

Lecture 16

- Today we start Statistics (Chapter 6).
- Specifically we will start with descriptive statistics which consists of techniques for organizing and summarizing data in ways which facilitate its interpretation and analysis.
- we work with sets of real #'s which correspond to data i.e. measurements, observations...
↳ e.g. actual volumes of water bottles at a water factory.
- In real life, it is often impractical to study a complete data set.
↳ ex: it would be impractical to measure the precise volume of water in every bottle that came off the line.
- We aim to study samples i.e. some finite sets $\{x_1, \dots, x_n\}$ of real numbers chosen from a larger population.
- Goal: Given a sample $\{x_1, \dots, x_n\}$ infer info about the whole population, e.g. mean, variance, etc.
- Assumption: Given a sample $\{x_1, \dots, x_n\}$, we assume x_i is a value of a random var X_i , where the X_i

are independent with the same distribution

Terminology: The X_i are said to be iid (independent + identically distributed) [very common terminology].

What kinds of information can we extract from data?

measures of location

Given a sample $\{x_1, \dots, x_n\}$, we have:

Sample mean: $\bar{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n} = \frac{\sum_{i=1}^n x_i}{n}$

$$\hookrightarrow \text{ex: } \{2, 4, 3, 5\} \quad \bar{x} = \frac{2+4+3+5}{4} = 3.5.$$

Sample median: - The "middle" value of your sample when the sample is arranged by size.

- If the sample has even size, the median is the average of the two middle values.

Ex: $\{1, 2, 3, \underbrace{4, 5, 6, 7}\}$ has median 4.

$\{1, 2, 3, \underbrace{4, 5, 6, 7, 8}\}$ has median $\frac{4+5}{2} = 4.5$

- mode: The number(s) which appears most often.
⚠ Warning! the mode is not unique!!

Ex: $\{1, 3, 1, 2, 1, 5\}$ has mode 1
since it appears 3 times.

- $\{2, 3, 2, 3, 2, 3, 5\}$
 ↳ has mode $\{2, 3\}$.

- $\{1, 2, 3, 4, 5\}$
 ↳ has mode $\{1, 2, 3, 4, 5\}$
 (since every # appears exactly once)

Measures of Variation

Given $\{x_1, \dots, x_n\}$ a sample,

Sample variance: $S^2 := \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$

Note that the denominator is $n-1$, not n .
 This is due to a phenomenon called "estimator bias".

- S^2 is often tedious to compute, though there is a

shortcut:

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i^2 + \bar{x}^2 - 2\bar{x}x_i) \\ = \frac{1}{n-1} \left(\sum_{i=1}^n x_i^2 + n\bar{x}^2 - \underbrace{2\bar{x} \sum_{i=1}^n x_i}_{-n\bar{x}^2} \right).$$

$$S^2 = \frac{1}{n-1} \left(\sum_{i=1}^n x_i^2 - n\bar{x}^2 \right)$$

shortcut!!

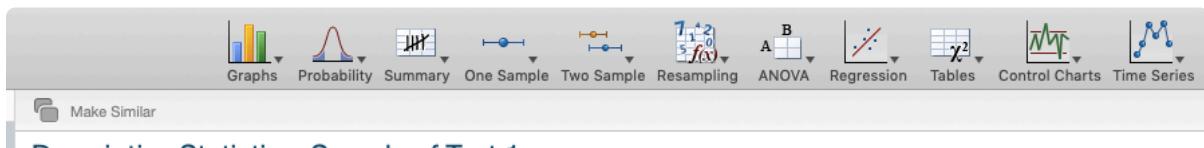
The sample standard deviation is $\sqrt{S^2} = S$.

We also have the range:

$$\text{sample range} = \max_i \{x_i\} - \min_i \{x_i\}$$

which is a very rough measure of spread.

Example: Here is a sample of data from problem #1
We use Minitab to quickly give a description of the data



Descriptive Statistics: Sample of Test 1 scores

Statistics

$$\sqrt{6^2}$$

Variable	N	N*	Mean	SD	StDev	Minimum	Q1	Median	Q3	Maximum
Sample of Test 1 scores	20	0	75.000	3.610	14.808	33.330	66.670	75.000	88.890	94.440

$$\text{range} = 94.440 - 33.33 = 61.11$$

$$\text{mode} = 88.89.$$

Stem and Leaf Plots

Stem and leaf plots give a way to visualize data sets that aren't too big, and such that for each $x_i \in \{x_1, \dots, x_n\}$, x_i consists of two or more digits. To construct a stem-and-leaf diagram, follow the following steps:

- 1) divide each number x_i into two parts:
 - a stem consisting of one or more of the leading digits.
 - a leaf; consisting of the remaining digits.
- 2) list the stem values in a vertical column.
- 3) record the leaf for each observation beside its stem.
- 4) write units for stems & leaves.

Ex: Suppose our data set B

$$\{9.10, 9.20, 9.30, 10.40, 10.20, 9.10, 8.60, 8.00\}.$$

Then our stem-and-leaf diagram becomes.

stem	leafs.
8	00, 60
9	10, 10, 20, 30
10	20, 40

We can also use `matplotlib` to construct stem & leaf plots. Here is one generated by the last `data` cell after running:

Graphs Probability Summary One Sample Two Sample Resampling ANOVA Regression Tables Control Charts Time Series

Make Similar

Stem-and-Leaf Display: Sample of Test 1 scores rounded

Stem-and-leaf of Sample of Test 1 scores rounded, N = 20
Leaf Unit = 1

	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12
	Sample of Test 1 scores rounded											
1	89											
2	94											
3	89											
4	89											
5	78											
6	61											
7	72											
8	72											
9	78											
10	67											
11	67											
12	89											
13	56											
14	72											
15	67											
16	78											
17	33											
18	94											
19	83											
20	72											

↑↑ ← leaves = 1s
count stem = 10's

The "count" column in the stem-and-leaf display indicates the median with a parenthesis (7). The counts are cumulative above and below the median, so, for example, there is 1 value starting with a 3, 1 value starting with 3089, 2 values starting with 3, 4, or 5, etc. Then 7 values starting with 8 or 9, 2 values starting with 9.

we can also refine our stem-and leaf plots
by dividing stems. For example

stem	leaf	(u = upper l = lower)
8 L	00,	
8 u	6 0,	
9 L	1 0, 1 0	
9 u	2 0, 3 0	
1 0 L	2 0	
1 0 u	4 0	