

Lecture 28

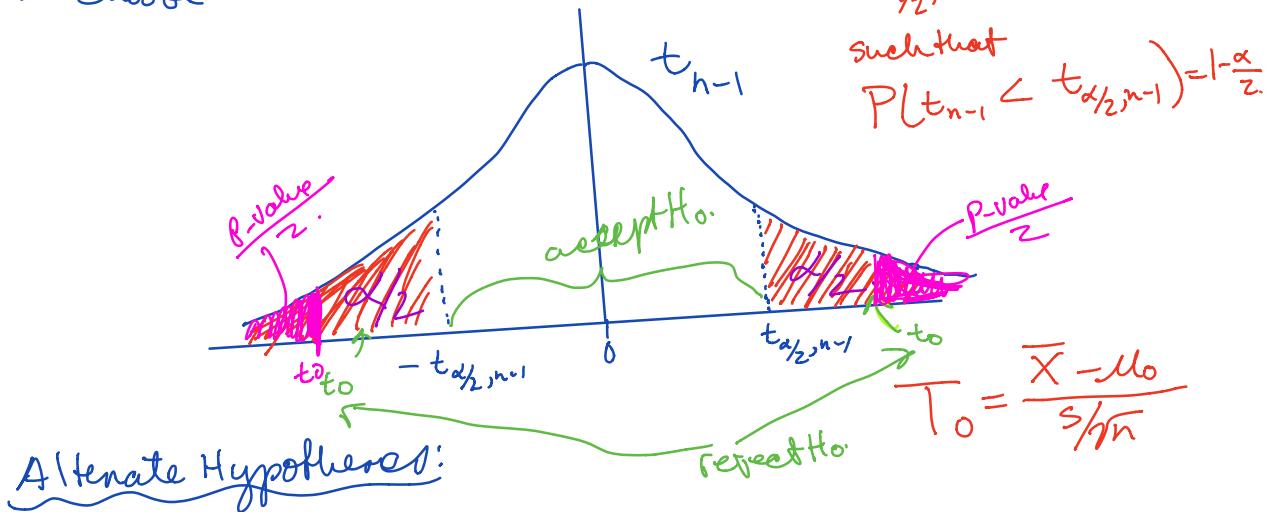
large Sample Sizes

Tests on the mean of a normal dist. w/ known variance: $Z_0 = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$

- By the central limit theorem, if n is large (usually $n \geq 30$) then we can drop the assumption that we are sampling a normal distribution (since \bar{X} will be approximately normal anyway).
- If the variance is unknown, but the sample size is large enough, say $n \geq 40$, then we may substitute s^2 (sample variance) for σ^2 in all of the above without changing much.
- Hypothesis Testing on the mean of a normal distribution, unknown variance, small sample size.
 - In this situation we take an approach analogous to what we did for confidence intervals.
 - Consider a null hypothesis $H_0: \mu = \mu_0$
 - we choose as a test statistic
 - $$T_0 = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$$
 where n is the sample size, and s is the sample standard deviation.

- If H_0 is true, then $T_0 = \frac{t_{n-1}}{n-1}$, i.e. T_0 is has a Student's t-distribution with $n-1$ degrees of freedom (so these tests are called "t-tests".)

"t - tests")
— choose α a significance level.



① $H_1: \mu \neq \mu_0$ (two-sided).

Critical region: $|t_{0.1}| > t_{\alpha/2, n-1}$

reject H_0 !

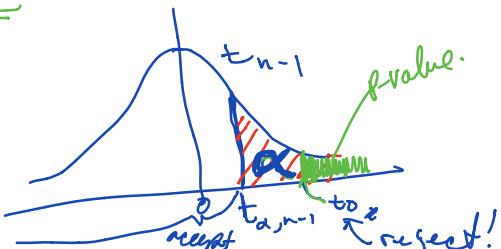
$$P\text{-value: } \underline{2P(T_0 > t_{\text{tol}})}$$

H₁: $\mu > \mu_0$

$H_1: \mu > \mu_0$ $t_0 > t_{\alpha, n-1}$ not $\sigma/2$

+ $\alpha/2$.
← reject H_0 !

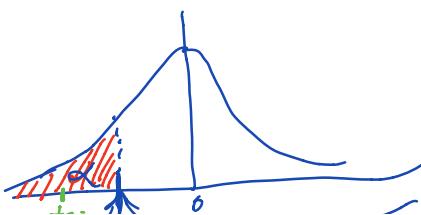
P-value: $P(T_0 > t_0)$



III $H_i : M < M_0$

Critical region: $t_0 < -t_{\alpha/2, n-1}$

$$P\text{-value} : P(T_0 < t_0)$$



reject if t_0 is
to B here. t_0 | accept if t_0 is
here $-t_{\alpha/2, n-1}$.

One thing to note!

↳ when performing t-tests, statistical software can give P-values precisely.

↳ when doing t-tests by hand, this is almost impossible, since the t-tables are too coarse.

