

Lecture 8

Theorem: Let A be an $n \times n$ matrix. Then A is diagonalizable iff A has n linearly independent eigenvectors.

Last time, we showed \Rightarrow . Now,
let's prove the other direction:
let's prove the other direction:

(\Leftarrow) - Suppose A has linearly independent eigenvectors

$$\vec{p}_1, \dots, \vec{p}_n.$$

- Let $P = [\vec{p}_1 \ \vec{p}_2 \ \dots \ \vec{p}_n]$.
- Since $\vec{p}_1, \dots, \vec{p}_n$ are independent, P is invertible.
- Let λ_i be the eigenvalue corresponding to \vec{p}_i .
- Then

$$AP = [A\vec{p}_1 \ A\vec{p}_2 \ \dots \ A\vec{p}_n]$$

$$= [\lambda_1\vec{p}_1 \ \lambda_2\vec{p}_2 \ \dots \ \lambda_n\vec{p}_n].$$

$$= \underbrace{\begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}}_D [\vec{p}_1 \ \vec{p}_2 \ \dots \ \vec{p}_n]. \underbrace{= PD}_{\text{check this is true!}}$$

$$\text{So } AP = PD \Leftarrow P^{-1}AP = D. \quad \Rightarrow$$

Combining this theorem with the one from earlier, we have the following:

Theorem: A matrix with n distinct eigenvalues is diagonalizable.

Procedure For Diagonalization

Let A be $n \times n$.

Step 1: Determine if A is diagonalizable.

$\hookrightarrow A$ is diagonalizable iff A has n linearly independent eigenvectors.

\hookrightarrow do this by finding bases for the eigenspace and counting the size of each basis (should sum up to n).

Step 2: If A is diagonalizable let $\vec{p}_1, \dots, \vec{p}_n$ be the linearly independent eigenvectors from

Step 1.

\hookrightarrow form the matrix $P = [\vec{p}_1 \vec{p}_2 \dots \vec{p}_n]$.

Step 3: $P^{-1}AP$ will be $\begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$ when $A\vec{p}_i = \lambda_i \vec{p}_i$.

The following theorem is often very useful for

computations:

Theorem: If A is an $n \times n$ real matrix and $\lambda \in \mathbb{C}$ is an eigenvalue with eigenvector \vec{v} , then $\bar{\lambda}$ is an eigenvalue with eigenvector $\bar{\vec{v}}$.

Proof: Let λ, \vec{v} be as above.

$$\overline{A\vec{v}} = \overline{(\lambda\vec{v})} = \bar{\lambda}\bar{\vec{v}}.$$

But also

$$\overline{A\vec{v}} = \overline{A}\bar{\vec{v}}.$$

Since A is real, $\overline{A} = A$, so

$$A\bar{\vec{v}} = \bar{\lambda}\bar{\vec{v}} \text{ as required. } \square.$$

Ex: - Consider the matrix from the last

lecture: $A = \begin{bmatrix} 3 & -2 \\ 4 & -1 \end{bmatrix}$.

- we found that the eigenvalues of A were $\lambda = 1 \pm 2i$.

- since A is 2×2 , and since A has two distinct eigenvalues A is diagonalizable.

- From last lecture, $\tilde{P} = \begin{bmatrix} 1+i \\ 2 \end{bmatrix}$ is an eigenvector corresponding to $\tilde{\lambda}_1 = 1+2i$.
- Since A has real entries $\lambda_2 = \frac{1-2i}{2} = \bar{\lambda}_1$ and the eigenvector corresponding to λ_2 is $\tilde{P}_2 = \bar{\tilde{P}}_1 = \begin{bmatrix} 1-i \\ 2 \end{bmatrix}$
- Then $P = \begin{bmatrix} 1+i & 1-i \\ 2 & 2 \end{bmatrix}$.
- Since P is 2×2 ,
$$\begin{aligned} P^{-1} &= \frac{1}{(1+i)2 - 2(1-i)} \begin{bmatrix} 2 & i-1 \\ -2 & 1+i \end{bmatrix} \\ &= \frac{1}{4i} \begin{bmatrix} 2 & i-1 \\ -2 & 1+i \end{bmatrix} \end{aligned}$$
- So $P^{-1}AP = \frac{1}{4i} \begin{bmatrix} 2 & i-1 \\ -2 & 1+i \end{bmatrix} \begin{bmatrix} 3 & -2 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} 1+i & 1-i \\ 2 & 2 \end{bmatrix}$

$$= \frac{1}{4i} \begin{bmatrix} 2 & i-1 \\ -2 & 1+i \end{bmatrix} \begin{bmatrix} -1+3i & -1-3i \\ 2+4i & 2-4i \end{bmatrix}$$

$$= \frac{1}{4i} \begin{bmatrix} -8+4i & 0 \\ 0 & 8+4i \end{bmatrix} = \begin{bmatrix} 2i+1 & 0 \\ 0 & -2i+1 \end{bmatrix}$$

← $\pi_1 \quad 0$

as required.

$$= \begin{bmatrix} \ddots & 0 \\ 0 & \pi_2 \end{bmatrix}$$

useful: Powers of Diagonalizable Matrices.

- Suppose A is diagonalizable,

$$D = P^{-1} A P.$$

- Let $k \geq 0$. Then

$$\begin{aligned} A^k &= (P D P^{-1})^k \\ &= \underbrace{(P D P^{-1})(P D P^{-1}) \dots (P D P^{-1})}_{k \text{ times.}} \end{aligned}$$

$$= P D^k P^{-1}$$

For a diagonal matrix

$$D = \begin{pmatrix} c_1 & 0 & \cdots & 0 \\ 0 & c_2 & & \vdots \\ \vdots & & \ddots & c_n \\ 0 & \cdots & 0 & \end{pmatrix}$$

we have $D^k = \begin{pmatrix} c_1^k & 0 & \cdots & 0 \\ 0 & c_2^k & \cdots & 0 \\ \vdots & & \ddots & c_n^k \\ 0 & \cdots & 0 & \end{pmatrix}$.