

The axioms of Probability

Given a random experiment with sample space S , we say an event $E \subseteq S$ occurs if some element of E is the outcome of the experiment.

Probability is a way to measure the likelihood of an event.

One way to define probability is in terms of relative frequency. Given an event E , let $n(E)$ be the number of times E occurs in when the experiment is run n times. Then we may define the probability of E as

$$P(E) = \lim_{n \rightarrow \infty} \frac{n(E)}{n}.$$

However, we have no reason to believe that this will necessarily converge, and so we take a more axiomatic approach to probability.

First Example: Equally Likely Outcomes

Given a sample space with n -outcomes, each

of which is equally likely, each outcome B assigned a probability of $1/n$.

Ex: A fair coin: $S = \{H, T\}$, $P(\{H\}) = 1/2$
 $P(\{T\}) = 1/2$.

Ex: A fair die: $P(\{1\}) = 1/6$. etc.

Axioms of Probability.

Given a sample space S , we define probability to be a function from the set of events to the interval $[0, 1]$. P

Satisfies the following axioms:

- 1) $P(S) = 1$.
- 2) $0 \leq P(E) \leq 1$ for any $E \subseteq S$.
- 3) For any sequence E_1, E_2, \dots of mutually exclusive events (i.e. $E_i \cap E_j = \emptyset$ if $i \neq j$) then

$$P\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i).$$

As a particular consequence of axiom 3),
 if S is a discrete sample space
 then for any $E \subseteq S$, $P(E) = \sum_{x \in E} P\{x\}.$

For example, for a die,

$$\begin{aligned} P\{\text{even roll}\} &= P\{\{2\}\} + P\{\{4\}\} + P\{\{6\}\} \\ &= \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{3}{6} = \frac{1}{2}. \end{aligned}$$

Prop: $P(E^c) = 1 - P(E).$

Pf: $E \cap E^c = \emptyset$ and $E \cup E^c = S$,

so by axiom 2 and 3,

$$1 = P(S) = P(E \cup E^c) = P(E) + P(E^c)$$

so $P(E^c) = 1 - P(E).$

□

In particular, $P(\emptyset) = 1 - P(\emptyset^c)$
 $= 1 - P(S) = 1 - 1 = 0.$

In general, for events $E \subseteq F$, we have

$P(E) \leq P(F).$ This is because

F can be written as

$$F = E \cup (F \cap E^c)$$

and since $E \cap (F \cap E^c) = (E \cap F) \cap E^c = E \cap E^c = \emptyset,$

we have that

$$P(F) = P(E) + \underbrace{P(F \cap E^c)}_{\geq 0} \geq P(E).$$

For non-mutually exclusive events we need to subtract the probability of double counted events:

$$P(E \cup F) = P(E) + P(F) - P(E \cap F).$$

For example: Rolling a die:

$$P(\{1, 2, 3, 4\}) = \frac{4}{6} = \frac{2}{3}$$

$$P(\{3, 4, 5, 6\}) = \frac{4}{6} = \frac{2}{3}.$$

$$\begin{aligned} 1 &= P(\{1, 2, 3, 4, 5, 6\}) = P(\{1, 2, 3, 4\}) + P(\{3, 4, 5, 6\}) \\ &\quad - P(\{3, 4\}) \\ &= \frac{2}{3} + \frac{2}{3} - \frac{2}{6} \\ &= \frac{4}{3} - \frac{1}{3} = \frac{3}{3} = 1 \quad \text{..} \end{aligned}$$

More general:

$$\begin{aligned} P(A \cup B \cup C) &= P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) \\ &\quad - P(A \cap C) \pm P(A \cap B \cap C). \end{aligned}$$

↑ note.

Ex: In a game of 5 card stud,
the probability of getting a royal flush,
10, J, Q, K, A is $\frac{4}{\binom{52}{5}} \approx 0.00002\%$

Conditional Probability.

Suppose you have a deck of 52 cards.
The probability that you draw an ace from a shuffled deck is $4/52$. Suppose one random card B is missing (you don't know which; say your friend draws a random card before you). What is the probability of drawing an ace now? Now things are somewhat more complicated: if the missing card was an ace, then the probability is $3/51$, but if it wasn't an ace, then the probability is $4/51$ (51 since one card is already missing). That is, the probability depends / is "conditional" on the outcome of the first draw.

Given events A and B, we write

$$P(B|A)$$

to mean "the probability of B given an occurrence of A" i.e. $P(B|A)$ is the answer to the question "what is the probability of B if we already know that A has occurred?"

To Be Continued...