Ex: consider the following situation:

a) $H_0: \mu = \mu_0$

$H_1: \mu \neq \mu_0$

$t_0 = 2.537$

$n = 10$

b) $H_0: \mu = \mu_0$

$H_1: \mu > \mu_0$

$t_0 = 1.863$

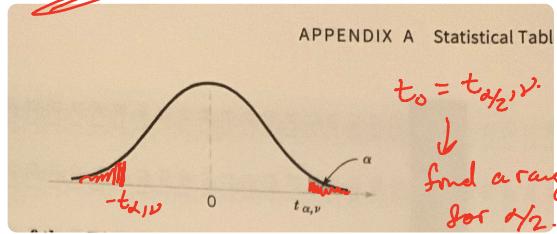
$n = 16$

Let's estimate the P-values in these two situations:

a) $n = 10, \rightarrow 10-1 = 9$ degrees of freedom: (2-sided case).

TABLE V		Percentage Points $t_{\alpha, v}$ of the t Distribution									
α	v	.40	.25	.10	.05	.025	.01	.005	.0025	.001	.0005
1	1	.325	1.000	3.078	6.314	12.706	31.821	63.657	127.32	318.31	636.62
	9	.261	.703	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.781

degree of freedom



Here $\alpha = \frac{p\text{-value}}{2}$

$t_0 = 2.537$

\Rightarrow P-value is between 0.01 and 0.025

So $0.02 \leq p\text{-value} \leq 0.05$

i.e. $0.02 \leq p\text{-value} \leq 0.05$

$\frac{1}{2}(0.01)$

b) $n = 16$, so 15 degrees of freedom.

$$t_0 = 1.863 \quad (\text{1-sided case})$$

$$H_0: \mu \leq \mu_0$$

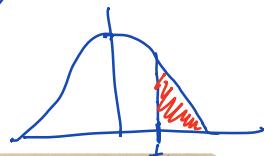


TABLE V		Percentage Points $t_{\alpha, v}$ of the t Distribution										
v	α	.40	.25	.10	.05	.025	.01	.005	.0025	.001	.0005	
1		.325	1.000	3.078	6.314	12.706	31.821	63.657	127.32	212.21	626.67	
15	.258	.691	1.341	1.753	2.131	2.602	2.947	3.286	3.733	4.073		

↑ degrees of freedom

$$t_0 = 1.863 \text{ in this range}$$

So p-value is between 0.025 and 0.05.

Tests on Population proportion

- Suppose some population has some particular subclass which is proportion P of the total population:

↳ eg: of all engineering students what proportion are female?

- Suppose we take a sample of size n , and let $X = \# \text{ of samples from the subclass}$.
- Then $X \sim \text{Bin}(n, p)$ and $\hat{p} = \frac{X}{n}$ is an unbiased estimator of P (see notes on CI's for pop. proportion).

- If $np > 5$, $n(1-p) > 5$, then we may further approximate $X \approx N(np, np(1-p))$.

Suppose our test β :

$$H_0: p = p_0$$

$$H_1: \text{I} p \neq p_0, \text{II} p > p_0, \text{III} p < p_0.$$

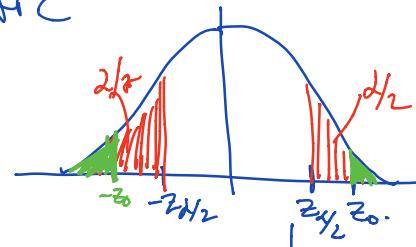
significance level α .

Sub. $p = p_0$

- If H_0 is true, then $X \approx N(np_0, np_0(1-p_0))$
and so $\hat{p} = \frac{X}{n} \approx N(p_0, \frac{p_0(1-p_0)}{n})$

- We choose our test statistic

$$Z_0 = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$



- Then $Z_0 \approx N(0, 1)$ iff H_0 is true!

- Suppose, for some sample, $Z_0 = z_0$. Then:

(I) $H_1: p \neq p_0$
(two-sided).

p-value: $\frac{2P(Z_0 \geq |z_0|)}{= 2\Phi(-|z_0|)}$ Reject H_0 if $|z_0| \geq z_{1/2}$.

(II) $H_1: p > p_0$

p-value: $\frac{P(Z_0 > z_0)}{= \Phi(-z_0)}$ Reject H_0 if $z_0 > z_{1/2}$.

(III) $H_1: p < p_0$

p-value: $P(Z_0 < z_0) = \Phi(z_0)$ Reject H_0 if $z_0 \leq -z_{1/2}$.

Example: In 2018, McMaster claimed that 27% of all incoming engineering students were female. Of a random sample of 25 engineering students, 4 are female. At a significance level of $\alpha=0.01$, does the evidence support McMaster's claim?

Solution: $\hat{p} = \frac{4}{25} = 0.16$

$$H_0: p = 0.27$$

$$H_1: p < 0.27$$

$$Z_0 = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} = \frac{0.16 - 0.27}{\sqrt{\frac{0.27(0.73)}{25}}} = -1.2389$$

$$\text{For } \alpha = 0.01, Z_\alpha = 2.33$$

$$\text{so } -Z_\alpha = -2.33$$

$$-1.2389 \geq -2.33$$

Z_0 is the value such that $P(Z < Z_\alpha) = 1 - \alpha$ from Z-chart.

So don't reject H_0 . ✓