

Lecture 18

Probability Plots.

- Imagine we have some sample $\{x_1, \dots, x_n\}$. (from some larger population)
- We may want to assume the data/population is distributed in a particular way.
 - ↳ How can we know if this is a reasonable assumption? e.g. given some data, can we assume a normal distribution?
- Assumption more formally: we assume that the population consists of values of a random var X with cdf $F(x)$.
- we use a probability plot to test this assumption.
- Minitab (Graphs > probability plot ...)

Step 1: Order the sample in increasing order and rename:

$$\{x_1, \dots, x_n\} \longrightarrow x_{(1)} \leq x_{(2)} \leq \dots \leq x_{(n)}$$

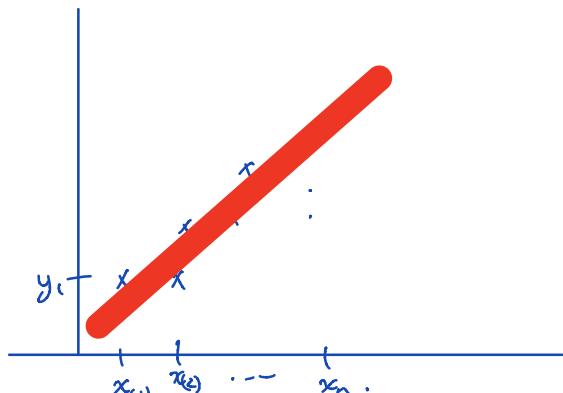
$x_{(1)}$ is the smallest, $x_{(n)}$ is largest.

Now/Idea! Want $x_{(i)} \sim 100\left(\frac{i}{n}\right)^{\text{th}}$ percentile.

↳ e.g.: if $\{x_{(1)} \leq \dots \leq x_{(n)}\}$ is our sample, then we want $x_{(5)} \sim \text{median.}$

Step 2: Find some points y_i such that $P(X \leq y_i) = F(y_i) = \frac{i-0.5}{n}$ correction factor

Step 3: Plot $(x_{(i)}, y_i)$.



Step 4: Draw a line of best fit.

Conclusion: Are all the points on or very near the line?

→ yes: your assumption is good.
i.e. the distribution of X is a good/ reasonable fit to the data.

→ no: not so good.

most of the time we will be concerned with the normal distribution.

↳ here, $F(x) = \underline{\Phi}(x)$.

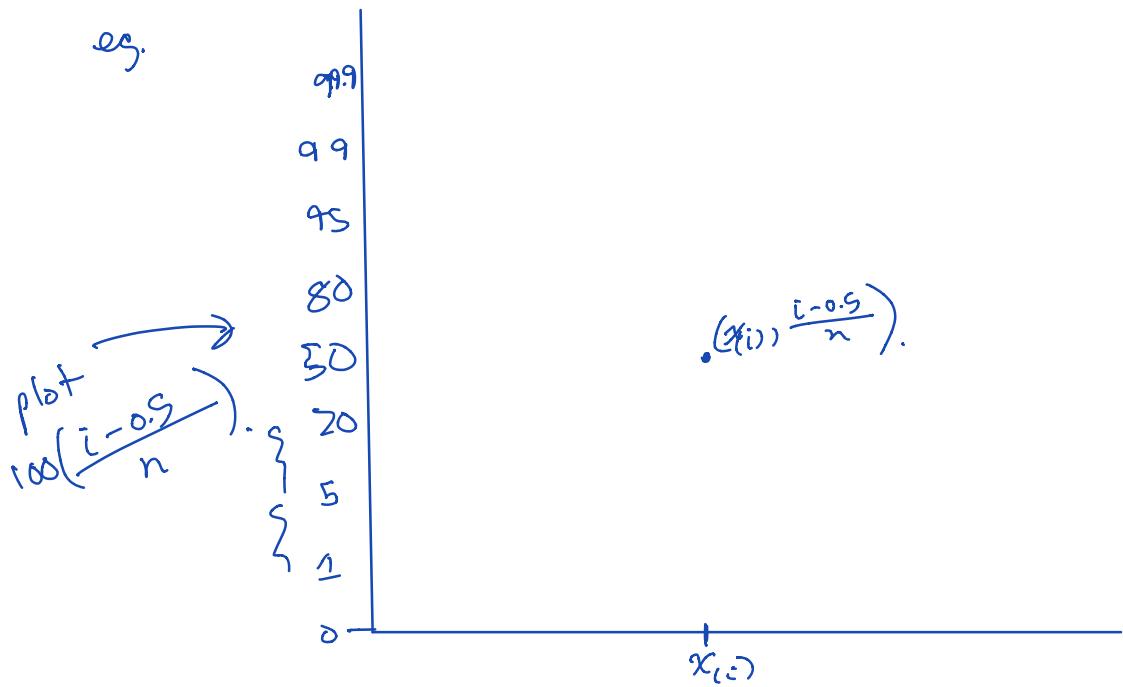
↳ to find y_i 's, use Z-score tables.

