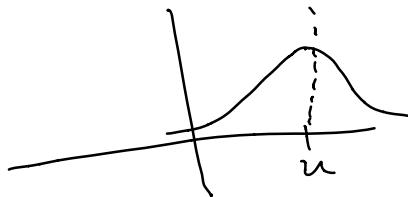


Lecture # 72.

Note on the normal Distribution.

Recall from last time:

$X = N(\mu, \sigma^2)$ is the normal distribution
with mean μ and variance σ^2



- X has cumulative dist. function

$$P(X \leq x) = \int_{-\infty}^x \frac{e^{-\frac{(t-\mu)^2}{2\sigma^2}}}{\sqrt{2\pi\sigma^2}} dt$$

$\underbrace{\qquad\qquad\qquad}_{\text{no-antiderivative.}}$

- the variable $Z = N(0, 1)$ is called the "standard normal"

- Given any other normal RV $X = N(\mu, \sigma^2)$, we can "standardize":

$$P(X \leq x) = P\left(Z \leq \frac{x-\mu}{\sigma}\right) = \Phi\left(\frac{x-\mu}{\sigma}\right) = \Phi(z)$$

Let's do some examples of using Normal distributions.

Example: File transfer from server to computer is normally distributed with mean 5.75 Mbps and variance $(0.35)^2$.

a) What is the prob. that the transfer speed is ≥ 6.7 Mbps?

$$\begin{aligned}
 P(X \geq 6.7) &= 1 - P(X < 6.7) \\
 &= 1 - P\left(Z < \frac{6.7 - 5.75}{0.35}\right) \\
 &= 1 - P(Z < 2.71) \\
 &= 1 - \underbrace{\Phi(2.71)}_{\text{look this up.}} \\
 &= 1 - 0.996636 = 0.003364.
 \end{aligned}$$

b) What is Prob. that the speed is ≤ 5.5 Mbps?

$$\begin{aligned}
 P(X \leq 5.5) &= P\left(Z \leq \frac{5.5 - 5.75}{0.35}\right) \\
 &= P(Z \leq -0.71) \\
 &= \underbrace{\Phi(-0.71)}_{\approx 0.238852} \approx 0.238852
 \end{aligned}$$

c) Find the transfer speed s such that the probability that $X \geq s$ is 90%. i.e. such that $X \geq s$ 90% of the time.

Want $P(X \geq s) = 0.9$.

i.e. Want s such that

$$P(X \leq s) = 0.1.$$

equivalently:

$$P\left(Z < \frac{s - 5.75}{0.35}\right) = 0.1.$$

$$\Phi\left(\frac{s - 5.75}{0.35}\right) = 0.1$$

Look up in chart:

$$\Phi(-1.28) = \underbrace{0.100273}_{\text{close to 0.1.}}$$

So solve

$$-1.28 = \frac{s - 5.75}{0.35}$$

$$s \approx (-1.28)(0.35) + 5.75$$

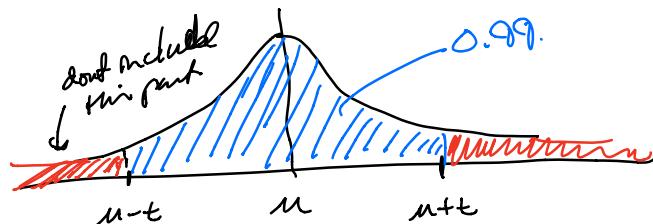
$$\approx 5.302.$$

d) Find the symmetric interval about the mean such that 99% of the time, the speed

is in that interval.

i.e. Find t s.t. $P\left(\frac{5.75-t}{s} \leq Z \leq \frac{5.75+t}{s}\right) = 0.99.$

Draw a picture:



$$\text{So } 0.99 = P(5.75 - t \leq X \leq 5.75 + t)$$

Observe that

$$1 = P(X \leq 5.75 - t) + P(5.75 - t \leq X \leq 5.75 + t) + P(X \geq 5.75 + t)$$

and $P(X \leq 5.75 - t) = P(X \geq 5.75 + t)$ *by symmetry about $x = 5.75$*

So

$$\begin{aligned} P(5.75 - t \leq X \leq 5.75 + t) &= 1 - 2P(X \leq 5.75 - t) \\ &= 1 - 2P\left(Z \leq \frac{5.75 - t - 5.75}{0.35}\right) \\ &= 1 - 2P\left(Z \leq \frac{-t}{0.35}\right) \end{aligned}$$

So if $0.99 = 1 - 2P\left(Z \leq \frac{-t}{0.35}\right)$, then

$$\frac{0.99 - 1}{-2} = 0.005 = \Phi\left[\frac{-t}{0.35}\right].$$

From table $\Phi(-2.57) \approx 0.005087$.

