

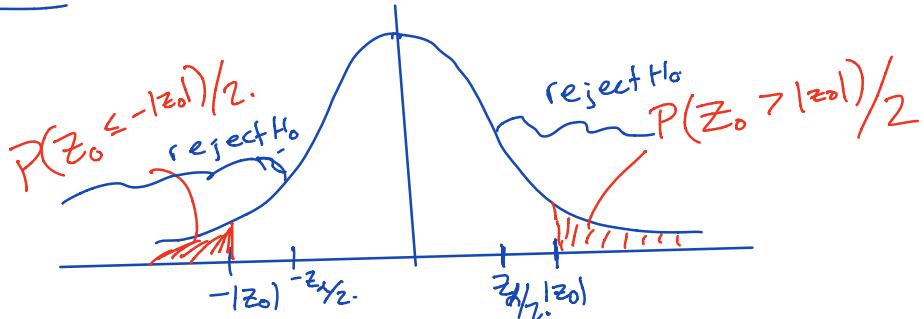
Lecture 27.

Z-test Structure (for fixed sig. level α).

- i) From the data, compute $z_0 = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}$ } zone #.
- ii) Find the p-value for the test with observed data z_0 .
- iii) Reject H_0 if p-value of z_0 is $\leq \alpha$.

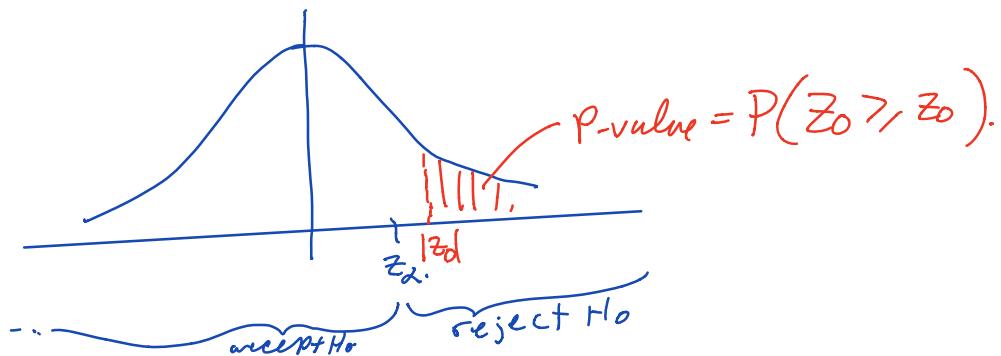
what does this mean? cases.

Case (I): $H_1: \mu \neq \mu_0$.



Reject H_0 iff $|z_0| \geq z_{\alpha/2}$

Case (II): $H_1: \mu \neq \mu_0$ (One sided/tailed).



Then reject H_0 if $P(Z_0 > z_0) \leq \alpha$.

$$\begin{array}{c} \uparrow \\ z_0 \geq z_{\alpha} \end{array}$$

where z_α is such that
 $\underline{\Phi}(z_\alpha) = 1 - \alpha$.

Similarly:

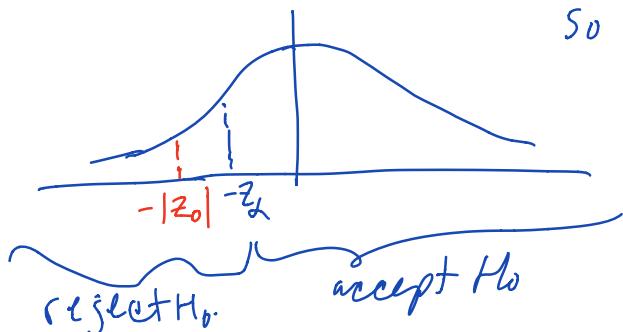
Case (III): $H_1: \mu \neq \mu_0$. (one sided/tailed)

p-value is $P(Z_0 \leq z_0)$

so reject H_0 if.

$$P(Z_0 \leq z_0) < \alpha.$$

$$z_0 \leq -z_\alpha.$$



Example: Sample of 25 adults have a mean body temperature of 36.8°C . Assume body temp is normally distributed with $\sigma = 0.34^\circ\text{C}$. Suppose our test is

$$H_0: \mu = 37^\circ\text{C}$$

$$H_1: \mu \neq 37^\circ\text{C} \quad \leftarrow \begin{matrix} \text{(two-sided!) } \\ \text{case (I)} \end{matrix}$$

$$\alpha = 0.01.$$

Accept or reject H_0 ?

