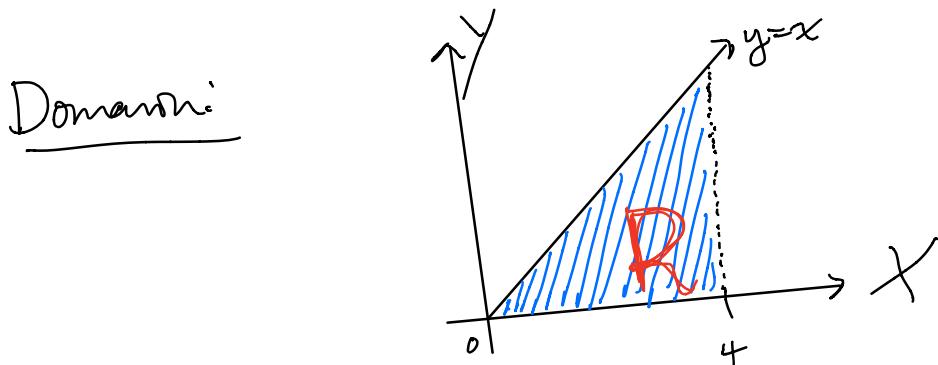


Lecture 14.

From last time:

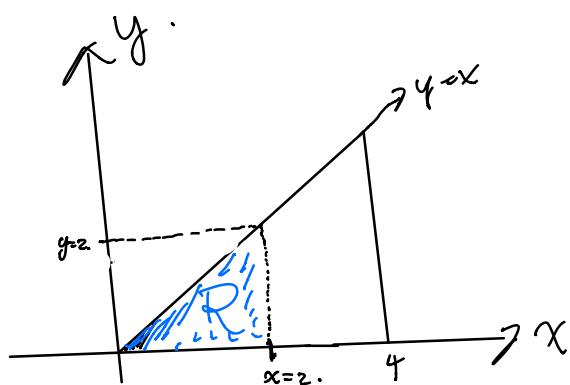
Ex: suppose X and Y are CRV's with $0 < Y < X < 4$ and $f_{XY}(x, y) = \frac{c}{x+y}$. c is some constant.



we found that $c = 1/32$,

$$\text{so } f_{XY}(x, y) = \frac{x+y}{32}$$

Suppose we want $P(X < 2, Y < 3)$
i.e. the prob that $X < 2$ AND $Y < 3$.

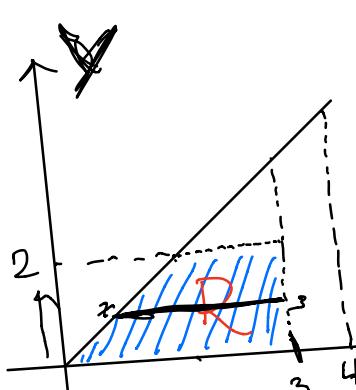


Then

$$\begin{aligned} P(X < 2, Y < 3) &= \int_0^2 \int_0^x \frac{x+y}{32} dy dx \\ &= \int_0^2 \frac{3}{64} x^2 dx = \frac{x^3}{64} \Big|_0^2 = \frac{8}{64} = \frac{1}{8}. \end{aligned}$$

Remark: Let $R \subseteq \mathbb{R}^2$ be some 1-dimensional region. Then $P(X, Y \in R) = 0$.

What is $P(X < 3, Y < 2)$?



$$P(X < 3, Y < 2) = \int_0^3 \int_0^x \frac{x+y}{32} dy dx.$$

$$\begin{aligned} &= \frac{1}{32} \int_0^3 \left[\frac{x^2}{2} + xy \right]_0^3 dy \\ &= \frac{1}{32} \int_0^3 \left(\frac{9}{2} + 3y - \frac{3}{2}y^2 \right) dy \\ &= \frac{1}{32} \left(9 + 6 - 4 \right) = \frac{11}{32}. \end{aligned}$$

