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theorem Let A be an mxn matrix Then A B

dragonaligable off A has a nearly independentergenuators

Last time we showed
Now

let's prove the other dreahou

F Suppose A has linearly independent eigenvectors
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Set a i be the eigenvalue corresponding to Fi

Then
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Combing his theorem
with the one from earlier

we have the following

Theory A matrix with a dostmeterganakis
B dragonalyable

Procedure For Diagaralyahonmm
Lef A ke n xn

Step Determine if A B dragonal yall
A B d onalzahle oft A has n nearly independent

eigenvectors
do this by finding buses for the eigengpaces
and conking the size of each bus B should

sum up to n

Step If A is dragonaligable let ri Fn

be the linearly independent eigenvectors from

step 1
form the matrix PEPTBe p n

Steps P AP will be j E
when Afi dipi

The followingTheorem is often very useful for
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theorem If A Bar nxn red matrix and n EE

ar eigenvalue with eigenvector rt
then T B are genuaq

with eigenvector F

Proof Let 1,8 be as alone
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E consider the matrix from the last

lecture A 134 If
we found that the eigenvalues of A

mere
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since A i3 2 2 and since A has two distinct

eigenvalues A B dragonalyalle
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From last lecture riff is an

e rger nectar
corresponding to R It Zi

since A has real entries Iz t Zi and the

eigenvector corresponding to
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as required o
On

Suppose A B dragonaligable
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Let k o Then
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For a diagonal matrix

we have Dh


