

Lecture 29.

Recall: If we are sampling a population with proportion p in some subclass, then sampling with size n , $X = \text{Bin}(n, p)$, $\hat{p} = \frac{X}{n}$ is an unbiased estimator of p .

Suppose our test β :

$$H_0: p = p_0$$

$$H_1: \textcircled{I} p \neq p_0, \textcircled{II} p > p_0, \textcircled{III} p < p_0.$$

significance level α .

- If H_0 is true, then $X \approx N(n p_0, n p_0 (1 - p_0))$
and so $\hat{p} = \frac{X}{n} \approx N(p_0, \frac{p_0 (1 - p_0)}{n})$

- We choose our test statistic

$$Z_0 = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}}$$

- Suppose, for some sample, $Z_0 = z_0$. Then:

$\textcircled{I} H_1: p \neq p_0$ Reject H_0 if $|z_0| \geq z_{\alpha/2}$.

$\textcircled{II} H_1: p > p_0$ Reject H_0 if $z_0 \geq z_{\alpha}$.

$\textcircled{III} H_1: p < p_0$ Reject H_0 if $z_0 \leq -z_{\alpha}$.

Example: In 2018, McMaster claimed that 27% of all incoming engineering students were female. Of a random sample of 25 engineering students, 4 are female. At a significance level of $\alpha = 0.01$, does the evidence support McMaster's claim?

Solution: $\hat{p} = \frac{4}{25} = 0.16$

$$H_0: p = 0.27.$$

$$H_1: p < 0.27$$

$$Z_0 = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} = \frac{0.16 - 0.27}{\sqrt{\frac{0.27(0.73)}{25}}} = -1.2389$$

$$\text{For } \alpha = 0.01, Z_\alpha = 2.33$$

$$\text{so } -Z_\alpha = -2.33$$

$$-1.2389 > -2.33$$

So don't reject H_0 .

Prob. of a Type II error & Sample Size

- When testing proportion of a population, we can obtain a formula for $\beta = \text{Prob}(\text{Type II error})$

$$\text{If } H_1: p \neq p_0: \beta = \Phi\left(\frac{p_0 - p + z_{\alpha/2}\sqrt{\frac{p_0(1-p_0)}{n}}}{\sqrt{\frac{p(1-p)}{n}}}\right) - \Phi\left(\frac{p_0 - p - z_{\alpha/2}\sqrt{\frac{p_0(1-p_0)}{n}}}{\sqrt{\frac{p(1-p)}{n}}}\right)$$

II $H_2: p < p_0$:

$$\beta = 1 - \Phi \left(\frac{p_0 - p - z_\alpha \sqrt{p_0(1-p_0)/n}}{\sqrt{p(1-p)/n}} \right)$$

III

$$H_2: p > p_0: \beta = \Phi \left(\frac{p_0 - p_0 + z_\beta \sqrt{p_0(1-p_0)/n}}{\sqrt{p(1-p)/n}} \right)$$

We can solve for n to get a formula for approximating the sample size based on β :

I

$$n \approx \left(\frac{z_{\alpha/2} \sqrt{p_0(1-p_0)} + z_\beta \sqrt{p(1-p)}}{p - p_0} \right)^2$$

II and III

$$n \approx \left(\frac{z_\alpha \sqrt{p_0(1-p_0)} + z_\beta \sqrt{p(1-p)}}{p - p_0} \right)^2$$

Ex: How many people should we sample to test

$$H_0: p = 0.9 (= p_0)$$

$$H_1: p < 0.9$$

$$\alpha = 0.05$$

if the true proportion is $p = 85\%$ and we want $\beta = 0.1$?

Solution: From tables: $z_\alpha = z_{0.05} = 1.64$, $z_\beta = z_{0.1} = 1.28$

One-sided test, so

$$n \approx \left[\frac{1.64 \sqrt{(0.9)(0.1)} + 1.28 \sqrt{(0.85)(0.15)}}{0.9 - 0.8} \right]^2$$

$$\approx 360.279 \rightarrow n = 361.$$

Skip a bunch of sections....

(0.2) Tests & Confidence Intervals For the difference in the means of two normal populations, variances unknown.

- We consider the situation where we sample the means μ_1, μ_2 of two normal distributions $N(\mu_i, \sigma_i^2)$, $i=1,2$ where the variances are unknown.
- We assume the first population is sampled with sample size n_1 , and the second is sampled with size n_2 .

Test:

$$H_0: \mu_1 - \mu_2 = \Delta_0 \text{ & some } \#.$$

$$H_1: \text{I} \quad \mu_1 - \mu_2 \neq \Delta_0 \quad \text{II} \quad \mu_1 - \mu_2 > \Delta_0 \quad \text{III} \quad \mu_1 - \mu_2 < \Delta_0.$$

(choose some α & sig. level).

- Let \bar{X}_i be the sample mean, $i=1,2$.

$$\text{Then } \bar{X}_i = N(\mu_i, \sigma_i^2/n) \quad i=1,2.$$

$$\text{So } \bar{X}_1 - \bar{X}_2 \text{ is normal, } \bar{X}_1 - \bar{X}_2 = N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$$

- we consider two scenarios:

- 1) $\sigma_1^2 = \sigma_2^2 = \sigma^2$ (still unknown, but equal).

- 2) $\sigma_1^2 \neq \sigma_2^2$.

Case 1). $\bar{X}_1 - \bar{X}_2 = N(\mu_1 - \mu_2, \sigma^2 \left(\frac{1}{n_1} + \frac{1}{n_2} \right))$.

- we form an estimator for σ^2 from the sample variances, S_1^2 and S_2^2 . This is the pooled estimator of σ^2 :

$$S_p^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2}$$

$$= \underbrace{\frac{(n_1-1)}{(n_1+n_2-2)} S_1^2}_{w} + \underbrace{\frac{(n_2-1)}{(n_1+n_2-2)} S_2^2}_{1-w}$$

- Note that S_p^2 is an unbiased estimator for σ^2 :

$$E[S_p^2] = wE[S_1^2] + (1-w)E[S_2^2] = w\sigma^2 + (1-w)\sigma^2 = \sigma^2$$

- So we take our test stat to be

$$T = \frac{\bar{X}_1 - \bar{X}_2 - \Delta_0}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$(\Delta_0 = \mu_1 - \mu_2)$
assuming H_0

which has a t-distribution with n_1+n_2-2 degrees of freedom, ^{when H_0 is true!!!}

as appropriate.

Case 2): $\sigma_1^2 \neq \sigma_2^2$

- Cannot pool s_1^2, s_2^2 .

- Table:

$$T_0^* = \frac{\bar{X}_1 - \bar{X}_2 - \Delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

- Assuming H_0 , T_0^* is again t-distributed, but the has degrees of freedom given by

$$v = \left\lfloor \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2} \right)^2}{\frac{(s_1^2/n_1)^2}{n_1-1} + \frac{(s_2^2/n_2)^2}{n_2-1}} \right\rfloor$$

← floor:
round
down to
the nearest
integer.

So from here one can use the t-tests from before.

Note: In practice the t-test for pooled variances is very sensitive to the assumption that $\sigma_1^2 = \sigma_2^2$, so if you are not totally, completely sure, it's best to assume $\sigma_1^2 \neq \sigma_2^2$.