

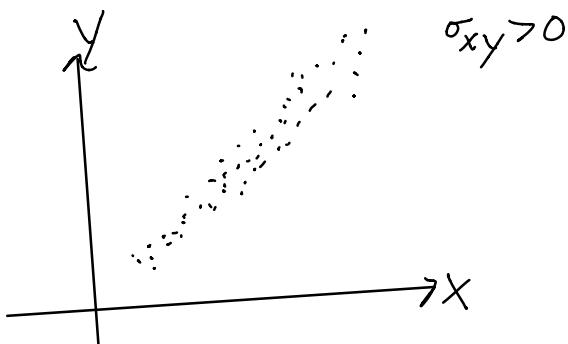
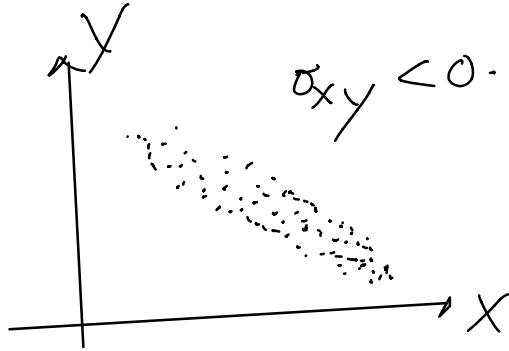
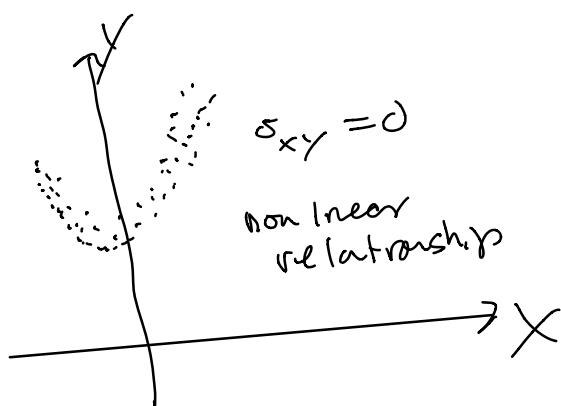
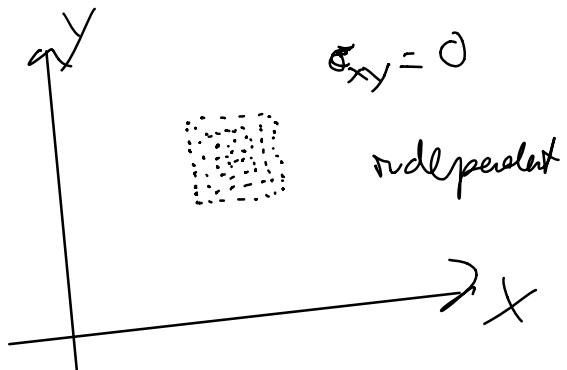
Lecture 15.

More on Covariance and Correlation

- Recall that Covariance is defined as

$$\text{cov}(x, y) = \sigma_{xy} = E[xy] - E[x]E[y].$$

- σ_{xy} measures linear relationship between X and Y .



- The correlation of X and Y also measures linear relationships between X and Y .
- Correlation may be easier to interpret.

Defn: Given CRV's X, Y , with distributions. Then, the correlation is defined to be

$$r_{xy} := \frac{\text{cov}(X, Y)}{V(X)V(Y)} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$

σ_x, σ_y standard dev. of X and Y

Exercise: Show that for all X, Y ,

$$-1 \leq r_{xy} \leq +1.$$

- If r_{xy} is close to $+1$, then the possible values of X and Y tend to be near a line with positive slope with high probability.
- If $r_{xy} = 1$, then $Y = aX + b$ for $a > 0$.
- If $r_{xy} = -1$ then $Y = -aX + b$ for $a > 0$.

Linear Functions of Random Variables

Let X_1, X_2, \dots, X_n be random variables.

For constants c_0, c_1, \dots, c_n

$$Y = c_0 + c_1 X_1 + c_2 X_2 + \dots + c_n X_n.$$

is a linear function of X_1, \dots, X_n , and Y is itself a random variable.