Marginal Probability density Functions

Suppose we have CRV's X, Y defined on a region $(X, Y) \in \mathbb{R}$, and suppose that X and Y have a joint pdf $f_{XY}(x, y)$,

$$\text{so } \iint_R f_{XY}(x, y) dx dy = 1.$$

In this situation, it is important to know (and be able to obtain) the pdf's of X and Y as CRV's in their own right. We can obtain these functions, the marginal probability density functions as follows:

For a, b let

$$R_X(a) := \{y : (a, y) \in \mathbb{R}\}.$$

$$R_Y(b) = \{x : (x, b) \in \mathbb{R}\}.$$

The marginal probability densities are:

$$f_X(x) = \int_{R_X(x)} f_{XY}(x, y) dy.$$

$$f_Y(y) = \int_{R_Y(y)} f_{XY}(x, y) dx.$$

using these, we can recover $E[X]$, $E[Y]$, $V(X)$, $V(Y)$ in the usual way.

Let's see what happens in our first ex.

$$0 \leq Y \leq X \leq 4, \quad f_{XY}(x,y) = \frac{x+y}{32}.$$

$$f_X(x) = \int_0^x \frac{x+y}{32} dy = \frac{1}{32} \left(xy + \frac{y^2}{2} \right) \Big|_0^x = \boxed{\frac{3}{64} x^2}$$

$$f_Y(y) = \int_y^4 \frac{x+y}{32} dx = \frac{1}{32} \left(\frac{x^2}{2} + xy \right) \Big|_y^4 = \frac{1}{32} \left(8 + 4y - \left(\frac{y^2}{2} + y^2 \right) \right) = \boxed{\frac{1}{32} \left(8 + 4y - \frac{3}{2} y^2 \right)}$$

Check: $\int_0^4 f_X(x) dx = 1, \quad \int_0^4 f_Y(y) dy = 1.$

Note: $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \iint_{-\infty}^{\infty} x f_{XY}(x,y) dx dy.$

and similarly for variance.

Independent Random Variables

Recall that two events A and B are independent if $P(A \cap B) = P(A)P(B)$.

This motivates a definition for CRV's as well:

Suppose that X and Y are CRV's, jointly distributed with joint prob. density function $f_{XY}(x,y)$. Then:

Def: X and Y are independent if

$$f'_{XY}(x,y) = f_X(x) f_Y(y).$$

Fact: If X and Y are independent,

then R is rectangular i.e. $R = R_1 \times R_2$

$$\text{and } 1 = \iint_R f_{XY}(x,y) dx dy = \iint_{R_1 \times R_2} f_{XY}(x,y) dx dy = \left(\int_{R_1} f_X(x) dx \right) \left(\int_{R_2} f_Y(y) dy \right)$$

For example, $0 \leq Y \leq X \leq 4$, $f_{XY}(x,y) = \frac{x+y}{32}$,

$$\frac{(x+y)}{32} \neq f_X(x) f_Y(y),$$

~~This is not~~ sufficient i.e. you can have rectangular domain and still be dependent. ~~✓~~

Covariance & Correlation

Let X and Y be two CRV's with joint probability density function $f_{XY}(x,y)$. If $h(x,y)$ is a function of X and Y , then the expected value of $h(x,y)$ is the average weighted by the

probabilities:

$$E(h(x, y)) = \iint h(x, y) f_{xy}(x, y) dx dy$$

The covariance of two CRV's gives us a way to measure/detect linear relationships. The covariance is

$$\sigma_{xy} = E[xy] - E[x]E[y].$$

Notice that if X and Y are independent, then

$$\begin{aligned} E[xy] &= \iint xy f_{xy}(x, y) dx dy = \iint xy f_x(x) f_y(y) dx dy \\ &= \left(\int x f_x(x) dx \right) \left(\int y f_y(y) dy \right) \\ &= E[x] E[y] \end{aligned}$$

and so $\sigma_{xy} = 0$.

However, $\sigma_{xy} = 0$ does not imply that X and Y are unrelated, just that any relation (that they may have) is non-linear.

Next time: Let X be the uniform RV on $[-1, 1]$ and $Y = X^2$. check: $\sigma_{xy} = 0$, but X and Y are not independent!