

Math 3132 Practice Questions (Fall 2019)

Part 1 (sections 14.1–14.4)

1. Let $\mathbf{F}(x, y, z) = \frac{1}{2}x^2\hat{\mathbf{i}} + y^2\hat{\mathbf{j}} + 3z^2\hat{\mathbf{k}}$ and $f(x, y, z) = \frac{-1}{x+2y+6z}$. Find values of a, b , and c such that

$$(\nabla \cdot \mathbf{F})^2 \nabla f - (a, 2b, 3c) = \nabla \times (\nabla f - \mathbf{F}).$$

Solution:

$$\begin{aligned} (\nabla \cdot \mathbf{F})^2 \nabla f &= (x+2y+6z)^2 \left(\frac{1}{(x+2y+6z)^2}, \frac{2}{(x+2y+6z)^2}, \frac{6}{(x+2y+6z)^2} \right) \\ &= (1, 2, 6). \end{aligned}$$

$$\nabla \times (\nabla f - \mathbf{F}) = \nabla \times \nabla f - \nabla \times \mathbf{F} = \mathbf{0} - \nabla \times \mathbf{F} = -\nabla \times \mathbf{F}.$$

But

$$\nabla \times \mathbf{F} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{1}{2}x^2 & y^2 & 3z^2 \end{vmatrix} = (0-0)\hat{\mathbf{i}} - (0-0)\hat{\mathbf{j}} + (0-0)\hat{\mathbf{k}} = \mathbf{0}.$$

Therefore $\nabla \times (\nabla f - \mathbf{F}) = \mathbf{0}$. Hence

$$(1, 2, 6) - (a, 2b, 3c) = \mathbf{0} \Rightarrow (a, 2b, 3c) = (1, 2, 6) \Rightarrow a = 1, b = 1, c = 2.$$

2. Let \mathbf{F} be a vector field. If $\nabla \cdot \mathbf{F} = 0$ and $\nabla \times \mathbf{F} = \mathbf{0}$, then is $\mathbf{F} = \mathbf{0}$? If yes prove it and if no give a counter example.

Solution: The answer is no; for example for any non zero constant vector field $\mathbf{F} = a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$, $\nabla \cdot \mathbf{F} = 0$ and $\nabla \times \mathbf{F} = \mathbf{0}$.

There are many other examples as well for instance for any of the following vector field we have the same result:

$$\begin{aligned} \mathbf{F}(x, y, z) &= x\hat{\mathbf{i}} - y\hat{\mathbf{j}} + 0\hat{\mathbf{k}}, \quad \mathbf{F}(x, y, z) = 2x\hat{\mathbf{i}} - y\hat{\mathbf{j}} + z\hat{\mathbf{k}}, \\ \mathbf{F}(x, y, z) &= (y+z)\hat{\mathbf{i}} + (x+z)\hat{\mathbf{j}} + (x+y)\hat{\mathbf{k}}, \quad \mathbf{F}(x, y, z) = yz\hat{\mathbf{i}} + xz\hat{\mathbf{j}} + xy\hat{\mathbf{k}}. \end{aligned}$$

3. Evaluate the line integral of $f(x, y, z) = (x^2 + \frac{y^2}{3})^2 + 60x^3y - 1$ along the curve C , where C is that part of $x^2 + \frac{y^2}{3} = 1$, $z = 0$ from $(1, 0, 0)$ to $(0, \sqrt{3}, 0)$.

Solution: (question 1) Let $x = \cos t$ then $y = \sqrt{3} \sin t$ so

$$C : \quad x = \cos t, \quad y = \sqrt{3} \sin t, \quad z = 0, \quad 0 \leq t \leq \frac{\pi}{2},$$

$$\begin{aligned} ds &= \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt = \sqrt{(-\sin t)^2 + (\sqrt{3} \cos t)^2 + 0} dt \\ &= \sqrt{\sin^2 t + 3 \cos^2 t} dt \end{aligned}$$

$$= \sqrt{1 + 2 \cos^2 t} dt.$$

$$\begin{aligned}\int_C f ds &= \int_0^{\frac{\pi}{2}} (1^2 + 60 \cos^3 t (\sqrt{3} \sin t) - 1) \sqrt{1 + 2 \cos^2 t} dt \\ &= \sqrt{3} \int_0^{\frac{\pi}{2}} 60 \cos^3 t \sin t \sqrt{1 + 2 \cos^2 t} dt.\end{aligned}$$

Now let $u = \sqrt{1 + 2 \cos^2 t}$ then $u^2 = 1 + 2 \cos^2 t$ and $2u du = -4 \sin t \cos t dt$ that is $dt = \frac{-u}{2 \sin t \cos t} du$ and $\cos^2 t = \frac{1}{2}(u^2 - 1)$. Hence

$$\begin{aligned}\int_C f ds &= \sqrt{3} \int_{t=0}^{t=\frac{\pi}{2}} (60 \cos^3 t \sin t)(u) \left(\frac{-u}{2 \sin t \cos t} du \right) \\ &= \sqrt{3} \int_{t=0}^{t=\frac{\pi}{2}} -30 (\cos^2 t) u^2 du \\ &= \sqrt{3} \int_{t=0}^{t=\frac{\pi}{2}} -15 (u^2 - 1) u^2 du \\ &= 15 \sqrt{3} \int_{t=0}^{t=\frac{\pi}{2}} (u^2 - u^4) du \\ &= 15 \sqrt{3} \left[\frac{1}{3} u^3 - \frac{1}{5} u^5 \right] \Big|_{t=0}^{t=\frac{\pi}{2}} \\ &= \sqrt{3} [5(1 + 2 \cos^2 t)^{\frac{3}{2}} - 3(1 + 2 \cos^2 t)^{\frac{5}{2}}] \Big|_0^{\frac{\pi}{2}} \\ &= \sqrt{3} [(5 - 3) - (5(3)^{\frac{3}{2}} - 3(3)^{\frac{5}{2}})] \\ &= \sqrt{3} (12 \sqrt{3} + 2) \\ &= 36 + 2 \sqrt{3}.\end{aligned}$$

