

Lecture 25

Possible Outcomes

	H_0 True	H_1 , True.
H_0	✓	Type II error
H_1	Type I error	✓

Define: $\alpha = P(\text{Type I error})$:= "significance level" of the test.

$\beta = P(\text{Type II error})$, $1 - \beta$ is the "power" of the test.

$1 - \beta$ = prob. of correctly rejecting H_0 .

Example: Suppose we sample a normal distribution with $\sigma = 10$, with sample size 35.

Suppose we have

$$H_0: \mu = 50$$

$$H_1: \mu \neq 50$$

Suppose our critical region \mathcal{B} $\bar{x} \geq 52$, $\bar{x} \leq 48$.

a) Find α .

b) Suppose $\mu = 53$. What's β ?

a) $\alpha = P(\text{Reject } H_0, H_0 \text{ true}) = P(\bar{x} \geq 52 \text{ or } \bar{x} \leq 48 \text{ and } \mu = 50)$

$$\begin{aligned}
 &= P(\bar{X} \geq 52, \mu = 50) + P(\bar{X} \leq 48, \mu = 50) \\
 &= P\left(Z \geq \frac{52-50}{10/\sqrt{35}}\right) + P\left(Z \leq \frac{48-50}{10/\sqrt{35}}\right) = 0.238.
 \end{aligned}$$

$\underbrace{\hspace{10em}}_{Z \text{ scores.}}$

b) $\beta = P(\text{accept } H_0 \text{ given that } H_0 \text{ is false})$
 If $\mu = 53$, then

$$\begin{aligned}
 \beta &= P(\text{accept } H_0 \text{ given that } \mu = 53) \\
 &= P\left(\frac{48-53}{10/\sqrt{35}} \leq Z \leq \frac{52-53}{10/\sqrt{35}}\right) = 0.274.
 \end{aligned}$$

$\underbrace{\hspace{10em}}_{}$

- The concept of "significance" gives a good way to quantitatively determine a critical region.

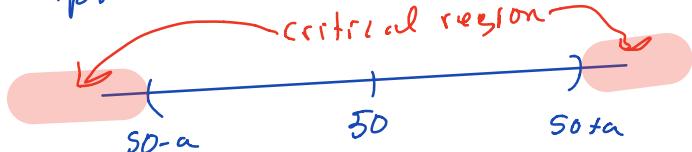
- ^{Intuitively} ✓ convenient way to report the outcome of a hypothesis test is to state whether H_0 was accepted or rejected at a certain level of significance ("fixed significance level test")

Ex: Suppose we again sample $N(\mu, 10^2)$ 35 times and that $H_0: \mu = 50$, $H_1: \mu \neq 50$. H₁ is two-sided.

Find a (symmetric) critical region if $\alpha = 0.05$.

Solution: We suppose that our critical values are

$50 \pm a$ for some value $a > 0$



- As in the last example, we have

$$\begin{aligned}0.05 = \alpha &= P(\text{Reject } H_0, H_0 \text{ true}) = P((\bar{X} \leq 50 - a) \text{ or } (\bar{X} \geq 50 + a) \text{ and } \mu = 50) \\&= P(N(50, \frac{10^2}{35}) \leq 50 - a) + P(N(50, \frac{10^2}{35}) \geq 50 + a) \\&= P(Z \leq \frac{-a}{10/\sqrt{35}}) + P(Z \geq \frac{a}{10/\sqrt{35}}) \\&= 2 P(Z \leq \frac{-a}{10/\sqrt{35}}) \\&\text{so } 0.025 = P(Z \leq \frac{-a}{10/\sqrt{35}}) = \Phi\left(\frac{-a}{10/\sqrt{35}}\right)\end{aligned}$$

look up Z-scores: $\Phi(-1.96) = 0.025$

$$\text{so } -1.96 = \frac{-a}{10/\sqrt{35}} \Rightarrow a = (1.96)(10/\sqrt{35}) \approx 3.313,$$

- This gives a critical region of $\bar{X} \leq 46.687$, $\bar{X} \geq 53.313$.

- Note that essentially the same process can be used to determine a 1-sided critical region for the test (eg $\alpha = P(\bar{X} \leq 50 + a)$)

P-values

- There is something a little unsatisfactory about constructing the critical region with a given, fixed significance α .

- In the last example, our H_0 was $\mu = 50$; given a sample size of 35, we found a region such that we accept H_0 if $\bar{X} \in (46.687, 53.313)$.

