

Feature 17.

Recall that given a set of data points $\{x_1, \dots, x_n\}$ where each x_i has at least two digits, we can construct a stem and leaf plot to visualize the data.

Ex: (from last time)

Some useful information we can just read off of a stem and leaf diagram is the quartiles and percentiles:

- 1st quartile is the number, q_1 , such that 25% of the data is $\begin{cases} \text{less than } q_1 \\ \text{or equal to } q_1 \end{cases}$ (than q_1).
- 2nd quartile, q_2 , is the number such that 50% of the data is less than q_2 . (q_2 is also called **MEDIAN!**).
- 3rd quartile, q_3 , is the number such that 75% of the data is less or equal to q_3 .

More generally, the n^{th} percentile is the number such that $n\%$ of the data lies below.

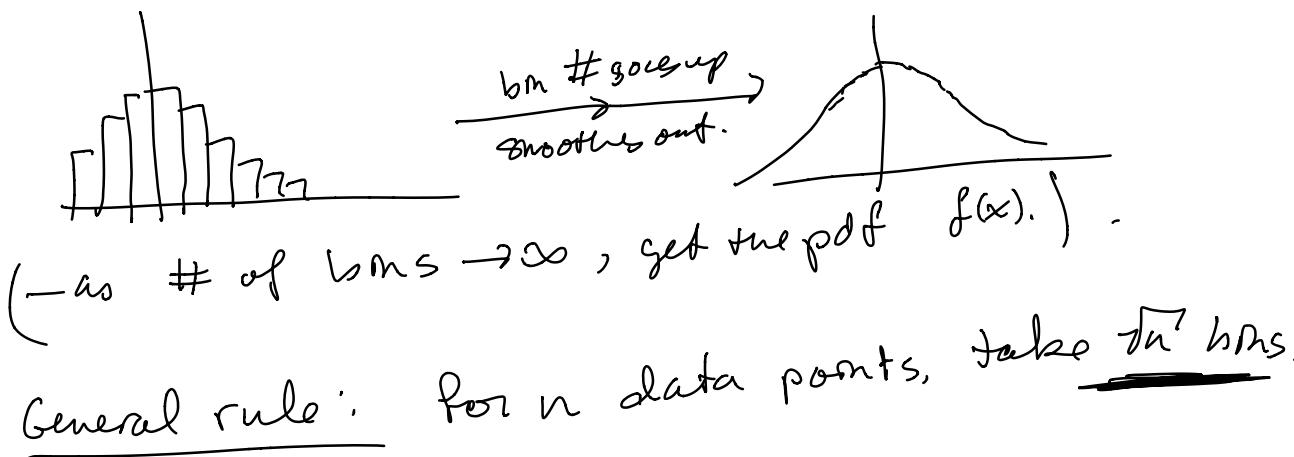
Defn The interquartile range is

$$\text{IQR} = q_3 - q_1.$$

It is usually a better measure of spread than range.

Frequency Distributions and Histograms

- Frequency distributions give a compact way of visualizing data.
- divide data into bins / class intervals / cells.
- how many bins?
 - too many, loose shape
 - too few, lose detail.



Industrial Building Permits Issued in Hamilton by Year	
YEAR	PERMITS ISSUED
1 1998	86
2 1999	90
3 2000	73 * min
4 2001	170
5 2002	128
6 2003	140
7 2004	112
8 2005	122
9 2006	188
10 2007	158
11 2008	142
12 2009	172
13 2010	157
14 2011	213 * max
15 2012	146
16 2013	178
17 2014	183
18 2015	183
19 2016	172
20 2017	193

- 20 data points.

