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• The test is 50 minutes long.

• The test has 6 pages and 5 questions and is printed on BOTH sides of the paper.

• You are responsible for ensuring that your copy of the paper is complete. Bring any discrep-
ancies to the attention of the invigilator.

• Attempt all questions and write your answers in the space provided.

• Marks are indicated next to each question; the total number of marks is 25.

• You may use a McMaster standard Casio fx-991 MS or MS Plus calculator (no communication
capability); no other aids are not permitted.

• Use pen to write your test. If you use a pencil, your test will not be accepted for regrading
(if needed).

Good Luck!
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1. (5 marks) Put your answer in the space provided for each part.

(a) Every real n× n matrix has a real eigenvalue. True or false.

False: See question 3 for a real matrix with no real eigenvalues.

(b) If dim(V ) = n, then every set of n+ 1 vectors is linearly dependent. True or false.

True: If not, then there is a basis of size n+1, which contradicts the fact that dim(V ) = n.

(c) The set of polynomials with real coefficients is a finite dimensional vector space. True or
false.

False: 1, x, x2, . . . are all linearly independent. This is in contrast to the vector space Pn
of polynomials of degree at most n, which has a basis {1, x, . . . , xn}, making dim(Pn) =
n+ 1.

(d) If u = (i, 1) and v = (1, i) in C2 then u · v =

u · v = (i)(1) + (−i)(1) = i− i = 0.

(e) Let A be a real, 4× 4 matrix with eigenvalues λ1, λ2, λ3, and λ4. If λ1 = 42−
√

17i and
λ2 = 137 + 57i, what are λ2 and λ3?

Remark: There was a typo in this question. It should have read ”what are λ3 and λ4”.
In that case the two other eigenvalues are the complex conjugates of the first two, since
A is a real matrix.

continued . . .
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2. (a) (2 marks) Let z =
√

3 +
√

3i. Write z2 in polar form.

Solution: Let z =
√

3(1 + i). Then z2 = 3(1 + i)2. We have that

1 + i =
√

2
(

cos
(π

4

)
+ i sin

(π
4

))
and so

z2 = 6
(

cos
(π

2

)
+ i sin

(π
2

))
(b) (3 marks) Suppose V is a complex inner product space and u,v ∈ V such that 〈u,u〉 = 1,
〈u,v〉 = i− 1 and 〈v,v〉 = 1. Compute ‖u + v‖. What can you conclude about u + v?

Solution: We compute ‖u + v‖2.

‖u + v‖2 = 〈u + v,u + v〉
= 〈u,u + v〉+ 〈v,u + v〉
= 〈u + v,u〉+ 〈u + v,v〉
= 〈u,u〉+ 〈v,u〉+ 〈u,v〉+ 〈v,v〉
= 〈u,u〉+ 〈u,v〉+ 〈u,v〉+ 〈v,v〉
= 1 + (i− 1) + (i− 1) + 1

= 1 + (i− 1) + (−i− 1) + 1

= 1 + 1− 1− 1 + i− i
= 0.

Hence ‖u + v‖ = 0. By the positivity axiom, u = −v.
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3. (5 marks) Suppose A is the matrix (
3 5
−2 −3

)
.

Find a matrix P and a diagonal matrix D such that D = P−1AP .

Solution: First, we should find the eigenvalues. We compute the characteristic polynomial:

det(λI − A) =

∣∣∣∣( λ 0
0 λ

)
−
(

3 5
−2 −3

)∣∣∣∣
=

∣∣∣∣ λ− 3 −5
2 λ+ 3

∣∣∣∣
= (λ− 3)(λ+ 3)− (2)(−5)

= λ2 − 3λ+ 3λ− 9 + 10

= λ2 + 1.

Therefore det(λI − A) = 0 iff λ = ±i.
Next, let’s compute the eigenspace for λ = i. We want to solve the equation(

i− 3 −5
2 i+ 3

)(
x
y

)
=

(
0
0

)
or, equivalently,

(i− 3)x− 5y = 0

2x+ (i+ 3)y = 0.

Solving for x in the second equation, we have

x =
−(i+ 3)

2
y.

Note that if we substitute this x into the first equation, we get

0 = (i− 3)
−(i+ 3)

2
y − 5y

=
−(−1 + 3i− 3i− 9)

2
y − 5y

=
10

2
y − 5y

= 5y − 5y = 0,

so 0 = 0. This equation tells us no information. It follows that the equations are multiples of
one another. Therefore the general solution is(

x
y

)
=

( −(i+3)
2

1

)
t
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, for t ∈ C. This means that {( −(i+3)
2

1

)}
is a basis for the λ = i eigenspace. To find a basis for the λ = −i eigenspace, observe that
since A is real, we only need to take the complex conjugate. Hence

{( −3+i
2

1

)}
is a basis for the λ = −i eigenspace. From here, we are essentially done. Let

P =

( −(i+3)
2

−3+i
2

1 1

)
.

