

Lecture 24.

Now, suppose we want a $100(1-\alpha)\%$ CI for the proportion with a certain amount of error, $E = z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$.

-what should n be?

$$n = \left\lceil \frac{z_{\alpha/2}^2 \hat{p}(1-\hat{p})}{E^2} \right\rceil$$

but what if we don't know \hat{p} ??

2 methods:

- ① Use an earlier study and compute \hat{p} from that (eg: in the last example, found $\hat{p} = 0.36$; use that).
- ② Observe that $p(1-p) \leq 0.25$ (when $p=0.5$) and so substitute $\hat{p} = 0.5$ as a worst case scenario: $n = \left\lceil \frac{(z_{\alpha/2})^2}{E^2} (0.25) \right\rceil$

Ex: We want a 95% CI for the proportion of eng students dressing up for halloween with error at most $E = 0.07$. What should the sample size be?

$$\alpha = 0.05 \implies z_{\alpha/2} = 1.96.$$

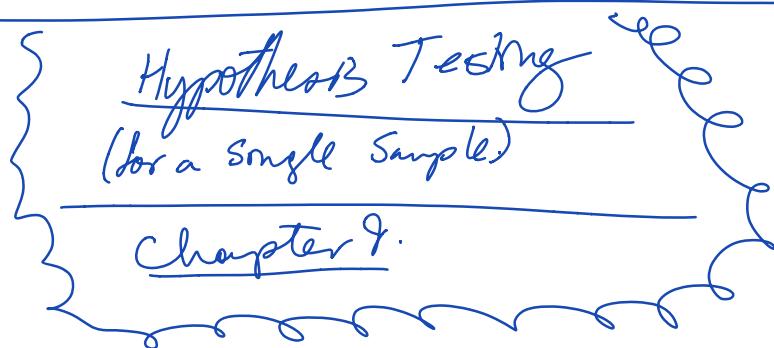
$$\text{so } n = \left\lceil \frac{(1.96)^2 (0.5)(0.5)}{0.07^2} \right\rceil.$$

method ①: In the small test study (sample size 50) we had $\hat{p} = 0.36$.

$$\text{so } n \geq \lceil \frac{(1.96)^2}{0.07} (0.36)(1-0.36) \rceil = \lceil 180.36 \rceil = 181$$

method ②: (worst case scenario) $\hat{p}(1-\hat{p}) = 0.25$

$$\text{so } n \geq \lceil \frac{(1.96)^2}{0.07} (0.25) \rceil = 196.$$



- In the last sections we were concerned with estimating some parameter associated to a population
↳ estimate with an estimator or confidence interval.
- In this chapter we aim to test whether a statistical hypothesis is true
- For the purposes of this course, a statistical hypothesis will be a statement about the parameters of one or more populations.
- The setup for hypothesis testing is usually as follows:

H_0 (Null Hypothesis): the statement we assume initially to be true

↳ Eg: $\mu = 50$

H_1 (Alternate hypothesis): A statement that contradicts the null Hypothesis.

↳ eg: $\mu \neq 50$ (two-sided)

eg: $\mu \geq 50$ (one-sided)

eg $\mu \leq 50$ (one-sided)

Strategy:

- Assume H_0 .
- Consider the data: is there something that is very unlikely/unplausible if H_0 is true?
- If Yes, reject H_0 in favour of H_1 .
- If no, accept H_0 .