So

$$-2.57 = \frac{-t}{0.35}$$

$$\text{so } t \approx 0.899 \approx 0.9$$

Normal Approx. to Binomial Distribution

- Recall from earlier that the binomial distribution is roughly bell-shaped.

- For large enough n ,

$$B(n, p) \approx N(np, np(1-p)).$$

- It follows that if $X = B(n, p)$ then $\frac{X - np}{\sqrt{np(1-p)}}$ is approximated by the standard normal $N(0, 1)$.

- For a better approximation, we have a continuity correction: ($X = B(n, p)$)

$$P(X \leq x) = P(X \leq x + 0.5) \approx P\left(Z \leq \frac{x + 0.5 - np}{\sqrt{np(1-p)}}\right)$$

$\underbrace{\quad}_{X \text{ is discrete}} \quad \underbrace{\quad}_{\frac{x + 0.5 - np}{\sqrt{np(1-p)}}}$

- Similarly:

$$P(X \geq x) = P(X \geq x - 0.5) \approx P\left(\frac{x - 0.5 - np}{\sqrt{np(1-p)}} \leq Z\right).$$

- These approximations are good when
 $np > 5$ and $n(1-p) > 5$ (large enough n).

Example: multiple choice test, 60 questions with 5 choices each. Guess randomly with equal prob. Find the prob of between 10 and 20 correct.

$$p = \frac{1}{5}, \quad 1-p = \frac{4}{5}, \quad n = 60. \quad \underbrace{\frac{60}{5} > 5, \frac{60}{5} \left(\frac{4}{5}\right) > 5,}_{\text{so } \text{Bin}(60, \frac{1}{5}) \text{ can be approximated well.}} \quad \text{Var}(X) = 60 \left(\frac{1}{5}\right) \left(\frac{4}{5}\right) \approx 9.6. \quad E(X) = np = 60 \left(\frac{1}{5}\right) = 12 \quad \text{by } N(12, 9.6).$$

$X = \# \text{ of correct solutions.}$

$$P(10 \leq X \leq 20) = \sum_{x=10}^{20} \binom{60}{x} \left(\frac{1}{5}\right)^x \left(\frac{4}{5}\right)^{60-x}$$

ugly to compute!

But: $P(10 \leq X \leq 20) = P(9.5 \leq X \leq 20.5)$

$$\approx P\left(\frac{9.5-12}{\sqrt{9.6}} \leq Z \leq \frac{20.5-12}{\sqrt{9.6}}\right)$$

$$\sum_{x=10}^{20} \binom{60}{x} \left(\frac{1}{5}\right)^x \left(\frac{4}{5}\right)^{60-x} \approx 6.782 \quad \begin{array}{l} \approx 0.788 \\ \text{wtf to shabby.} \end{array}$$

A-8 APPENDIX A Statistical Tables and Charts

$$\Phi(z) = P(Z \leq z) = \int_{-\infty}^z \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2} du$$