4. Let C be a curve with initial and final points A and B . Also let $f(x, y, z)$ and $\mathbf{F}(x, y, z)$ be a real valued function and a vector field defined along C such that $\int_C f ds = 2$, $\int_C \nabla f \cdot d\mathbf{r} = 4$ and $\int_C \mathbf{F} \cdot d\mathbf{r} = 5$. Show that

$$\int_{-C} (3\nabla f - 2\mathbf{F}) \cdot d\mathbf{r} + \int_{-C} 4f ds = 6,$$

where $-C$ is the same as C with the opposite direction, that is with initial and final points B and A . Explain your work.

Solution: We know that in general $\int_{-C} f ds = \int_C f ds$ and $\int_{-C} \mathbf{F} \cdot d\mathbf{r} = - \int_C \mathbf{F} \cdot d\mathbf{r}$. Now

$$\begin{aligned}\int_{-C} (3\nabla f - 2\mathbf{F}) \cdot d\mathbf{r} + \int_{-C} 4f ds &= 3 \int_{-C} \nabla f \cdot d\mathbf{r} - 2 \int_{-C} \mathbf{F} \cdot d\mathbf{r} + 4 \int_{-C} f ds \\ &= 3(- \int_C \nabla f \cdot d\mathbf{r}) - 2(- \int_C \mathbf{F} \cdot d\mathbf{r}) + 4 \int_C f ds \\ &= 3(-4) + 2(5) + 4(2)\end{aligned}$$

$$= 6.$$

5. (a) Is the line integral $\int y^2z^3 dx + 2xyz^3 dy + 3xy^2z^2 dz$ independent of path in \mathbf{R}^3 ? Why?

Solution:

$$\begin{aligned}\nabla \times \mathbf{F} &= \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2z^3 & 2xyz^3 & 3xy^2z^2 \end{vmatrix} \\ &= (6xyz^2 - 6xyz^2)\hat{\mathbf{i}} - (3y^2z^2 - 3y^2z^2)\hat{\mathbf{j}} + (2yz^3 - 2yz^3)\hat{\mathbf{k}} \\ &= 0\hat{\mathbf{i}} + 0\hat{\mathbf{j}} + 0\hat{\mathbf{k}};\end{aligned}$$

and since \mathbf{R}^3 is simply connected, so yes the line integral is independent of path.

(b) Evaluate $\int_C y^2z^3 dx + 2xyz^3 dy + 3xy^2z^2 dz$ where C is the curve with parametric equations

$$C: \quad x = (1-t)^2, \quad y = t^2, \quad z = t, \quad 0 \leq t \leq 2.$$

Solution: Let $f(x, y, z) = xy^2z^3$ then $\mathbf{F} = \nabla f$. Now $t = 0$ corresponds to the point $(1, 0, 0)$ and $t = 2$ corresponds to the point $(1, 4, 2)$, therefore

$$\begin{aligned}\int y^2z^3 dx + 2xyz^3 dy + 3xy^2z^2 dz &= f(1, 4, 2) - f(1, 0, 0) \\ &= 1(4^2)(2^3) - 1(0^2)(0^3) \\ &= 128.\end{aligned}$$

Alternatively one could use the given parametrization of the curve C and evaluate the integral.

6. Evaluate $\int_C e^{x+yz^2} dx + z^2e^{x+yz^2} dy + 2yz e^{x+yz^2} dz$ where C is the curve $\frac{x^2}{16} + (y-4)^2 = 1, \quad y-z = 5$ from the point $(4, 4, -1)$ to the point $(0, 5, 0)$.

Solution: Let $\mathbf{F}(x, y, z) = e^{x+yz^2}\hat{\mathbf{i}} + z^2e^{x+yz^2}\hat{\mathbf{j}} + 2yz e^{x+yz^2}\hat{\mathbf{k}}$ then

$$\begin{aligned}\nabla \times \mathbf{F} &= \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ e^{x+yz^2} & z^2e^{x+yz^2} & 2yz e^{x+yz^2}\hat{\mathbf{k}} \end{vmatrix} \\ &= e^{x+yz^2}(2z + 2yz^3 - 2z - 2yz^3)\hat{\mathbf{i}} - e^{x+yz^2}(2yz - 2yz)\hat{\mathbf{j}} + e^{x+yz^2}(z^2 - z^2)\hat{\mathbf{k}} \\ &= 0\hat{\mathbf{i}} + 0\hat{\mathbf{j}} + 0\hat{\mathbf{k}};\end{aligned}$$

and since \mathbf{R}^3 is simply connected, so the line integral is independent of path. By inspection for $f(x, y, z) = e^{x+yz^2}$ we have $\mathbf{F} = \nabla f$. Therefore

$$\begin{aligned}\int_C e^{x+yz^2} dx + z^2e^{x+yz^2} dy + 2yz e^{x+yz^2} dz &= f(0, 5, 0) - f(4, 4, -1) \\ &= e^{0+0(5^2)} - e^{4+4(-1)^2} \\ &= 1 - e^8.\end{aligned}$$