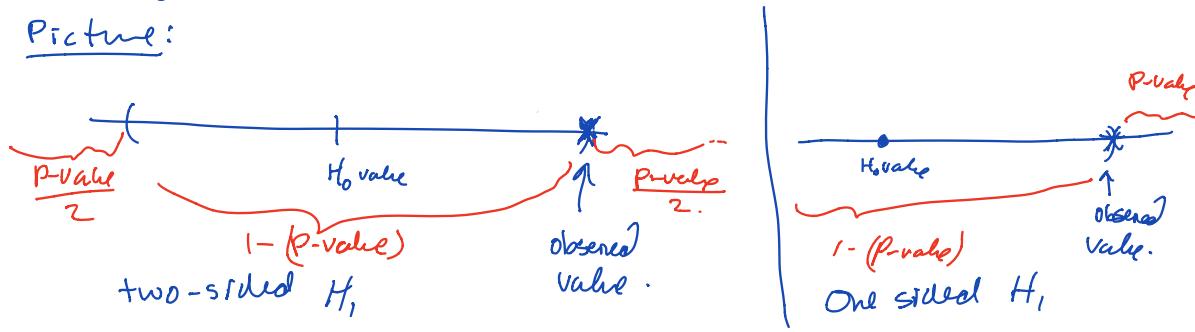


Lecture 26

* Given an experiment with null hypothesis H_0 , the P-value of the experiment is the smallest significance level that would lead to a rejection of H_0 with the given data. *

- the P-value is sometimes called the "observed significance level."

Picture:



Motto: The p-value is a measure of the risk that we make an incorrect decision if we reject H_0 .

- So for example, if we are given a value of our test statistic and it has a very high p-value, then we are at high risk of a Type I error if we reject H_0 .
- Notice that p-values give us a refinement of the "fixed significance level" testing.

↳ - fix a significance level α .

- if the observed value is in the critical region then the p-value is smaller than α
 - ↳ if $p\text{-value} \leq \alpha$, Reject H_0 .
- otherwise, accept H_0 , report the result with p-value.

Relationship between Hypothesis Test and Confidence Int.

- close relationship between a hypothesis test for a parameter θ and the confidence interval for θ .
- suppose that $[L, U]$ is a $100(1-\alpha)\%$ confidence interval for θ
- Then a hypothesis test of significance level α for the hypothesis

$$H_0: \theta = \theta_0, H_1: \theta \neq \theta_0 \quad (\theta_0 \text{ some number})$$

will lead to a rejection of H_0 if and only if $\theta_0 \notin [L, U]$.

- This gives an equivalent way of performing fixed sig. level testing:

↳ Given a hypothesis $H_0: \theta = \theta_0$ $H_1: \theta \neq \theta_0$, choose a test statistic $\hat{\theta}$ for θ and a sig. level α .

- for a given point estimate $\hat{\theta} = \hat{\theta}$, construct the CI around $\hat{\theta}$.

- If θ_0 is in the interval, accept H_0 .

- $\hat{\sigma} \sim \sigma_0$
- If $\hat{\sigma}_0$ is not on the interval, reject H_0 .

9.2 Tests on the mean of a Normal distribution, Variance known.

- We study in more detail the case of sampling the normal distribution with known variance, σ^2 .

- We fix a ^{null} hypothesis

$$H_0: \mu = \mu_0 \text{ & some #.}$$

- We break H_1 into three cases:

$$\textcircled{I} H_1: \mu \neq \mu_0 \quad \textcircled{II} H_1: \mu > \mu_0 \quad \textcircled{III} H_1: \mu < \mu_0.$$

- As in all of the previous examples, we standardize every we take as our test stat

$$Z_0 = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$$

- Thus, if H_0 is true, then $Z_0 \sim N(0, 1)$.

Any statistical test of this form is called a Z-test.

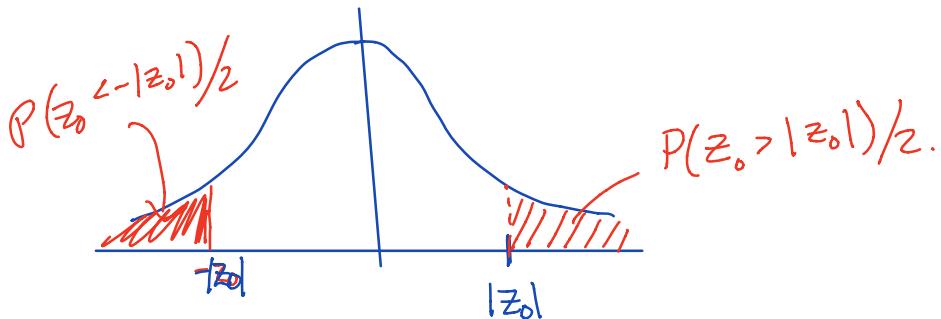
Z-tests are particularly important, since even if we are not sampling a normal distribution, having a large sample means the central limit theorem will make the test still apply.

Z-test structure (for significance level α):

- i) From data, compute $z_0 = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}$ } some #.
- ii) Find p-value for the test with observation z_0 .
- iii) Reject H_0 if p-value of $z_0 \leq \alpha$.
 three cases of this.