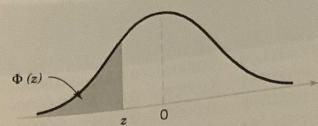


TABLE III Cumulative Standard Normal Distribution

<i>z</i>	-0.09	-0.08	-0.07	-0.06	-0.05	-0.04	-0.03	-0.02	-0.01	-0.00
-3.9	0.000033	0.000034	0.000036	0.000037	0.000039	0.000041	0.000042	0.000044	0.000046	0.000048
-3.8	0.000050	0.000052	0.000054	0.000057	0.000059	0.000062	0.000064	0.000067	0.000069	0.000072
-3.7	0.000075	0.000078	0.000082	0.000085	0.000088	0.000092	0.000096	0.000100	0.000104	0.000108
-3.6	0.000112	0.000117	0.000121	0.000126	0.000131	0.000136	0.000142	0.000147	0.000153	0.000159
-3.5	0.000165	0.000172	0.000179	0.000185	0.000193	0.000200	0.000208	0.000216	0.000224	0.000233
-3.4	0.000242	0.000251	0.000260	0.000270	0.000280	0.000291	0.000302	0.000313	0.000325	0.000337
-3.3	0.000350	0.000362	0.000376	0.000390	0.000404	0.000419	0.000434	0.000450	0.000467	0.000483
-3.2	0.000501	0.000519	0.000538	0.000557	0.000577	0.000598	0.000619	0.000641	0.000664	0.000687
-3.1	0.000711	0.000736	0.000762	0.000789	0.000816	0.000845	0.000874	0.000904	0.000935	0.000968
-3.0	0.001001	0.001035	0.001070	0.001107	0.001144	0.001183	0.001223	0.001264	0.001306	0.001350
-2.9	0.001395	0.001441	0.001489	0.001538	0.001589	0.001641	0.001695	0.001750	0.001807	0.001866
-2.8	0.001926	0.001988	0.002052	0.002118	0.002186	0.002256	0.002327	0.002401	0.002477	0.002555
-2.7	0.002635	0.002718	0.002803	0.002890	0.002980	0.003072	0.003167	0.003264	0.003364	0.003467
-2.6	0.003573	0.003681	0.003793	0.003907	0.004025	0.004145	0.004269	0.004396	0.004527	0.004661
-2.5	0.004799	0.004940	0.005085	0.005234	0.005386	0.005543	0.005703	0.005868	0.006037	0.006210
-2.4	0.006387	0.006569	0.006756	0.006947	0.007143	0.007344	0.007549	0.007760	0.007976	0.008198
-2.3	0.008424	0.008656	0.008894	0.009137	0.009387	0.009642	0.009903	0.010170	0.010444	0.010724
-2.2	0.011011	0.011304	0.011604	0.011911	0.012224	0.012545	0.012874	0.013209	0.013553	0.013903
-2.1	0.014262	0.014629	0.015003	0.015386	0.015778	0.016177	0.016586	0.017003	0.017429	0.017864
-2.0	0.018309	0.018763	0.019226	0.019699	0.020182	0.020675	0.021178	0.021692	0.022216	0.022750
-1.9	0.023295	0.023852	0.024419	0.024998	0.025588	0.026190	0.026803	0.027429	0.028067	0.028717
-1.8	0.029379	0.030054	0.030742	0.031443	0.032157	0.032884	0.033625	0.034379	0.035148	0.035930
-1.7	0.036727	0.037538	0.038364	0.039204	0.040059	0.040929	0.041815	0.042716	0.043633	0.044565
-1.6	0.045514	0.046479	0.047460	0.048457	0.049471	0.050503	0.051551	0.052616	0.053699	0.054799
-1.5	0.055917	0.057053	0.058208	0.059380	0.060571	0.061780	0.063008	0.064256	0.065522	0.066807
-1.4	0.068112	0.069437	0.070781	0.072145	0.073529	0.074934	0.076359	0.077804	0.079270	0.080757
-1.3	0.082264	0.083793	0.085343	0.086915	0.088508	0.090123	0.091759	0.093418	0.095098	0.096801
-1.2	0.098525	0.100273	0.102042	0.103835	0.105650	0.107488	0.109349	0.111233	0.113140	0.115070
-1.1	0.117023	0.119000	0.121001	0.123024	0.125072	0.127143	0.129238	0.131357	0.133500	0.135666
-1.0	0.137857	0.140071	0.142310	0.144572	0.146859	0.149170	0.151505	0.153864	0.156248	0.158655
-0.9	0.161087	0.163543	0.166023	0.168528	0.171056	0.173609	0.176185	0.178786	0.181411	0.184060
-0.8	0.186733	0.189430	0.192150	0.194894	0.197662	0.200454	0.203269	0.206108	0.208970	0.211855
-0.7	0.214764	0.217695	0.220650	0.223627	0.226627	0.229650	0.232695	0.235762	0.238852	0.241964
-0.6	0.245097	0.248252	0.251429	0.254627	0.257846	0.261086	0.264347	0.267629	0.270931	0.274253
-0.5	0.277595	0.280957	0.284339	0.287740	0.291160	0.294599	0.298056	0.301532	0.305026	0.308538
-0.4	0.312067	0.315614	0.319178	0.322758	0.326355	0.329969	0.333598	0.337243	0.340903	0.344575
-0.3	0.348268	0.351973	0.355691	0.359424	0.363169	0.366928	0.370700	0.374484	0.378281	0.38208
-0.2	0.385908	0.389739	0.393580	0.397432	0.401294	0.405165	0.409046	0.412936	0.416834	0.42074
-0.1	0.424655	0.428576	0.432505	0.436441	0.440382	0.444330	0.448283	0.452242	0.456205	0.46011
0.0	0.464144	0.468119	0.472097	0.476078	0.480061	0.484047	0.488033	0.492022	0.496011	0.5000