

Lecture 21.

Remark: 7.4 in the textbook will not be covered. However, I encourage you to read the material, as it is useful.

[Chapter 8] - Statistical intervals for a single sample.

Confidence Intervals

- Suppose we have an estimator $\hat{\theta}$ for some parameter θ .
- Given a sample $\{x_1, \dots, x_n\}$, $\hat{\theta}(x_1, \dots, x_n) = \hat{\theta}$ is a point estimate of θ .
- We want to know how close $\hat{\theta}$ is to θ .
↳ at the very least we could sample repeatedly and try to find an interval where $\hat{\theta}$ is likely to take values.

Defn: A $100(1-\alpha)\%$ Confidence interval (CI) for θ is an interval $[L(x_1, \dots, x_n), U(x_1, \dots, x_n)]$ such that $P(L(x_1, \dots, x_n) \leq \theta \leq U(x_1, \dots, x_n)) = 1-\alpha$.

L for "lower"
 U for "upper"

The term $1-\alpha$ is called the "confidence coefficient"

- usually we want 90% ($\alpha=0.1$), 95% ($\alpha=0.05$), 99% ($\alpha=0.01$).

- Note that the upper and lower confidence limits, $U(x_1, \dots, x_n)$ and $L(x_1, \dots, x_n)$ are statistics of a random sample and therefore finding a CI depends heavily on the distribution of the population and known information.

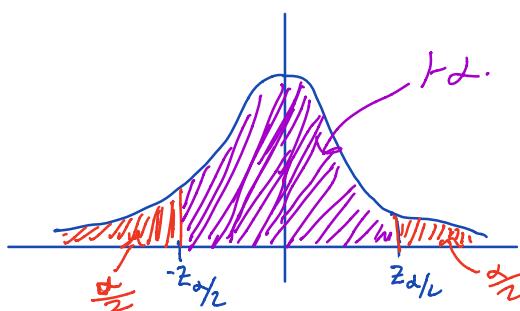
Confidence Interval on the mean of a normal distribution with known variance

- In this section, we assume that we are sampling a normally distributed population with known variance σ^2 .
- Though it is somewhat unrealistic to assume that the variance is known, it will illustrate the basic ideas.
- Let \bar{X} be our sample mean; we want to estimate μ .
- Since we are sampling a normal, $\bar{X} \sim N(\mu, \sigma^2/n)$.
- we want to find a confidence interval (L, U) which is symmetric about \bar{X} .
- Standardizing \bar{X} to $Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}}$ we find a value $z_{\alpha/2}$ (depends on α) such that

$$P\left(-z_{\alpha/2} \leq \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \leq z_{\alpha/2}\right) = 1 - \alpha$$

* Find $z_{\alpha/2}$

In the Z-score tables!



- manipulating this expression:

$$P\left(\underbrace{\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}}_{L(\bar{X})} \leq \mu \leq \underbrace{\bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}}_{U(\bar{X})}\right) = 1 - \alpha.$$

- The interval $[L(\bar{X}), U(\bar{X})] = [\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}]$ is a random interval, since the endpoints involve the random variable \bar{X} .
- for a point estimate $\bar{X} = \bar{x}$, the $100(1-\alpha)\%$ confidence interval for μ is then $[\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}]$.

- The value $|Z_{\alpha/2} \text{ (from)}|$ is called the margin of error (E).
- The length of the interval, $2|Z_{\alpha/2} \text{ (from)}|$ is the precision (2E).

Ex: Find the 95% confidence interval for the mean of a normal distribution with $\sigma = 60$ and sample size 36.

$$\text{Solve } 100(1-\alpha) = 95 \rightarrow 1-\alpha = 0.95 \rightarrow \alpha = 0.05$$

Now, $Z_{\alpha/2}$ is by definition the value such that

$$P(Z \leq Z_{\alpha/2}) = 1 - \frac{\alpha}{2} = 1 - 0.025 = 0.975$$

↗

$$Z\text{-table} \rightarrow Z_{\alpha/2} = 1.96$$

Therefore, the margin of error (E) is

$$E = Z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right) = 1.96 \left(\frac{60}{\sqrt{36}} \right) = 1.96 \left(\frac{60}{6} \right) = 19.6$$

So, given a sample mean \bar{x} , the $\overset{100(1-\alpha)\%}{\text{CI}}$ for that estimate is

$$\text{B} \quad \bar{x} \pm 19.6.$$

Choosing Sample Size:

- when estimating parameters we would like to be as precise as possible
- this means that we want to make the margin of error (E) as small as possible.

Fact: Suppose that we are sampling a normal distribution with known variance σ^2 . If we are approximating μ with \bar{X} , then our margin of error will be at most E so long as we take our sample to be of size

$$n = \left\lceil \left(\frac{Z_{\alpha/2} \sigma}{E} \right)^2 \right\rceil = \text{ceiling function}$$

i.e. next largest integer.

Ex: Suppose we are sampling a normal distribution with $\sigma=60$. What sample size do we need to have a 95% confidence interval of the mean with precision 20?

Soln From the last example, $z_{\alpha/2} = 1.96$. Therefore, we need a sample size of at least

$$n = \left\lceil \frac{(1.96)(60)}{10} \right\rceil = \left\lceil \frac{(1.96)(6)^2}{2} \right\rceil = \left\lceil 138.49 \right\rceil = 139.$$

$E = \frac{\text{precision}}{2}$

- So a sample size of 36 gave us an error of 19.6, and we need a sample size of 139 for $E=10$.