Solution:

$$z_0 = \frac{\bar{x} - \mu_0}{(\sigma/\sqrt{n})} = \frac{36.8 - 37}{0.34/\sqrt{25}} = -2.94$$

... (two-sided) of the test is

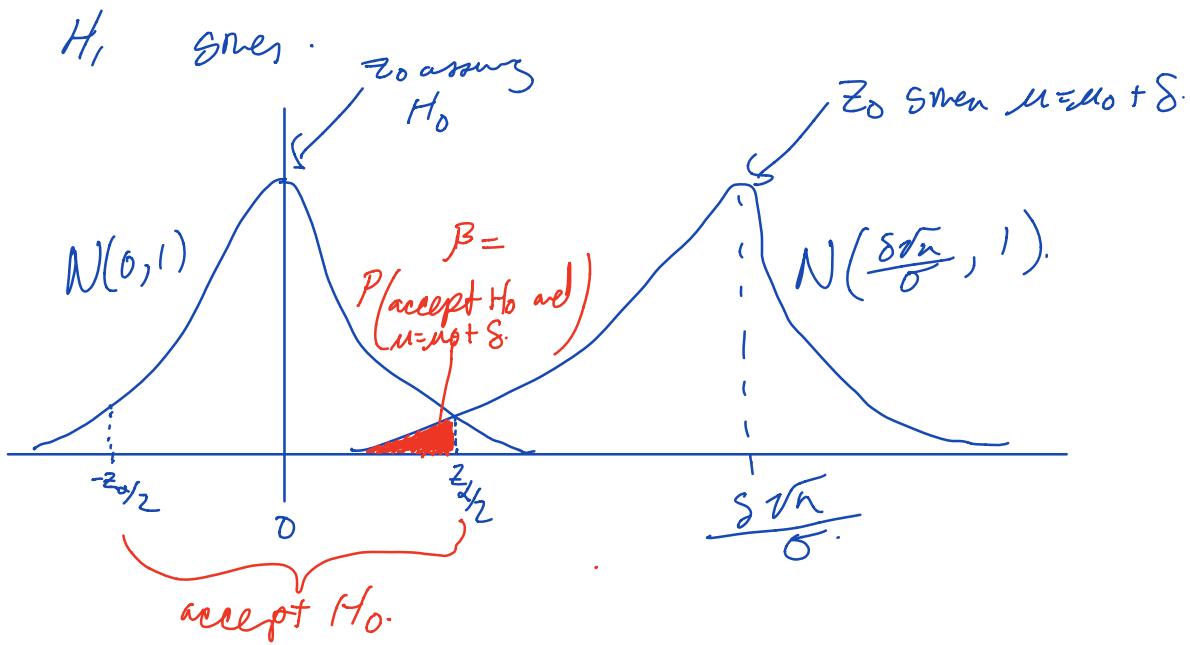
so the p-value is

$$2P(Z \leq -2.94) = 0.003282 \leq 0.01 = \alpha$$

So reject H_0 !

Type II Error and Choice of Sample Size

- Recall that the result of a hypothesis test is a "Type II error" if we accept H_0 even when it is actually false.
- The "power" of a test is $1 - \beta$, where $\beta = P(\text{Type II error})$.
- In a test, the tester presselects $\alpha = P(\text{Type I error})$; the power depends on the sample size.
- In this section, we discuss regulating β based on sample size, assuming we are sampling a normal distribution with known variance.
- Consider the two-sided hypothesis:
$$H_0: \mu = \mu_0 \quad H_1: \mu \neq \mu_0$$
- Our test statistic is $Z_0 = (\bar{X} - \mu_0) / (\sigma/\sqrt{n})$
- Suppose that H_0 is false: say that $\mu = \mu_0 + \delta$, for some $\delta > 0$. Then
- $$E[Z_0] = \frac{E[\bar{X}] - \mu_0}{\sigma/\sqrt{n}} = \frac{(\mu_0 + \delta) - \mu_0}{\sigma/\sqrt{n}} = \frac{\delta\sqrt{n}}{\sigma}$$
- Thus under the assumption that H_1 is true (i.e. $\mu = \mu_0 + \delta$) we have $Z_0 \sim N\left(\frac{\delta\sqrt{n}}{\sigma}, 1\right)$.
- Plotting Z_0 under the assumption of H_0 as



