

Lecture #9.

(6.1) Inner Product Spaces.

-In this section, we aim to generalize the real and complex dot product on \mathbb{R}^n , \mathbb{C}^n respectively.

Defn: A real inner product space is a real vector space V together with a function $\langle \cdot, \cdot \rangle : V \times V \rightarrow \underline{\mathbb{R}}$ such that $\forall \vec{u}, \vec{v}, \vec{w} \in V, \forall k \in \mathbb{R}$,

i) $\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$ (symmetry)

ii) $\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$ (additivity)

iii) $\langle k\vec{u}, \vec{v} \rangle = k\langle \vec{u}, \vec{v} \rangle$ (homogeneity)

iv) $\langle \vec{v}, \vec{v} \rangle \geq 0$, $\langle \vec{v}, \vec{v} \rangle = 0$ iff $\vec{v} = \vec{0}$ (positivity).

The purpose of introducing inner product spaces is to generalize the

usual dot product on \mathbb{R}^n .

Examples:

1) \mathbb{R}^n , with $\langle \vec{u}, \vec{v} \rangle = \vec{u} \cdot \vec{v}$ (the usual dot product)

2) Let $a, b \in \mathbb{R}$, $a < b$.

- Let $C^0([a, b])$ be the vector space of continuous, real valued functions on $[a, b]$.

- For $f, g \in C^0([a, b])$, define

$$\langle f, g \rangle = \int_a^b f(x) g(x) dx.$$

Then $\langle f, g \rangle$ is an inner product.

Inner products give us a notion of length and distance (and even angle!).

Definition: Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. For a vector $\vec{v} \in V$, define the norm of \vec{v} to be

$$\|\vec{v}\| = \sqrt{\langle \vec{v}, \vec{v} \rangle}.$$

For $\vec{u}, \vec{v} \in V$, define the distance between \vec{u} and \vec{v} as

$$d(\vec{u}, \vec{v}) = \|\vec{u} - \vec{v}\|.$$

Ex: If $(V, \langle \cdot, \cdot \rangle)$ is \mathbb{R}^n with the usual dot product, then $\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$, the usual Euclidean length.

Theorem (6.1.1) Let $(V, \langle \cdot, \cdot \rangle)$ be a real inner product space. Let $\vec{u}, \vec{v}, \vec{w} \in V$, $k \in \mathbb{R}$. Then

- 1) $\langle \vec{0}, \vec{v} \rangle = 0$
- 2) $\langle \vec{u}, \vec{v} + \vec{w} \rangle = \langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle$.
- 3) $\langle \vec{u}, k\vec{v} \rangle = k \langle \vec{u}, \vec{v} \rangle$.
- 4) $\langle \vec{u} - \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle - \langle \vec{v}, \vec{w} \rangle$.
- 5) $\langle \vec{u}, \vec{v} - \vec{w} \rangle = \langle \vec{u}, \vec{v} \rangle - \langle \vec{u}, \vec{w} \rangle$.

We can also define what it means to be a complex inner product space:

Defn: Let V be a complex inner product space. Then $\langle \cdot, \cdot \rangle: V \times V \rightarrow \mathbb{C}$ is a (complex) inner product iff

- 1) $\langle \vec{u}, \vec{v} \rangle = \overline{\langle \vec{v}, \vec{u} \rangle}$
- 2) $\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$.
- 3) $\langle k\vec{u}, \vec{v} \rangle = k\langle \vec{u}, \vec{v} \rangle$ for $k \in \mathbb{C}$.
- 5) For all \vec{v} , $\langle \vec{v}, \vec{v} \rangle \in \mathbb{R}^+$ and
 $\langle \vec{v}, \vec{v} \rangle = 0$ iff $\vec{v} = \vec{0}$.

Example: Let $A = \begin{bmatrix} 2 & i \\ -i & 2 \end{bmatrix}$.

