Solutions of Math 3132 Practice Questions Part 2

2 a 3 A
7. Let F(x,y) = ( 3 xy )1+ ( 3 x*4/y)j . Find the work done by F on a particle that

moves along C where C traverses once counter-clockwise around the region in the
xy—plane bounded by the parabolas y = x*>, y = (x — 2)? and the line y = 0.

Solution: We offer two solutions:

Solution 1: Using Green’s Theorem

W:SQF-dr:fﬁ[%(%xzx/i)—(%(%xyﬁ)]dA
:ffR(3x\/§—x\/§)dA

:ff2x\/§dA
1 RZ—W
=ff 2x+/ydxdy
0 Jyy
1
:fo 2y [ dy
1
=f0 W2 = V9)* = (Vy)*]dy
1
- [ @g-anay

8 3 2 1
= (37 =29,

2
=3




Solution 2: We divide C into three parts C;, C, and C;:
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OnC,: x=2-t, y=¢, 0<t<1
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OnC,: x=1-t, y=(1-1%, 0<t<1
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On C;: x=t, y=0, 0<t<2
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Therefore since C = C; U C, U C3 we get
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8. Find the area of the ellipse x_2 + y—z =1.
a b

Solution: Let x =acost, y=bsint where 0 <t < 2x. Then
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3
Therefore the area of that part of the ellipse not in the third quadrant is 1 (abr) .

9. Evaluate the surface integral f f xydS where S is that part of the paraboloid

s
1 1
7= Exz + Eyz inside the sphere x*> + y* + z2 = 3 in the first octant.

Solution: To find S, we find the intersection of the two surfaces:
22472 =3=20rZ-DE+3)=0=>z=1, z=-3NA=*+y* =2,
that is
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10. Evaluate the surface integral of f(x,y,z) = 2y*z over the surface S , where S is that
part of the sphere x> +y? + z*> = 4 that lies above the cone z = +/x2 +)? .

Solution: The sphere and the cone intersect at x> + y> + (4/x2 + y2)? = 4 that is at
the circle x2 + y* =2, z= V2. So then
Soy={y) |2 +y*<2)={rnO|0<r< V2, 0<6< 2

Also from x>+ + 22 =4 we get z= \J4—x2—)2, 50
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Now
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