↳ want y_i s.t.

$$\underline{\Phi}(y_i) = \frac{i-0.5}{n}$$

Remark: Sometimes prob plots are done on particular graphing paper

e.g.



Chapter 7. Points of Parameters.

Recall: the general goal of statistics/statistical inference is to make predictions/draw conclusions about populations, especially based on limited data.

- a major component of statistical inference is called parameter estimation.

Ex: maybe you have some data set and you want to estimate the mean or variance.

In general, a parameter (usually denoted by a lowercase θ) is any numerical property/feature of the data being studied.

- Recall that we assume a sample $\{x_1, \dots, x_n\}$ is a particular instance of independent and identically distributed random variables $\{X_1, \dots, X_n\}$.
- A statistic is any function of random variables.

Ex. - $\bar{X} = \frac{1}{n} (x_1 + \dots + x_n)$ ← sample mean
- S^2
- S

- Given a particular parameter, θ , an estimator for θ is a statistic $\hat{\theta}$

$$\hat{\Theta} = h(X_1, \dots, X_n)$$

↑ capital theta w/ hat

used to estimate Θ .

↳ e.g. \bar{X} is a estimator for μ .
 ↗ parameters
 ↗ statistic.

- If $\hat{\Theta} = h(X_1, \dots, X_n)$ is an estimator for Θ , then a particular value $h(x_1, \dots, x_n) = \hat{\Theta}$ is a point estimate for Θ .

Descriptive Statistics: Sample

Statistics

Variable	N	N*	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
Sample	20	0	82.500	2.620	11.718	55.560	73.610	86.110	88.890	100.000

	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C
Test 1 Scores	72.22	77.78											
1	61.11	55.56											
2	66.67	88.89											
3	83.33	83.33											
4	83.33	94.44											
5	94.44	66.67											
6	88.89	94.44											
7	88.89	88.89											
8	61.11	66.67											
9	66.67	77.78											
10	55.56	88.89											
11	83.33	100.00											
12	94.44	83.33											
13	72.22	83.33											
14	77.78	88.89											
15	38.89	88.89											
16	83.33	88.89											
17	61.11	72.22											
18	100.00												
19	83.33												
20													
21													
22													

Ex: The mean for test 1 was $\bar{x} = 79.15$.

Taking a sample of size 20.

$$\bar{x} = 82.5 \approx 79.15$$

point estimate for μ .

Similarly: the sample variance

$$\hat{s}^2 = s^2 \text{ is an estimator for } \sigma^2.$$

Sample Distributions & Central Limit Theorem

- Recall that a statistic is a function of random variables, $h(X_1, \dots, X_n)$

- So a statistic is itself a random variable.

↳ therefore, each statistic has a prob. distrib.

↳ such distributions are called
sampling distributions.

↳ e.g. $\bar{X} = \frac{1}{n}(X_1 + \dots + X_n)$ ← sampling distribution
of the mean (μ)

- S^2 is the sample distribution of σ^2 .

Next: Central Limit theorem.