Then

D =

(
i 0
0 −i

)
.
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4. Let V = C1([0, π]) be the real vector space of continuous, real-valued functions on [0, π].

(a) (3 marks) Verify that the operation defined by

〈f, g〉 :=

∫ π

0

f(x)g(x) sin(x)dx

is an inner product on V .

Solution: we need only to verify that 〈·, ·〉 satisfies the axioms of a real inner-product.

i. Symmetry:

〈f, g〉 =

∫ π

0

f(x)g(x) sin(x)dx

=

∫ π

0

g(x)f(x) sin(x)dx

= 〈g, f〉.

ii. Linearity in the first variable:

〈f + g, h〉 =

∫ π

0

(f(x) + g(x))h(x) sin(x)dx

=

∫ π

0

f(x)h(x) sin(x) + g(x)h(x) sin(x)dx

=

∫ π

0

f(x)h(x) sin(x)dx+

∫ π

0

g(x)h(x) sin(x)dx

= 〈f, h〉+ 〈g, h〉.

iii. Homogeneity: for k a scalar, we have

〈kf, g〉 =

∫ π

0

kf(x)g(x) sin(x)dx

= k

∫ π

0

f(x)g(x) sin(x)dx

= k〈f, g〉.

iv. Positivity: Let f ∈ C[0, π]. Then

〈f, f〉 =

∫ π

0

f(x)2 sin(x)dx.

Since f(x)2 is non-negative, and since sin(x) is non-negative on the interval [0, π],
and hence 〈f, f〉 ≥ 0. If f = 0 then 〈f, f〉 = 0.
Suppose f(x) is non-zero. Then, by continuity, there is a ∈ [0, π] and ε > 0 such
that sin(x)f(x)2 
 0 on (a− ε, a+ ε). Then

0 �
∫ a+ε

a−ε
f(x)2 sin(x)dx ≤ 〈f, f〉.
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(b) (2 marks) With respect to this inner product, show that

‖ sin(x) + cos(x)‖2 = ‖ sin(x)‖2 + ‖ cos(x)‖2.

Solution: The idea here was to recognize the equation as an instance of the generalized
Pythagorean theorem. The result then follows from showing that sin(x) and cos(x) are
orthogonal with respect to the given inner product.

〈sin(x), cos(x)〉 =

∫ π

0

sin2(x) cos(x)dx.

Making the substitution u = sin(x), du = cos(x)dx, we have

〈sin(x), cos(x)〉 =

∫ π

0

sin2(x) cos(x)dx

=

∫ sin(π)

sin(0)

u2du

=

∫ 0

0

u2du = 0.

Therefore sin(x) and cos(x) are orthogonal with respect to this inner product, and so

‖ sin(x) + cos(x)‖2 = ‖ sin(x)‖2 + ‖ cos(x)‖2.
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5. Suppose that W is a subspace of an inner product space V .

(a) (2 marks) Show that W ⊆ (W⊥)⊥.

Solution: We want to show that W is a subset of (W⊥)⊥. Suppose that w ∈ W . Then
w is also an element of (W⊥)⊥ if w is orthogonal to every element W⊥ (by definition of
orthogonal complement). Let v ∈ W⊥. Then 〈w,v〉 = 0, since w ∈ W . This shows that
W ⊆ (W⊥)⊥.

(b) (3 mark) Let {w1, . . . ,wn} be a basis for W . Prove that

W⊥ = {v ∈ V : 〈v,wi〉 = 0, i = 1, . . . , n}.

Solution: Lets say

X = {v ∈ V : 〈v,wi〉 = 0, i = 1, . . . , n}.

We want to show that W⊥ = X. It is easy to see that W⊥ ⊆ X; if v ∈ W⊥, then
v is orthogonal to every vector in W and so, in particular, v is orthogonal to each of
w1, . . . ,wn.

On the other hand, to see that X ⊂ W⊥, we let v ∈ X be arbitrary. We need to show
that v is orthogonal to every vector in W (and so is in W⊥ by definition). Let w ∈ W
be arbitrary. Since w1, . . . ,wn is a basis for W , we may write

w = c1w1 + . . .+ cnwn

for some scalars c1, . . . , cn. Then

〈w,v〉 = 〈c1w1 + . . .+ cnwn,v〉
= 〈c1w1,v〉+ . . .+ 〈cnwn,v〉
= c1〈w1,v〉+ . . .+ cn〈wn,v〉.

Now, since v ∈ X, we have

〈v,wi〉 = 0 = 〈wi,v〉

for all 1 ≤ i ≤ n, and so

〈w,v〉 = 0.

Since w ∈ W was arbitrary, we have shown that v ∈ W⊥, and so X ⊆ W⊥.

Since X ⊆ W⊥ and W⊥ ⊆ X, we have that W⊥ = X, as required.

THE END