- $\sqrt{20} \approx 4.47 \rightarrow 5$ bins

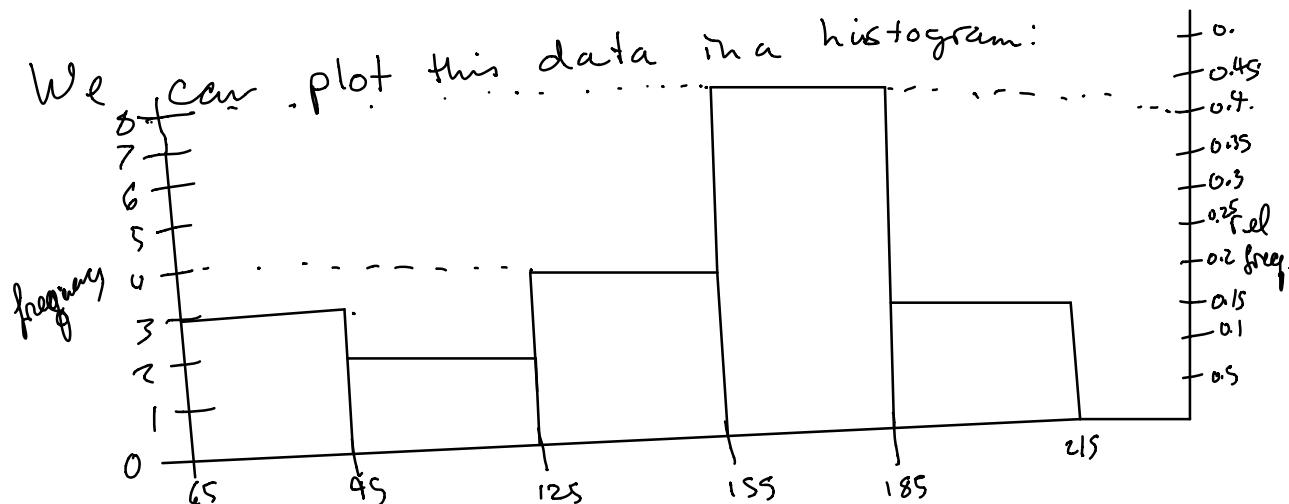
$$\text{Range of data} = \frac{213 - 73}{140} = 140.$$

$$140/5 = \frac{28}{\text{bin width}} \approx 30$$

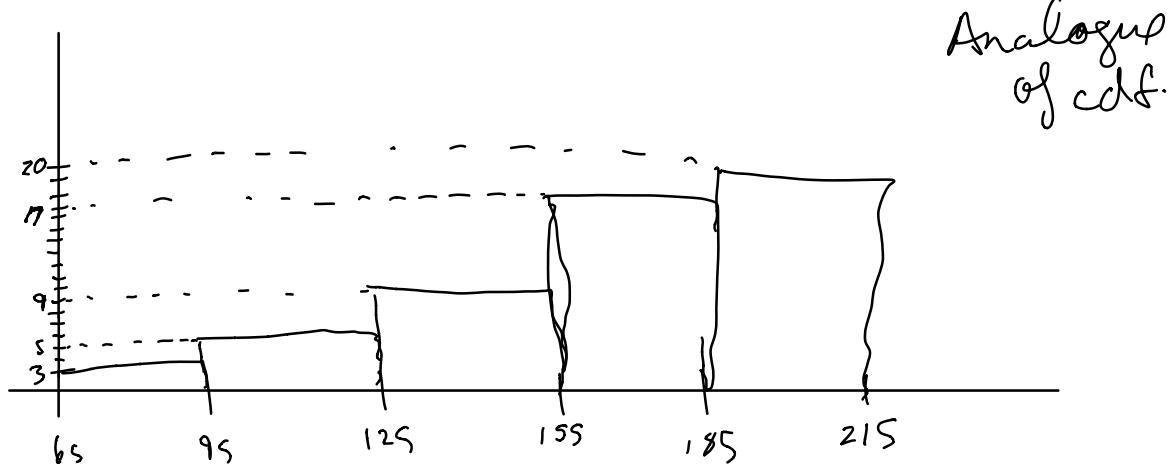
A frequency distribution for this data is:

Bins	$65 \leq x < 95$	$95 \leq x < 125$	$125 \leq x < 155$	$155 \leq x < 185$	$185 \leq x \leq 215$
Frequency f	3	2	4	8	3
Relative Frequency $= f/20$	$\frac{3}{20} = 0.15$	$\frac{2}{20} = 0.1$	$\frac{4}{20} = 0.2$	$\frac{8}{20} = 0.4$	$\frac{3}{20} = 0.15$
Cumulative Frequency	3	5	9	17	20

We can plot this data in a histogram:

