

Lecture 20

Recall:

- An estimator $\hat{\theta}$ for θ is unbiased if $E[\hat{\theta}] = \theta$.
- we saw that the sample mean, \bar{X} is an unbiased estimator of the mean.
- However, \bar{X} is not the only unbiased estimator of the mean.
- For example: the following are unbiased estimators for μ :
 - the median of a random sample
 - the 10% trimmed mean:
$$\bar{X}_{tr(10)} = \text{the average not including the top 10% and bottom 10% of the data.}$$
- How do we decide what estimator to use?
- Since an estimator $\hat{\theta}$ is a RV, the variance

is a measure of how spread out the sampling distribution of $\hat{\theta}$ is.

- Therefore, if $\hat{\theta}_1$ and $\hat{\theta}_2$ are two ^{unbiased} estimators for θ , and $V(\hat{\theta}_1) \leq V(\hat{\theta}_2)$, then point estimate of θ by $\hat{\theta}_1$ will, on average, be more likely to be close to θ , than point estimate for θ via $\hat{\theta}_2$.
- This suggests a common method for choosing an estimator: minimize the variance.

Defn: Let θ be a parameter. Of all estimators for θ , the unbiased estimator $\hat{\theta}$ with minimal variance is called the Minimum Variance Unbiased Estimator (MVUE).

Example: If X is a RV with mean μ and variance σ^2 , and $\{X_1, \dots, X_n\}$ is a random sample of X , then X_1 and \bar{X} are both unbiased estimators for μ , but $V(X_1) = \sigma^2$ and $V(\bar{X}) = \frac{\sigma^2}{n}$.

- There are general techniques for determining MVUE's for parameters but these are beyond the scope of the course.

- One important fact:

Suppose that X_1, \dots, X_n is a random sample from a normal distribution with mean μ and variance σ^2 . Then \bar{X} is the MLE for μ .

- Another way we can choose good estimators is by minimizing error.
- Error is a measure of how precise an estimator is.
- Given an estimator $\hat{\theta}$, the standard error of $\hat{\theta}$ is $\sqrt{V(\hat{\theta})} = \sigma_{\hat{\theta}}$.
- One issue with this is that the standard error may contain unknown parameters.
 - if these parameters can be estimated, we can substitute them in to get the estimated standard error, denoted by $S_{\hat{\theta}}$, $SE(\hat{\theta})$, or $\hat{\sigma}_{\hat{\theta}}$

Ex: Suppose that we are sampling $N(\mu, \sigma^2) = X$ with a sample size n . The sample mean \bar{X} is an unbiased estimator of μ , and \bar{X} is again normal with mean μ and variance σ^2/n . Therefore, the standard error of \bar{X} is

$$\sigma_{\bar{X}} = \sqrt{V(\bar{X})} = \frac{\sigma}{\sqrt{n}}$$

Now, if σ is also an unknown parameter we can substitute an estimator for σ to get the/a estimated standard error of \bar{X} ,

$$\hat{\sigma}_{\bar{X}} = \frac{S}{\sqrt{n}} \quad (\text{if } S \text{ is an estimator for } \sigma)$$

Biased Estimators

- Sometimes, we have no choice but to a biased estimator (for ex: often use S as an estimator for σ).
- when using biased estimators, it is often useful to consider the mean square error (MSE).
- If $\hat{\theta}$ is an estimator for θ then we define :

$$\text{MSE}(\hat{\theta}) := E[(\hat{\theta} - \theta)^2]$$

second moment of $\hat{\theta} - \theta$.

Note that we can write.

$$\begin{aligned}
 \text{MSE}(\hat{\theta}) &= E[(\hat{\theta} - E[\hat{\theta}])^2] + (E[\hat{\theta}] - \theta)^2 \\
 &= V(\hat{\theta}) + (-(E[\hat{\theta}] - \theta))^2 \\
 &= V(\hat{\theta}) + \underbrace{(E[\hat{\theta}] - \theta)^2}_{\text{bias}}
 \end{aligned}$$

Notice that this generalizes the (square of) the standard error in the case of unbiased estimators, since if $E[\hat{\theta}] - \theta = 0$, then

$$\text{MSE}(\hat{\theta}) = V(\hat{\theta}) = \sigma_{\hat{\theta}}^2.$$

The MSE gives a good way of comparing two estimators.

If θ is a parameter and $\hat{\theta}_1$ and $\hat{\theta}_2$ are estimators, then the relative efficiency of $\hat{\theta}_2$ to $\hat{\theta}_1$, is defined to be

$$\frac{\text{MSE}(\hat{\theta}_1)}{\text{MSE}(\hat{\theta}_2)}.$$

If the rel. efficiency $\beta < 1$ we say that $\hat{\theta}_1$ is a more efficient estimator of θ than $\hat{\theta}_2$, in the sense that it has smaller MSE.

An estimator $\hat{\theta}$ for θ such that

$$\frac{\text{MSE}(\hat{\theta})}{\text{MSE}(\theta')} < 1$$

for any θ -estimator $\theta' \neq \hat{\theta}$ is called optimal,
but such estimators rarely exist.