Fact: $E[Y] = c_0 + c_1 E[X_1] + \dots + c_n E[X_n]$.

we can verify this in the case of 2 RVS:

$$\begin{aligned} E[a + bX + cY] &:= \iint (a + bxy + cy) f_{xy}(x, y) dx dy \\ &= \iint a f_{xy}(x, y) dx dy + \iint bxy f_{xy} dx dy + \iint cy f_{xy} dx dy \\ &= a \underbrace{\iint f_{xy} dx dy}_{=1} + b \underbrace{\iint x f_{xy} dx dy}_{E[X]} + c \underbrace{\iint y f_{xy} dx dy}_{E[Y]} \\ &= a + bE[X] + cE[Y] \text{ as required.} \end{aligned}$$

In general, if $Y = c_0 + c_1 X_1 + \dots + c_n X_n$, then the variance is:

$$V(Y) = c_1^2 V(X_1) + c_2^2 V(X_2) + \dots + c_n^2 V(X_n) + 2 \sum_{i < j} c_i c_j \sigma_{X_i X_j}$$

Note: If $X_1, X_2, X_3, \dots, X_n$ are independent, then for any i, j , $\sigma_{X_i X_j} = 0$ and so

$$V(c_0 + c_1 X_1 + \dots + c_n X_n) = \sum_{i=1}^n c_i^2 V(X_i).$$

As a special case: if X_1, \dots, X_n are RV's, then

the average \bar{X}

$$\bar{X} = \frac{1}{n} (X_1 + X_2 + \dots + X_n).$$

If X_i are such that $E[X_i] = \mu_i$, then

$E[\bar{X}]$ is the average of the μ_i 's $\frac{\mu_1 + \dots + \mu_n}{n}$.

For X_1, \dots, X_n independent, $V(X_i) = \sigma_i^2$

$$V(\bar{X}) = \frac{1}{n^2} \sum_{i=1}^n \sigma_i^2$$

$$\text{So if } \sigma_i^2 = \sigma^2 \ \forall i, \quad V(\bar{X}) = \frac{\sigma^2}{n}$$

Reproductive Property of the Normal Distribution

Suppose that X_1, \dots, X_n are independent, normal RV's with $E[X_i] = \mu_i$ and $V(X_i) = \sigma_i^2$, then

$$Y = c_0 + c_1 X_1 + \dots + c_n X_n,$$

is again a normal RV with $E(Y) = c_0 + c_1 \mu_1 + c_2 \mu_2 + \dots + c_n \mu_n$ and $V(Y) = \sum_{i=1}^n c_i^2 \sigma_i^2$.

Special case: X_1, \dots, X_n are all $N(\mu, \sigma^2)$

Then $Y = X_1 + \dots + X_n = N(n\mu, n\sigma^2)$ and

$$\bar{X} = \frac{X_1 + \dots + X_n}{n} = N\left(\mu, \frac{\sigma^2}{n}\right).$$

This may be viewed as a special case of the Central

Limit Theorem: Let X_1, X_2, \dots be a sequence of RV's, independent, with the same distribution. Then

$$\frac{X_1 + X_2 + \dots + X_n - n\mu}{\sqrt{n}\sigma} \xrightarrow{n \rightarrow \infty} N(0, 1)$$

Example: Suppose that water bottles are filled to an average of 591 ml with $\sigma = 5$ mL. Suppose the volume of a bottles are independent normal RV's. Given 10 bottles, what is the prob. that the average volume is less than 581 ml?

Let X_i = the value of the i th bottle.

$$\text{So } X_i = N(591, \sigma^2 = 25).$$

$$\text{Let } \bar{X} = \frac{1}{10}(X_1 + \dots + X_{10}).$$

$$\text{Want } P(\bar{X} \leq 585). \text{ Note: } \bar{X} = N\left(591, \frac{\sigma^2}{10}\right) = N\left(591, \frac{25}{10}\right) = N(591, 2.5)$$

$$\begin{aligned} \text{So } P(\bar{X} \leq 585) &= P\left(Z < \frac{585 - 591}{\sqrt{2.5}}\right) \\ &= \Phi(-3.79) \left[\stackrel{\text{a}1\text{st}}{=} 1 - P(Z < +3.79) \right] \\ &= 0.000075. \end{aligned}$$