Case (I), $H_1: \mu \neq \mu_0$.

Two sided/tailed test.



so the p-value for z_0 is

$$\begin{aligned} P(z_0 \geq |z_0|) + P(z_0 \leq -|z_0|) &= 2P(z_0 \geq |z_0|) \\ &= 2(1 - P(z_0 \leq |z_0|)). \end{aligned}$$

Therefore, we reject H_0 if $\alpha \geq 2(1 - P(z_0 \leq |z_0|))$

- equivalently, reject H_0 when $\frac{\alpha}{2} \geq 1 - P(z_0 \leq |z_0|)$

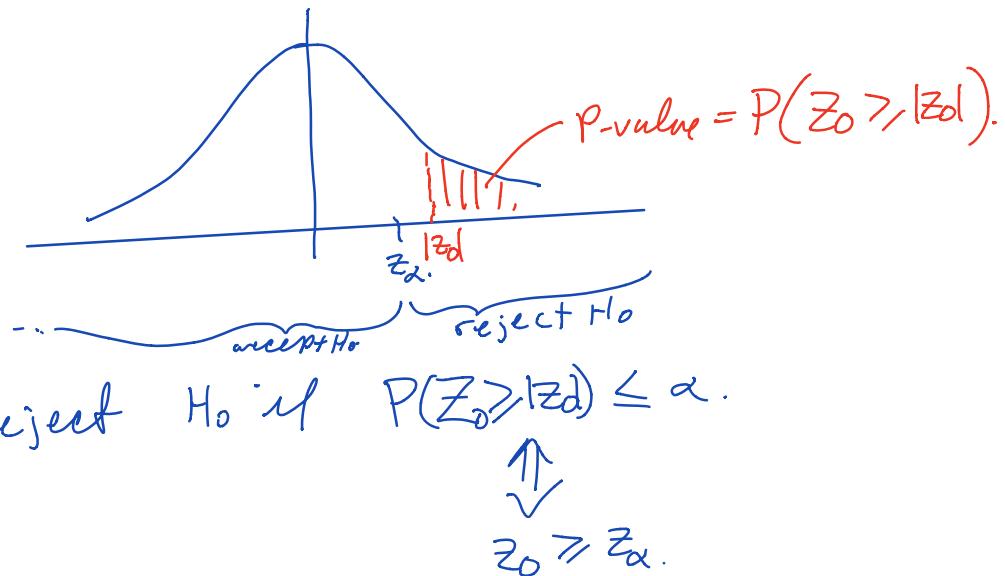
- equivalently, reject H_0 when $P(z_0 \leq |z_0|) \geq 1 - \frac{\alpha}{2}$.

$$z_{\alpha/2} \leq |z_0|$$

(Recall, $z_{\alpha/2}$ is the # s.t. $P(Z \leq z_{\alpha/2}) = 1 - \frac{\alpha}{2}$)

So the critical region is $Z_0 \leq -z_{\alpha/2}$ or $Z_0 \geq z_{\alpha/2}$.

Case (II): $H_1: \mu \neq \mu_0$ (one sided/tailed).



Then reject H_0 if $P(Z_0 \geq |z_0|) \leq \alpha$.

where z_α is such that

$$\Phi(z_\alpha) = 1 - \alpha.$$

Similarly:

Case (III): $H_1: \mu \neq \mu_0$ (one sided/tailed)

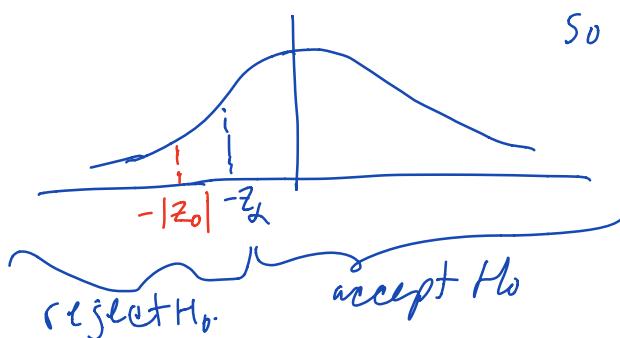
p-value is $P(Z_0 \leq -|z_0|)$

so reject H_0 if

$$P(Z_0 \leq -|z_0|) < \alpha.$$

↑

$$-|z_0| \leq -z_\alpha.$$



Example: Sample of 25 adults have a mean body temperature of 36.8°C . Assume body temp is normally distributed with $\sigma = 0.34^{\circ}\text{C}$. Suppose our test is

$$H_0: \mu = 37^{\circ}\text{C}$$

$$H_1: \mu \neq 37^{\circ}\text{C} \quad \leftarrow \begin{array}{l} \text{(two-sided!) } \\ \text{case (I)} \end{array}$$

$$\alpha = 0.01$$

Accept or reject H_0 ?

Solution:

$$z_0 = \frac{\bar{x} - \mu_0}{(\sigma/\sqrt{n})} = \frac{36.8 - 37}{0.34/\sqrt{25}} = -2.94$$

so the p-value (two-sided) of the test is

$$2P(Z \leq -2.94) = 0.003282 \leq \underbrace{0.01}_{\text{So reject } H_0!} = \alpha$$