$$\begin{aligned}
 \text{So } \beta &= P\left(-z_{\alpha/2} \leq N\left(\frac{\delta\sqrt{n}}{\sigma}, 1\right) \leq z_{\alpha/2}\right) \\
 &= \Phi\left(z_{\alpha/2} - \frac{\delta\sqrt{n}}{\sigma}\right) - \Phi\left(-z_{\alpha/2} - \frac{\delta\sqrt{n}}{\sigma}\right).
 \end{aligned}$$

Note: By symmetry this formula still holds when $\delta < 0$
 - can derive a similar formula for a one sided hypothesis

Choosing sample size

- Suppose $\delta > 0$. Then $\Phi\left(-z_{\alpha/2} - \frac{\delta\sqrt{n}}{\sigma}\right)$ is very small.
 \hookrightarrow so $\beta \approx \Phi\left(z_{\alpha/2} - \frac{\delta\sqrt{n}}{\sigma}\right)$.
- Let z_β be such that $\Phi(z_\beta) = 1 - \beta$ (and so $\Phi(-z_\beta) = \beta$)
- Hence $-z_\beta \approx z_{\alpha/2} - \frac{\delta\sqrt{n}}{\sigma}$.
- Solving for n , we get

$$n \approx \frac{(z_{\alpha/2} + z_\beta)^2 \sigma^2}{\delta^2}, \quad \delta = \mu - \mu_0.$$

- round up if not an integer.
- Note that small β requires a larger sample size (since β small $\Rightarrow 1-\beta$ large $\Rightarrow z_\beta$ large).
- i.e. "With great power comes great sample size."
- A one-sided test gives a similar formula:

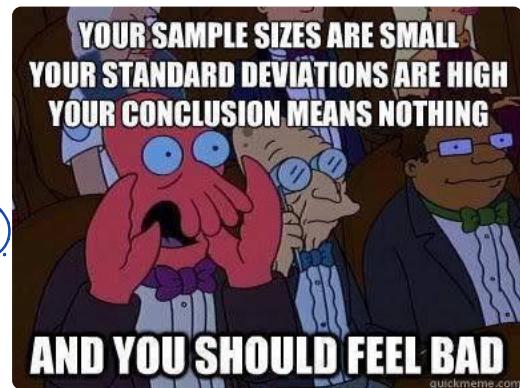
$$n \approx \frac{(z_\alpha + z_\beta)^2 \sigma^2}{\delta^2}, \quad \delta = \mu - \mu_0.$$

(Don't mix the two up!).

Ex: Suppose batteries have lifetime μ hours $\sim N(\mu, 1.5)$.

If the assumption is that $\mu = 40$, but in reality

$\mu = 43$, how big does the sample size need to be to ensure that $\beta < 0.05$ in a two-sided test with $\alpha = 0.025$?



$$\begin{aligned}
 \text{Solution: } n &\geq \left\lceil \frac{(z_{\alpha/2} + z_\beta)^2 \sigma^2}{\delta^2} \right\rceil \\
 &= \left\lceil \frac{(z_{0.0125} + z_{0.05})^2 (1.5)}{(43-40)^2} \right\rceil = \left\lceil \frac{(2.24 + 1.64)^2 (1.5)}{9} \right\rceil \\
 &= \lceil 2.51 \rceil = 3.
 \end{aligned}$$

The thing to note: the approximation is only really good when $\Phi(-z_{\alpha/2} - \frac{\delta \sqrt{n}}{\sigma})$ is small compared to β .

large Sample Sizes

- By the central limit theorem, if n is large (usually $n \geq 30$) then we can drop the assumption that we are sampling a normal distribution (since \bar{X} will be approximately normal anyway).
- If the variance σ^2 unknown, but the sample size n large enough, say $n \geq 40$, then we may substitute s^2 (sample variance) for σ^2 in all of the above without changing much.