

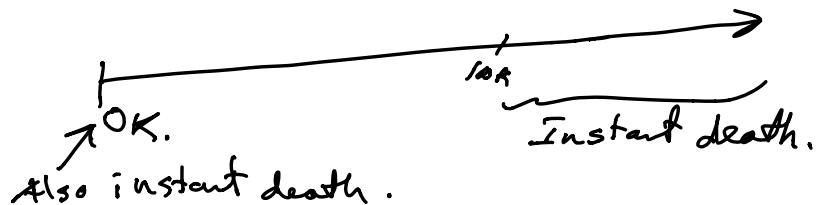
Stats 3Y03/3J04 - Lecture #1

- This course will be an introduction to statistics and probability.
- Statistics is the science of collecting and analysing data, and of inferring information from that data, esp. when the information is incomplete.
- Probability is the mathematics of random events.

Probability Theory (2.1)

- An experiment is/can be anything that produces data.
- A random experiment is an experiment which can produce different outcomes even though it is performed in the same way.

Ex:1: The experiment is "flip a coin". The outcome is the heads or tails.

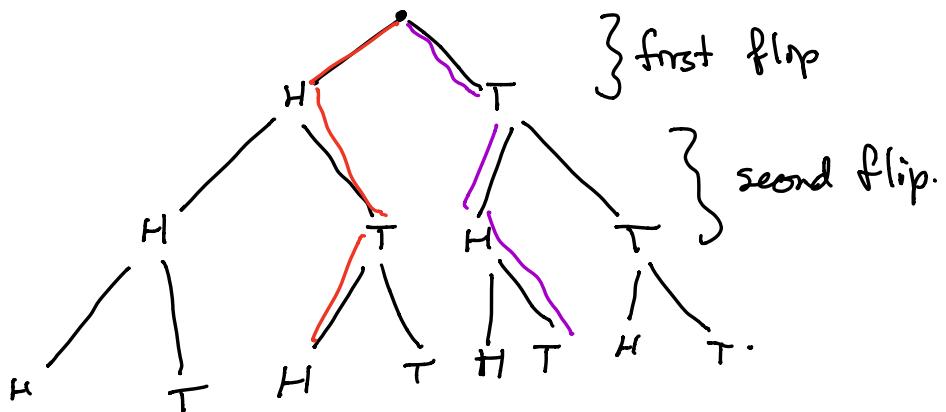

Ex: The experiment B "Take the temperature": you stick your head out the window and read the thermometer.

Def: A sample space, S , is the set of all outcomes of an experiment.

A sample space can be discrete (i.e. finite, countably infinite) or continuous (contains an interval of \mathbb{R}).

Ex: - For the coin tossing experiment, the sample space is $S = \{H, T\}$, so it is discrete.

- For the temperature taking experiment, the sample space is $S = \{x \geq 0 \text{ (Kelvin)}\} \subseteq \mathbb{R}$, so it is a continuous random variable.



— Rolling a six-sided die:

$$S = \{1, 2, 3, 4, 5, 6\}.$$

— For diabetes, blood glucose level,
 $S = \{x \geq 0\} \text{ mg/—}$.

Tree diagrams Sometimes we can represent sample spaces as trees! Suppose our experiment B "flip a coin three times in succession. Then the sample space B given by paths through a tree

Each outcome is determined by the last node, so there are 8 possible outcomes.

Some times we are interested in a collection of related outcomes. For example, in the last situation we may be only interested in the outcomes that have two or more heads.

Such a subset B called an event.

Defn: An event is a subset of a sample space of a random experiment.

New events can be constructed from other events as follows:

① Unions: If E_1 and E_2 are events, then

$$E_1 \cup E_2 = \{x : x \in E_1 \text{ or } x \in E_2\} \text{ is an event}$$

② Intersections: If E_1, E_2 are events then

$$E_1 \cap E_2 = \{x : x \in E_1 \text{ and } x \in E_2\} \text{ is an event.}$$

③ Complement: If $E \subseteq S$ is an event, then the complement $E' = \{x \in S : x \notin E\}$ is an event.
not in

NB: Sometimes people write E^c instead of E' .

Note: $E \cup E' = S$ and $S' = \emptyset \leftarrow$ empty set.
the whole sample space.