

Mathematics 2R3 Test 1

Dr. Bradd Hart

Oct. 9, 2019

Last Name: _____

Initials: _____

Student No.: _____

- The test is 50 minutes long.
- The test has 6 pages and 5 questions and is printed on BOTH sides of the paper.
- You are responsible for ensuring that your copy of the paper is complete. Bring any discrepancies to the attention of the invigilator.
- Attempt all questions and write your answers in the space provided.
- Marks are indicated next to each question; the total number of marks is 25.
- You may use a McMaster standard Casio fx-991 MS or MS Plus calculator (no communication capability); no other aids are not permitted.
- Use pen to write your test. If you use a pencil, your test will not be accepted for regrading (if needed).

Good Luck!

Score

Question	1	2	3	4	5	Total
Points	5	5	5	5	5	25
Score						

continued . . .

1. (5 marks) Put your answer in the space provided for each part.

(a) Every complex $n \times n$ matrix has an eigenvalue. True or false.

(b) Every linearly independent set of n vectors in \mathbf{R}^n is a basis for \mathbf{R}^n . True or false.

(c) There are 4 polynomials in the vector space P_5 of real polynomials of degree less than or equal to 5 that span P_5 . True or false.

(d) If $u = (i, -i)$ and $v = (-i, -i)$ in \mathbf{C}^2 then $u \cdot v = \underline{\hspace{2cm}}$

(e) Find the eigenvalues of the following matrix by inspection.

$$\begin{pmatrix} 3-i & 0 & 0 \\ -1 & i & 0 \\ 2 & 1 & 1 \end{pmatrix}$$

2. (a) (3 marks) Find all complex numbers z such that $z^4 = 1 - i$.

(b) (2 marks) Suppose V is a complex inner product space and $u, v \in V$ such that $\langle u, u \rangle = 1$, $\langle u, v \rangle = i$ and $\langle v, v \rangle = 1$. Compute $\|u + v\|$.

3. (5 marks) Suppose A is the matrix

$$\begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}.$$

Find the eigenvalues and eigenvectors for A in \mathbf{C}^2 .

4. In the inner product space of continuous functions on $[-1, 1]$ with inner product given by

$$\langle f, g \rangle = \int_{-1}^1 fg \, dx$$

(a) (3 marks) use the Gram-Schmidt process applied to the linearly independent set $\{1, x, x^2\}$ to form an orthogonal set; you do not have to normalize the vectors.

(b) (2 marks) If f and g are two continuous functions on $[-1, 1]$, explain why

$$\left(\int_{-1}^1 (f + g)^2 \, dx \right)^{1/2} \leq \left(\int_{-1}^1 f^2 \, dx \right)^{1/2} + \left(\int_{-1}^1 g^2 \, dx \right)^{1/2}.$$

5. Suppose that W is a subspace of an inner product space V .
 - (a) (2 marks) Define what is meant by the orthogonal complement, W^\perp , of W .
 - (b) (3 mark) Prove that W^\perp is a subspace of V .