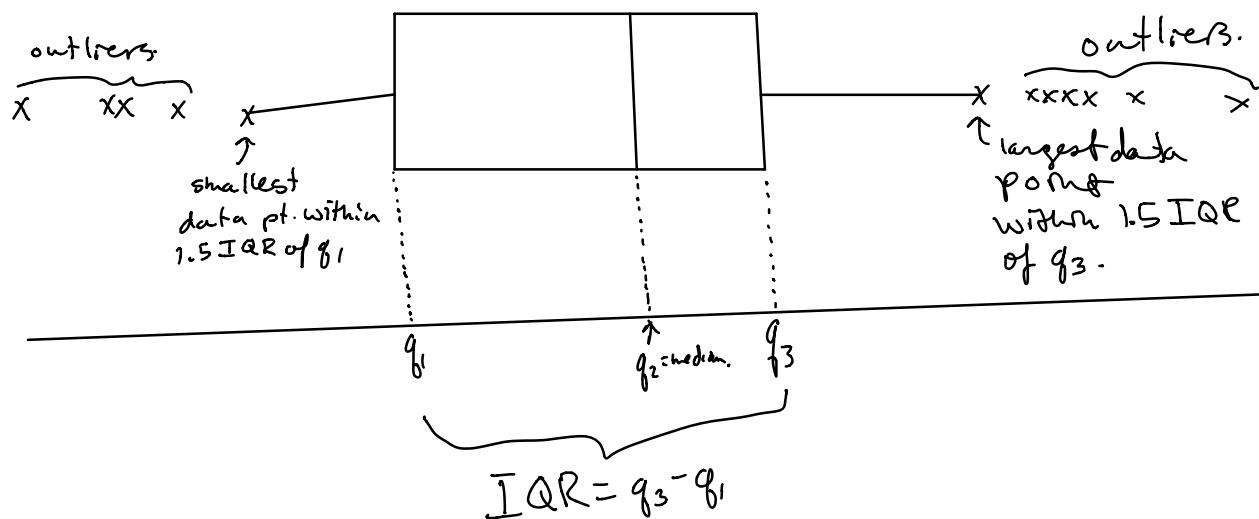


Can also plot cumulative frequency:



Box plots (Box-and-whisker plots).

- Combines many pieces of data into a single diagram:



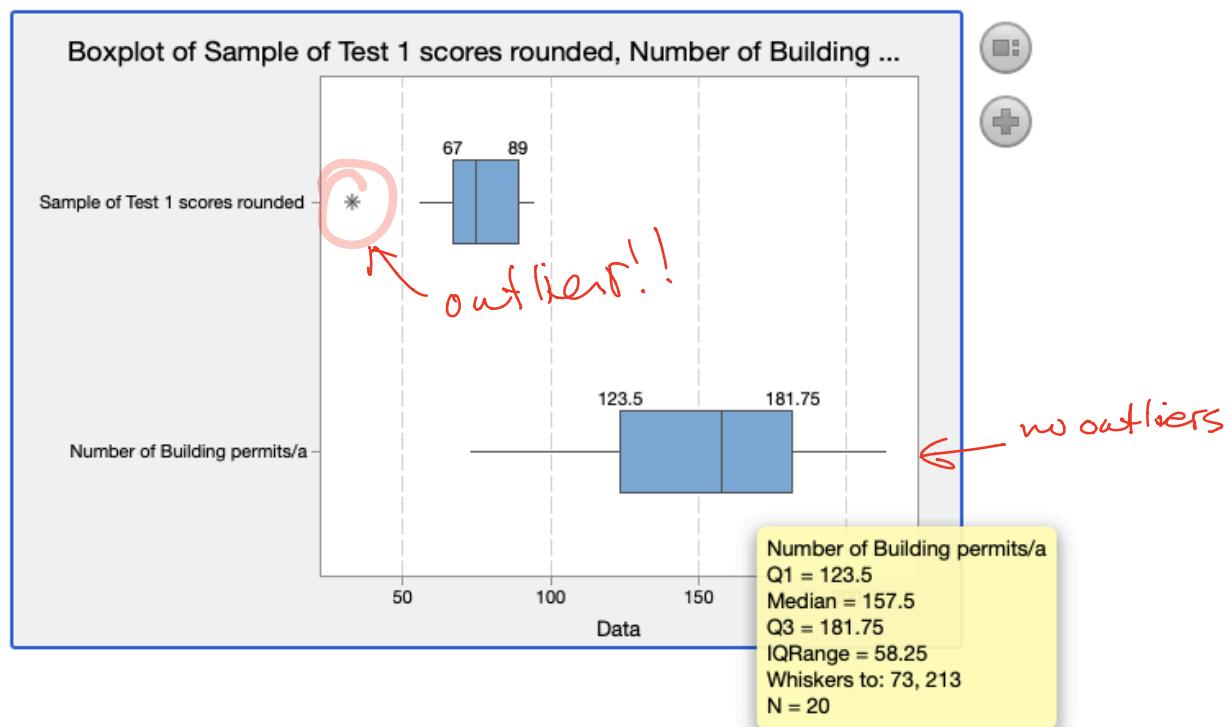
An outlier is anything greater than 1.5 IQR away from the box ends.

An extreme outlier is anything $3 \cdot \text{IQR}$ from box ends

Can compare data sets with sd by side box plots.

Ex:

Boxplot of Sample of Test 1 scores rounded, Number of Building permits/a



Summary Statistics

Variable	N	Minimum	Q1	Median	Q3	Maximum	95% Median CI
Sample of Test 1 scores rounded	20	33.000	67.000	75.000	89.000	94.000	(68.176, 87.589)
Number of Building permits/a	20	73.000	123.500	157.500	181.750	213.000	(130.823, 176.589)