Then the map

$$\langle \cdot, \cdot \rangle: \mathbb{C}^2 \times \mathbb{C}^2 \rightarrow \mathbb{C}$$

defined by

$$\langle \vec{v}, \vec{w} \rangle = [\vec{v}]^T A [\vec{w}]$$

is an inner product on \mathbb{C}^2 (different from the standard complex dot product).

$$\vec{v} = (v_1, v_2) \quad \vec{w} = (w_1, w_2)$$

$$\begin{aligned} \langle \vec{v}, \vec{w} \rangle &= [v_1, v_2] \begin{bmatrix} 2 & i \\ -i & 2 \end{bmatrix} \begin{bmatrix} \bar{w}_1 \\ \bar{w}_2 \end{bmatrix} \\ &= [v_1, v_2] \begin{bmatrix} 2\bar{w}_1 + i\bar{w}_2 \\ -i\bar{w}_1 + 2\bar{w}_2 \end{bmatrix} = v_1(2\bar{w}_1 + i\bar{w}_2) \\ &\quad + v_2(-i\bar{w}_1 + 2\bar{w}_2). \end{aligned}$$

Note: Not every matrix works. we chose a special type of matrix -

- For a complex inner product space $(V, \langle \cdot, \cdot \rangle)$, we define length in the same way as in the real case. For $\vec{v} \in V$, the norm of \vec{v} is $\|\vec{v}\| = \sqrt{\langle \vec{v}, \vec{v} \rangle}$.
- We define the distance between \vec{u} and \vec{v} as $d(\vec{u}, \vec{v}) = \|\vec{u} - \vec{v}\|$.

Now, we will assume that an inner prod. Space $(V, \langle \cdot, \cdot \rangle)$ is either real or complex.

Theorem (The Cauchy-Schwarz Inequality)

If $(V, \langle \cdot, \cdot \rangle)$ is an inner product space, $\vec{u}, \vec{v} \in V$, then

$$|\langle \vec{u}, \vec{v} \rangle| \leq \|\vec{u}\| \|\vec{v}\|$$

real or complex
absolute value

norm.

Proof: If $\vec{v} = \vec{0}$, then the inequality is true,
 so we may assume $\vec{v} \neq \vec{0}$. Let $\lambda = \frac{\langle \vec{u}, \vec{v} \rangle}{\|\vec{v}\|^2}$. Then

$$\begin{aligned}
 0 &\leq \|\vec{u} - \lambda \vec{v}\|^2 \\
 &= \langle \vec{u}, \vec{u} \rangle - \langle \lambda \vec{v}, \vec{u} \rangle - \langle \vec{u}, \lambda \vec{v} \rangle + \langle \lambda \vec{v}, \lambda \vec{v} \rangle \\
 &= \langle \vec{u}, \vec{u} \rangle - \lambda \langle \vec{v}, \vec{u} \rangle - \bar{\lambda} \langle \vec{u}, \vec{v} \rangle + \lambda \bar{\lambda} \langle \vec{v}, \vec{v} \rangle \\
 &= \|\vec{u}\|^2 - \lambda \langle \vec{u}, \vec{v} \rangle - \bar{\lambda} \langle \vec{u}, \vec{v} \rangle + \lambda \bar{\lambda} \|\vec{v}\|^2 \\
 &= \|\vec{u}\|^2 - \frac{|\langle \vec{u}, \vec{v} \rangle|^2}{\|\vec{v}\|^2} - \frac{|\langle \vec{u}, \vec{v} \rangle|^2}{\|\vec{v}\|^2} + \frac{|\langle \vec{u}, \vec{v} \rangle|^2}{\|\vec{v}\|^2} \\
 &= \|\vec{u}\|^2 - \frac{|\langle \vec{u}, \vec{v} \rangle|^2}{\|\vec{v}\|^2}
 \end{aligned}$$

$$\text{so } |\langle \vec{u}, \vec{v} \rangle|^2 \leq \|\vec{u}\|^2 \|\vec{v}\|^2$$

$$\text{and hence } |\langle \vec{u}, \vec{v} \rangle|^2 \leq \|\vec{u}\| \|\vec{v}\| \quad \square.$$