- Suppose $\bar{X} = 53.3129999$. Then we accept H_0 . But is that value that much more likely than 53.313

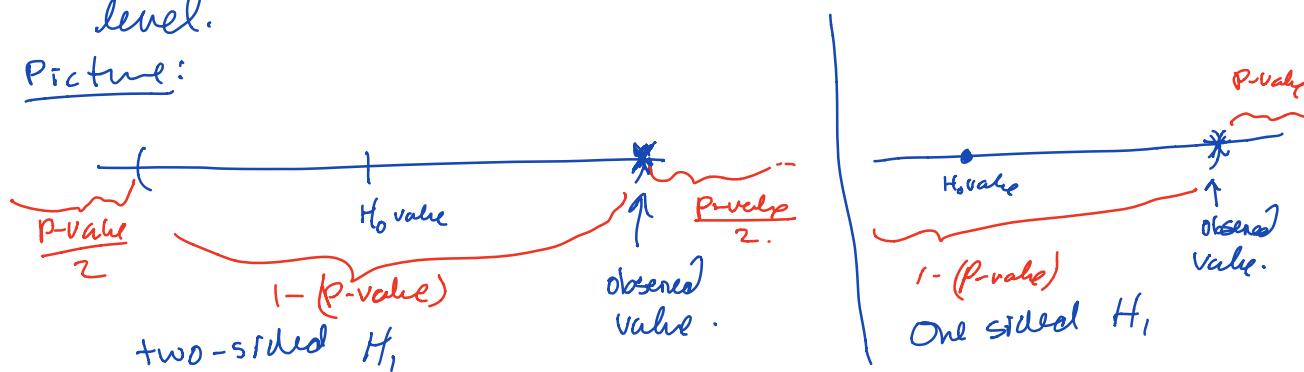
(for which we would reject H_0)?

- Rather than just fixing a significance level α , P-values give a more dynamic approach to hypothesis testing.

* Given an experiment with null hypothesis H_0 , the P-value of the experiment is the smallest significance level that would lead to a rejection of H_0 with the given data. *

- the P-value is sometimes called the "observed significance level."

Picture:



Ex: Again, we sample a normal distribution $N(\mu, 10^2)$, $n=35$ times. Suppose $H_0: \mu=50$. If our observation is $\bar{x}=54$ ~~observed data~~.

a) Find the p-value if $H_1: \mu \neq 50$.

Observe that the extreme values around 50 are $50 \pm |\bar{x} - 50|$, so 50 ± 4 .

So the p-value is $2 \cdot P(\bar{X} \leq 46 \mid \mu=50)$

$$P(\bar{X} \leq 46 \mid \mu=50) = P\left(\frac{\bar{X}-50}{\sqrt{10/35}} \leq \frac{46-50}{\sqrt{10/35}}\right)$$

So the P-value is $2(0.009) = 0.018$
i.e. getting 34 or 46 is fairly unlikely, even if H_0 is true.

b) Find the P-value if $H_1: \mu > 50$.

Then p-value = $P(\bar{X} \geq 54 \text{ given } \mu = 50)$
= $P\left(\frac{\bar{X} - 50}{10/\sqrt{35}} \geq \frac{54 - 50}{10/\sqrt{35}}\right) = 1 - \Phi\left(\frac{4}{10/\sqrt{35}}\right)$
= 0.009.

Motto: The p-value is a measure of the risk that we make an incorrect decision if we reject H_0 .

- So for example, if we are given a value of our test statistic and it has a very high p-value, then we are at high risk of a Type I error if we reject H_0 .
- Notice that p-values give us a refinement of the "fixed significance level" testing.
 - ↳ fix a significance level α .
 - if the observed value is in the critical region, then the p-value is smaller than α
 - ↳ if $p\text{-value} \leq \alpha$, Reject H_0 .
 - otherwise, accept H_0 , report the result with p-value.

Relationship between Hypothesis Test and Confidence Interval

- close relationship between a hypothesis test for a parameter θ and the confidence interval for θ .
- Suppose that $[L, U]$ is a $100(1-\alpha)\%$ confidence interval for θ
- Then a hypothesis test of significance level α for the hypothesis $H_0: \theta = \theta_0$, $H_1: \theta \neq \theta_0$ (θ_0 some number) will lead to a rejection of H_0 if and only if $\theta_0 \notin [L, U]$.
- This gives an equivalent way of performing fixed sig. level testing:
 - ↳ Given a hypothesis $H_0: \theta = \theta_0$, $H_1: \theta \neq \theta_0$, choose a test statistic \hat{H} for θ and a sig. level α .
 - for a given point estimate $\hat{\theta} = \hat{\theta}$, construct the CI around $\hat{\theta}$.
 - If θ_0 is in the interval, accept H_0 .
 - If θ_0 is not in the interval, reject H_0 .