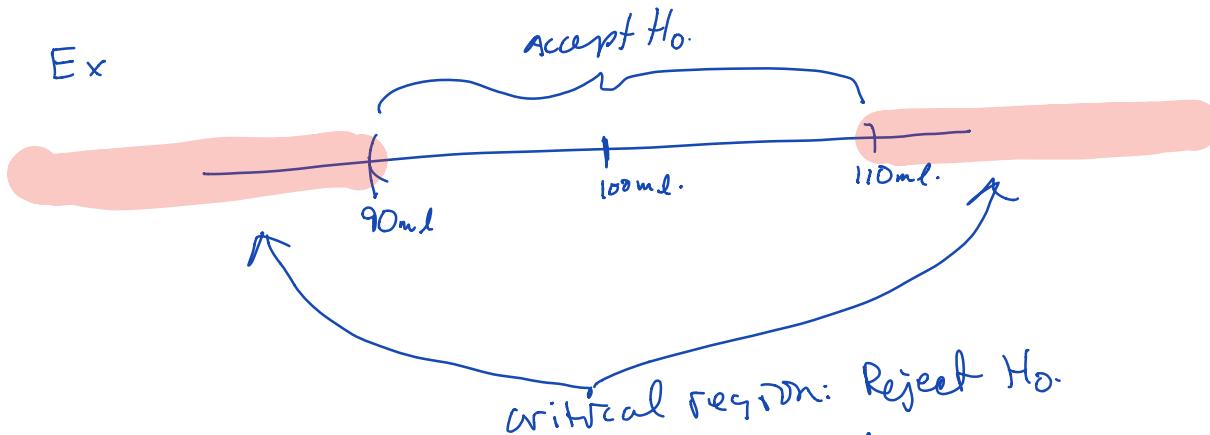
Ex: A water bottle factory tells you the volume of water bottles is normally distributed with a mean $\mu = 100\text{ml}$ and $\sigma = 5\text{ml}$. Let H_0 be " $\mu = 100\text{ml}$ ". H_1 is $\mu \neq 100\text{ml}$. You take a sample of 1000 bottles and find that the sample mean is 40 ml. Should you accept H_0 ?

Objectives of Hypothesis testing:

- 1) Test if a parameter has changed (last ex).
- 2) Test a theory (i.e. H_0 is a theoretical assumption)
- 3) Conformance testing (H_0 : is the parameter what it should be?).

Method:

- ① Assume H_0 and consider how likely a "test statistic" takes a given value. Ex: \bar{x} , s^2 , etc.
- ② Pick a test statistic (e.g. an estimator)
e.g. $H_0: \mu = 100 \text{ ml}$. Then can choose \bar{x} as a test statistic.
- ③ Specify a critical region (determined by critical values)
i.e. value of the test statistic that result in rejecting H_0 .



- ④ Checks if test statistic is in the critical region or not.

Key: Should determine the critical region based on how likely the sample statistic is to take a value there if H_0 is true.

Ex: In the water bottle example, we have a sample size $n=1000$, so \bar{X} , the sample mean is $N(100, \frac{25}{1000})$. So $P(90 < \bar{X} < 110) = P(-63.25 < z < 63.25) \sim \frac{1}{2}$ (essentially guaranteed).

So if we actually find a sample of size 1000 with average volume ≤ 90 or ≥ 110 , we should reject $H_0: \mu=100$. (1000 here is a gross overestimate. Even with a sample size of 10 you should reject H_0).

Possible Outcomes

	H_0 True	H_1 True
Accept H_0	✓	Type II error
Reject H_0	Type I error	✓

Define: $\alpha = P(\text{Type I error}) := \text{"significance level"}$ of the test.

$\beta = P(\text{Type II error})$, $1-\beta$ is the "power" of the test.

$1-\beta = \text{prob. of correctly rejecting } H_0$.

Example: Suppose we sample a normal distribution with $\sigma = 10$, with sample size 35.

Suppose we have

$$H_0: \mu = 50$$

$$H_1: \mu \neq 50$$

Suppose our critical region \mathcal{B} $\bar{x} \geq 52$, $\bar{x} \leq 48$.

a) Find α .

b) Suppose $\mu = 53$. What is β ?

$$\begin{aligned} a) \alpha &= P(\text{Reject } H_0, H_0 \text{ true}) = P(\bar{X} \geq 52 \text{ or } \bar{X} \leq 48 \text{ and } \mu = 50) \\ &= P(\bar{X} \geq 52, \mu = 50) + P(\bar{X} \leq 48, \mu = 50) \\ &= P\left(Z \geq \frac{52-50}{10/\sqrt{35}}\right) + P\left(Z \leq \frac{48-50}{10/\sqrt{35}}\right) = 0.238. \end{aligned}$$

$\underbrace{\quad}_{Z \text{ scores.}}$

b) $\beta = P(\text{accept } H_0 \text{ given that } H_1 \text{ is true})$
if $\mu = 53$, then

$$\begin{aligned} \beta &= P(\text{accept } H_0 \text{ given that } \mu = 53) \\ &= P\left(\frac{48-53}{10/\sqrt{35}} \leq Z \leq \frac{52-53}{10/\sqrt{35}}\right) = 0.274. \end{aligned}$$