

Mathematics 2R3 Practice Test 2

Dr. Hart

Fall, 2019

Last Name: _____

Initials: _____

Student No.: _____

- The test is 50 minutes long.
- The test has 6 pages and 5 questions and is printed on BOTH sides of the paper.
- You are responsible for ensuring that your copy of the paper is complete. Bring any discrepancies to the attention of the invigilator.
- Attempt all questions and write your answers in the space provided.
- Marks are indicated next to each question; the total number of marks is 25.
- You may use a McMaster standard Casio fx-991 calculator (no communication capability); no other aids are not permitted.
- Use pen to write your test. If you use a pencil, your test will not be accepted for regrading (if needed).

Good Luck!

Score

Question	1	2	3	4	5	Total
Points	5	5	5	5	5	25
Score						

continued . . .

1. (5 marks) Put your answer in the space provided for each part.

(a) The range of a linear transformation is a vector space. True or False.

(b) If V is an n -dimensional vector space and $T : V \rightarrow V$ is a linear operator with range V then T is one-to-one. True or False.

(c) The real vector spaces of 2×2 real matrices and polynomials of degree at most 3 with real coefficients are isomorphic. True or False.

(d) Suppose that A is an $n \times n$ matrix and for every $x \in \mathbf{R}^n$, $T(x) = x^T A x$ then T is a linear transformation. True or False.

(e) Suppose that $T : V \rightarrow W$ is a surjective linear transformation, the dimension of W is 4 and the dimension of V is 7. What is the dimension of the kernel of T ?

continued . . .

2. (5 marks) Consider the inner product space $C[-1, 1]$ with the inner product given by

$$\langle f, g \rangle = \int_{-1}^1 fg \, dx.$$

(a) (3 marks) Apply the Gram-Schmidt process to the linearly independent set $\{1, x, x^2\}$ in $C[-1, 1]$ to obtain an orthogonal set.

(b) (2 marks) If W is the subspace generated by $\{1, x, x^2\}$, determine the projection of x^3 onto W .

3. P_2 is the real vector space of polynomials of degree less than or equal to 2. Define $T : P_2 \rightarrow P_2$ by $T(p(x)) = p(x - 1)$.

(a) (3 marks) Show that T is a linear transformation.

(b) (2 marks) Determine the range and kernel of T

4. Suppose that P_2 is the vector space of real polynomials of degree ≤ 2 and $T : P_2 \rightarrow \mathbf{R}^3$ is a linear transformation satisfying

$$T(1) = (1, 0, 3), T(x + 1) = (2, -3, 0) \text{ and } T(x^2 + x + 1) = (1, 0, 1).$$

(a) (2 marks) Compute $T(1 - x + x^2)$.

(b) (3 marks) Write out a formula for $T(a_0 + a_1x + a_2x^2)$.

5. Prove that if $T : V \rightarrow W$ is a one-to-one linear transformation then T^{-1} is a linear transformation from $R(T)$ to V .