional vectorspace. Then B is a basis of V iff

- $\text{Span}(B) = V$.
- B is linearly independent.

Ex: (Standard basis for K^n , $K = \mathbb{R}$ or \mathbb{C})
- . . . $\rightarrow \vec{e}_1 = (0, 1, 0, \dots, 0)$

$$\vec{e}_1 = (1, 0, \dots, 0), \dots, \vec{e}_n = (0, \dots, 0, 1).$$

Then for any vector $(c_1, \dots, c_n) \in K^n$,

we can write

$$(c_1, \dots, c_n) = c_1 \vec{e}_1 + c_2 \vec{e}_2 + \dots + c_n \vec{e}_n.$$

(In K^3 , usually write $\vec{e}_1, \vec{e}_2, \vec{e}_3$).

Ex: $\{1, x, x^2, \dots, x^n\}$ is a basis

for the set of degree n polynomials
at most

over K .

Ex: The space of all polynomials over K
is infinite dimensional.

Theorem (Uniqueness of Basis Representation)

If $S = \{\vec{v}_1, \dots, \vec{v}_n\}$ is a basis for the finite-dimensional
 K -vector space V , then every $\vec{v} \in V$ can be
expressed in the form

$$\vec{v} = c_1 \vec{v}_1 + \dots + c_n \vec{v}_n \quad (*)$$

in exactly one way.

Proof: Since $\text{Span}(S) = V$, every vector can be
expressed in the form (*). Suppose a vector $\vec{v} \in V$
be written

\rightarrow

can

$$\vec{v} = c_1 \vec{v}_1 + \dots + c_n \vec{v}_n$$

and also $\vec{v} = k_1 \vec{v}_1 + \dots + k_n \vec{v}_n$.

$$\text{Then } \vec{v} - \vec{v} = \vec{0} = (c_1 \vec{v}_1 + \dots + c_n \vec{v}_n) - (k_1 \vec{v}_1 + \dots + k_n \vec{v}_n)$$

so

$$\begin{aligned} \vec{0} &= c_1 \vec{v}_1 - k_1 \vec{v}_1 + \dots + c_n \vec{v}_n - k_n \vec{v}_n \\ &= (c_1 - k_1) \vec{v}_1 + \dots + (c_n - k_n) \vec{v}_n. \end{aligned}$$

Since $\vec{v}_1, \dots, \vec{v}_n$ are linearly independent, $(c_i - k_i) = 0$ for all i . Hence $c_i = k_i$. \square .

This uniqueness of representation allows us to formalize what we mean by coordinates. For example, in \mathbb{R}^3 , the coordinate $\vec{v} = (a, b, c)$ expresses that $\vec{v} = a \vec{e}_1 + b \vec{e}_2 + c \vec{e}_3$.

Definition: Suppose that $\{\vec{v}_1, \dots, \vec{v}_n\}$ is a basis of a K -vector space V , and suppose $\vec{v} \in V$ is such that

$$\vec{v} = c_1 \vec{v}_1 + \dots + c_n \vec{v}_n.$$

Then the scalars $c_1, \dots, c_n \in K$ are called the coordinates of \vec{v} relative to S . The vector $(c_1, \dots, c_n) \in K^n$ is called the coordinate vector of \vec{v} relative to S . We write

$$(\vec{v})_S = (c_1, \dots, c_n)$$

or

$$[\vec{v}]_S = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}.$$

Remark: we tacitly assume that the order of a given vector remains fixed.

4.5 Dimension

Theorem: Let V be a finite dimensional vector space. Then every basis for V has the same size.

Proof: See text book.

Theorem: Let V be a finite dimensional V -space and let $\{\vec{v}_1, \dots, \vec{v}_n\}$ be any basis.

a) If a set $S \subseteq V$ has more than n vectors, it is linearly dependent.

b) If S has fewer than n -vectors, $\text{Span}(S) \neq V$.

Definition: The dimension of a finite dimensional vector space V is the size of any basis. (The zero vector space has dimension 0 by convention).

Ex: $\dim(K^n) = n$.

Ex: $\dim(P_n) = n+1$ since $\{1, x, \dots, x^n\}$ is a basis.

Example: $\dim(\text{Span}(S))$. Suppose $S = \{\vec{v}_1, \dots, \vec{v}_n\}$. If S is linearly independent, then S is a basis for $\text{Span}(S)$,

and so $\dim(\text{Span}(S)) = n$.

If S is not lin. indep., then $\dim(\text{Span}(S))$ is the size of the largest independent subset of S .

Plus/Minus Theorem Let V be a V -space,

$S \subseteq V$, $S \neq \emptyset$.

(+) If $S \subseteq V$ is linearly independent and $\vec{v} \in V \setminus \text{Span}(S)$, then $S \cup \{\vec{v}\}$ is still linearly independent.

(-) Suppose $\vec{v} \in S$ is such that $\vec{v} \in \text{Span}(S \setminus \{\vec{v}\})$.

Then $\text{span}(S) = \text{span}(S \setminus \{\vec{v}\})$.

Pf: (+) suppose $S \cup \{\vec{v}\}$ is linearly dependent.

Then there is $\vec{v}_1, \dots, \vec{v}_r \in S$ such that

$$c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n = 0.$$

where $c \neq 0$ and at least one of the c_i 's is non-zero (since S is independent). But then

$$\vec{v} = \frac{1}{c} (c_1 \vec{v}_1 + \dots + c_n \vec{v}_n)$$

so $\vec{v} \in \text{Span}(S)$.

(-) Exercise: show $\text{Span}(S) \subseteq \text{Span}(S - \{\vec{v}\})$. \square

Theorem: Suppose $\dim(V) = n$. Let $S \subseteq V$ be a set of size n . Then S is a basis of either

- $\text{Span}(S) = V$
- S is linearly independent.