

Lecture 19.

From last time:

- A statistic h any function of a random variable
- A statistic $h(X_1, \dots, X_n)$ is itself a random variable, and so has some probability distribution.
- Such a distribution is called a sampling distribution.
Ex: $\bar{X} = \frac{1}{n}(X_1 + \dots + X_n)$
is a sampling distribution for the mean of X .
- A sampling distribution for a RV X depends on the sample size, sample method, distribution of X and other factors.

However, we have the following useful fact:

Central Limit Theorem: Suppose X_1, \dots, X_n is a random sample taken from a population

distributed with mean μ and variance σ^2 (i.e. X_1, \dots, X_n are indep. identically distributed). Then,

if $\bar{X}_n = \frac{1}{n}(X_1 + \dots + X_n)$, we have

$$\lim_{n \rightarrow \infty} \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} = \underbrace{N(0, 1)}_{\text{standard normal.}}$$

This is statistically very useful, since it implies that for any random variable X with mean μ and variance σ^2 , the sampling distribution

$$\bar{X} = \frac{1}{n}(X_1 + \dots + X_n)$$

can be approximated by the normal random variable $N(\mu, \sigma^2/n)$.

In practice taking $n \geq 30$ is often (not always) enough to see the effects of the central limit theorem.

For example: If we roll a fair die

and set $X = \text{the value of the roll}$,

then X is a ^{uniform} discrete RV with $\mu = E[X] = 3.5$ and $\sigma^2 \approx 2.9/67$.

If we roll, say 30 dice, and set \bar{X} to be the average of the rolls then \bar{X} is still a discrete random variable, but it is well approximated by the continuous normal random variable $N(3.5, \frac{\sigma^2}{30}) = N(3.5, 0.972)$.

- whether the central limit theorem applies for small n depends on the original distribution of X . If X has a symmetric, unimodal distribution, then \bar{X} can be approximated by a normal distribution with as few as 4 or 5 samples.

Ex: An electronic company manufactures resistors that have a mean resistance of 100Ω and a standard deviation of 10Ω . If the resistance is normally distributed, what is the probability that a sample of 25 has an average resistance of ≤ 95 ?

Solution: \bar{X} , the sampling distribution of the mean is normally distributed with mean $\mu = 100$ and standard deviation $\sigma = \frac{10}{\sqrt{25}} = \frac{10}{5} = 2$. Thus, we want to find

$$\begin{aligned}
 P(X < 95) &= P\left(Z < \frac{95-100}{2}\right) \\
 &= P(Z < -2.5) = \underline{\Phi}(-2.5) \\
 &\approx 0.0062
 \end{aligned}$$

Remark: In practical application, this means that a random sample of resistors with mean resistance less than 95 is rare. If you did find a sample with mean resistance < 25, you should doubt whether the mean and std.dev. is actually 100 and 10.

General Concepts of Point Estimation

(7.3.1) Unbiased Estimators.

- Recall that a parameter θ is some numerical feature/property of a population/data set.
- An estimator $\hat{\theta}$ for θ is a statistic (function of a random sample) used to estimate θ .

Defn: We define the bias of an estimator $\hat{\theta}$ to be the quantity

$$E(\hat{\theta}) - \theta.$$

We say that $\hat{\theta}$ is an unbiased estimator.

if $E(\hat{\theta}) - \theta = 0$. (so $E(\hat{\theta}) = \theta$.)

Ex: Suppose X_1, \dots, X_n is a random sample from a population represented by a random variable X , with mean μ and variance σ^2 .

We know that

$$\begin{aligned} E[X_1 + \dots + X_n] &= E[X_1] + \dots + E[X_n] \\ &= \mu + \dots + \mu = n\mu. \end{aligned}$$

Here $E[\bar{X}] = E\left[\frac{1}{n}(X_1 + \dots + X_n)\right] = \frac{1}{n}(n\mu) = \mu$.

and so \bar{X} is an unbiased estimator of μ .

Claim: The sample variance S^2 is an unbiased estimator for the variance, σ^2 . Why?

$$\begin{aligned} E(S^2) &= E\left[\frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}\right] = E\left[\frac{\sum_{i=1}^n X_i^2 - n\bar{X}^2}{n-1}\right] \\ &= \frac{1}{n-1} \left(\sum_{i=1}^n E[X_i^2] - n E[\bar{X}^2] \right) \quad \text{shortcut for } S^2. \end{aligned}$$

Now, $E[X_i^2] = \mu^2 + \sigma^2$ and $E[\bar{X}^2] = \mu^2 + \frac{\sigma^2}{n}$
 (since $\text{Var}(X_i) = E[X_i^2] - \underbrace{E[X_i]^2}_{=\mu^2}$) (similarly)

and so we have

$$\begin{aligned} E(S^2) &= \frac{1}{n-1} \left(\sum_{i=1}^n (\bar{x}_i^2 + \sigma^2) - n \left(\bar{x}^2 + \frac{\sigma^2}{n} \right) \right) \\ &= \frac{1}{n-1} \left(n(\bar{x}^2 + \sigma^2) - n\bar{x}^2 - n\frac{\sigma^2}{n} \right) \\ &= \frac{1}{n-1} \left(n\bar{x}^2 + n\sigma^2 - n\bar{x}^2 - n\frac{\sigma^2}{n} \right) = \\ &= \frac{1}{n-1} (n-1)\sigma^2 = \sigma^2. \end{aligned}$$

Note, however, that although S^2 is an unbiased estimator for σ^2 , S is not an unbiased estimator for σ .

↳ Fortunately, as the sample size grows $E(S) - \sigma$ gets smaller and so somehow we can use S as a good estimator of σ (next chapter).