

Lecture 6.

5.3 Complex Vector spaces..

Defn: A complex vector space V is a K -vector space with $K = \mathbb{C}$.

- We will be mostly concerned with complex n -space $\mathbb{C}^n = \{(c_1, \dots, c_n) : c_i \in \mathbb{C}\}$.
- Let $\vec{v} = (a_1 + b_1i, a_2 + b_2i, \dots, a_n + b_ni) \in \mathbb{C}^n$.

↳ Define:

$$\text{Re}(\vec{v}) = (a_1, a_2, \dots, a_n) \in \mathbb{R}^n$$

$$\text{Im}(\vec{v}) = (b_1, b_2, \dots, b_n) \in \mathbb{R}^n.$$

↳ We have that

$$\vec{v} = \text{Re}(\vec{v}) + i\text{Im}(\vec{v}).$$

we define the complex conjugate of a vector \vec{v} to be

$$\overline{\vec{v}} = \text{Re}(\vec{v}) - i\text{Im}(\vec{v}).$$

The same definition applies in the case of matrices with complex entries., $A = \operatorname{Re}(A) + i \operatorname{Im}(A)$.

Ex: if $A = \begin{bmatrix} 1+i & 3-4i \\ 2i & 42 \end{bmatrix}$

then $\bar{A} = \begin{bmatrix} 1-i & 3+4i \\ -2i & 42 \end{bmatrix}$.

Properties of Complex Conjugation

Let $\vec{u}, \vec{v} \in \mathbb{C}^n$, $k \in \mathbb{C}$, then

$$1) \overline{\overline{\vec{v}}} = \vec{v}$$

$$2) \overline{k\vec{v}} = \bar{k} \overline{\vec{v}}$$

$$3) \overline{\vec{u} + \vec{v}} = \overline{\vec{u}} + \overline{\vec{v}}$$

Let A be an $m \times k$ complex matrix and B be a $k \times n$ complex matrix. Then:

$$1) \overline{\overline{A}} = A$$

$$2) \overline{(A^T)} = (\overline{A})^T$$

$$3) \overline{AB} = \overline{A} \overline{B}$$

Defn Given $\vec{u} = (u_1, \dots, u_n), \vec{v} = (v_1, \dots, v_n) \in \mathbb{C}^n$, define the complex dot (Euclidean) product to be

$$\vec{u} \cdot \vec{v} = u_1 \bar{v}_1 + \dots + u_n \bar{v}_n$$

Using this define the Euclidean norm

$$\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{|v_1|^2 + \dots + |v_n|^2}$$

We say \vec{v} is a unit vector $\Leftrightarrow \|\vec{v}\| = 1$.

Theorem: $\vec{u}, \vec{v}, \vec{w} \in \mathbb{C}^n, k \in \mathbb{C}$, Then

- 1) $\vec{u} \cdot \vec{v} = \overline{\vec{v} \cdot \vec{u}}$ (antisymmetry).
- 2) $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$. (dist).
- 3) $k(\vec{u} \cdot \vec{v}) = (k\vec{u}) \cdot \vec{v}$.
- 4) $k(\vec{u} \cdot \vec{v}) = \vec{u} \cdot (k\vec{v})$.
- 5) $\vec{v} \cdot \vec{v} \geq 0$, $\vec{v} \cdot \vec{v} = 0$ iff $\vec{v} = \vec{0}$.

Eigenvalues and Eigenectors

Recall: If A is a complex matrix, and \vec{v} is a vector such that

$$A\vec{v} = \lambda \vec{v}$$

for some $\lambda \in \mathbb{C}$, then we say that \vec{v} is an eigenvector for A , and λ is an eigenvalue corresponding to \vec{v} .

Theorem: If A is $n \times n$ complex matrix, and $\lambda \in \mathbb{C}$ a scalar, then TFAE:

- 1) λ is an eigenvalue of A .
- 2) λ is a solution of $\det(\lambda I - A) = 0$. (characteristic equation)
- 3) The system $(\lambda I - A)\vec{x} = \vec{0}$ has a non-trivial solution
- 4) There is a non-zero vector \vec{x} such that $A\vec{x} = \lambda\vec{x}$.

If A is an $n \times n$ matrix, then the set of vectors in \mathbb{C}^n which satisfy $A\vec{x} = \lambda\vec{x}$ is a subspace called the eigenspace of λ .

Ex: Consider the matrix $A = \begin{bmatrix} 3 & -2 \\ 4 & -1 \end{bmatrix}$.

The characteristic equation is

$$\begin{aligned} \det \begin{pmatrix} \lambda-3 & 2 \\ -4 & \lambda+1 \end{pmatrix} &= (\lambda-3)(\lambda+1) - (-4)(2) \\ &= \lambda^2 - 3\lambda + \lambda - 3 + 8 \\ &= \lambda^2 - 2\lambda + 5 \end{aligned}$$

The solutions to $\lambda^2 - 2\lambda + 5 = 0$ are

$$\begin{aligned} \lambda &= \frac{2 \pm \sqrt{4 - 4(5)}}{2} = \frac{2 \pm \sqrt{-16}}{2} \\ &= 1 \pm 2i \end{aligned}$$

Let's find the eigenspace corresponding to $\lambda = 1+2i$:

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\begin{bmatrix} 3 & -2 \\ 4 & -1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = (1+2i) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

so $\begin{bmatrix} 2-2i & -2 \\ 4 & -2-2i \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

\downarrow

$$\begin{bmatrix} 1 & \frac{-2}{2-2i} \\ 4 & -2-2i \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

\downarrow

$$\begin{bmatrix} 1 & \frac{-1}{1-i} \\ 0 & -2-2i + \frac{4}{1-i} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

\downarrow

$$\begin{bmatrix} 1 & -\frac{1}{2} - \frac{1}{2}i \\ 0 & 0 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

So a non trivial solution is given by

$$x_1 - \frac{1}{2}(1+i)x_2 = 0$$

$$x_1 = \frac{1}{2}(1+i)x_2.$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1+i \\ 2 \end{bmatrix}$$

So the eigenspace of $\lambda = 1+2i$ is the subspace of \mathbb{C}^2 spanned by $\vec{v} = \begin{bmatrix} 1+i \\ 2 \end{bmatrix}$ (i.e. it's a complex line).