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Chapter 1
Introduction

The notion of orbifold was first introduced by Satake in [?] under the name of V-
manifold. Later it was rediscovered by Thurston in [T] as a tool for studying the
topology of 3-manifolds and it is then when the term of orbifold was coined. The
point of view of their definition was that the orbifold is a natural generalization of
that of manifold by allowing some mild singularities. They are locally modeled by
open sets in R” modulo an action of some finite group of homeomorphisms or diffeo-
morphisms. Moreover the group is not fixed and can be changed as we pass from one
point of the orbifold to another. An isomorphism of coordinate neighborhoods cor-
responds to equivariant actions of the same group on R™. A difference between their
definitions consists in that Satake required the group action to have a fixed point set
of codimension at least two while Thurston did not. Thurston’s definition of orbifold
allows group actions such as reflections through hyperplanes. If such a requirement is
made, the orbifold is often referred as a codimension two orbifold. However, both of
them used only faithful actions to define their orbifolds which corresponds to the so
called now reduced orbifolds. This intuitive restriction appears to be very unnatural
if for instance we want to study suborbifolds.

This perspective was basically motivated by the fact that orbifolds often arise as
quotient spaces of manifolds by proper actions of discrete groups. However, orbifolds

often occur in other branches of mathematics. For instance, in algebraic geometry,



it was developed the concept of stack in order to deal with moduli problems. As it
happens orbifolds arise quite naturally from the very same moduli problems and didn’t
take long to realize that the theory of stacks provide another way of understanding
the category of orbifolds (and vice-versa). For example, the Deligne-Mumford moduli
stack .#, for genus g curves is in fact an orbifold. So a reason for the importance
of studying orbifolds is that many moduli spaces are better understand as orbifolds.
This also motivates the modern approach of studying orbifolds, where the underlying
idea is that an orbifold is best understood as a stack. As a manifold is completely
determined by an open cover and the corresponding gluing maps, in the same way
a stack will be completely determined by a groupoid representing it. There may be
more that one such groupoid, but we use the notion of Morita equivalence to deal
with this. In [?] the authors describe the procedure to go from an orbifold to a stack
in a such way that the category of orbifolds constructed in chapter 2 turns out to be
a full subcategory of the category of stacks; and also the procedure of going from a
stack to a groupoid, producing again an embedding of categories. However there is a
direct way of passing directly from an orbifold to a groupoid as we will see in chapter
3.

A motivation for the groupoid approach to the theory of orbifolds comes also from
the theory of foliations where the groupoids play a fundamental role as they provide
the main tool of studying the space of leaves, by means of the holonomy groupoid of
the foliation. We recommend the Mooerdijk, haefliger... for a detailed exposure of
this issue.

We will refer to this perspective as the traditional approach of the theory of
orbifolds.



Chapter 2

Orbifolds

2.1 Group actions

In this section we briefly recall some facts from the theory of group actions on a
topological or smooth manifold and we will mainly focus on the properly discontinuous
actions (see below and also Proposition 2.1.2). A useful special case of a discontinuous
action is the action of a finite group on a Hausdorff topological space and as we will see
in the next section this will play an important role in understanding local properties
of orbifolds. For a more detailed introduction to actions of discrete groups the reader
may consult [B] and also [T1].

We will begin with some formal definitions. Suppose I' is a group and M is a

topological space or a smooth manifold.

Definition 2.1.1. An action of I' on M is a map I' x M — M, (v,x) — ~v.x such
that, for all x € M

(i) (v-90).x =~.(0.x) for ally,6 € T, and
(ii) 1.x = x, where 1 € I' is the identity element.

Thus the first rule says that the identity of the group acts as identity, and the
second rule says that two elements of I'; acting successively, act as the product of two

elements.



There are some standard notions associated with such an action. For a point
x € M, the set I'(z) = {y.2| v € '} C M is called the orbit of x. We can introduce
a relation on M by x ~ y if and only if x and y are on the same orbit. It is easy to
check that this is an equivalence relation. The space of equivalence classes of points
of M will be called the space of orbits and will be denoted M/T" (we agree to denote
it like this even if the action here is considered from the right).

The elements of I" which leave an element x fixed by their action form a subgroup
I, ={y € I'| v.x = z} called the isotropy group at x. It is easy to see that if x
and y are on the same orbit, say y = v.x, then their isotropy groups are conjugate,
ry=~.I »y~ L, and in fact any conjugate subgroup to I', occurs as an isotropy group
', to some element y € I'(x). If ', = I', then x is said to be a fized point of the
action. The set of fixed points of the action is often denoted M'. A subset N C M
is called I'-invariant if it is fixed by the action of I', i.e. v.N = N for every v € I (or
with the notation above if N C M").

We say that I' acts by homeomorphisms (diffeomorphisms) if there is a homo-
morphism p : I' — Homeo(M) (Diffeo(M)), where Homeo(M) (Diffeo(M)) denotes
the group of homeomorphisms (diffeomorphisms) of M with the group law given by
composition of maps. In what follows we will consider this kind of actions.

Here are some basic properties of group actions:

(i) The action of T" on M is called effective if no element of the group, besides the

identity element, fixes all the elements of the space, or equivalently if

() L. ={1}.

zeM

In this case the representation p : I' — Homeo(M)(Diffeo(M)) is faithful and

we can regard ' as a group of homeomorphisms (diffeomorphisms).

(ii) The action of I' on M is called free if no point of M is fixed by an element of
I' other than the identity, or equivalently if the map

I'x M — MxM, (y,z) — (y.z, ) is injective



such that v.x = x implies v = 1 for any v and any z.

(iii) The action of I" on M is called discrete if T" is a discrete subgroup of the group

of homeomorphisms (diffeomorphisms), with the compact-open topology.

(iv) The action of I" on M is said to have discrete orbits if every x € M has a

neighborhood U such that the set {y € I'| 7.z € U} is finite.

(v) The action of I" on M is called discontinuous if every = € M has a neighborhood

U such that the set {y € I'| v.U NU # @} is finite.

(vi) Assume now that M is locally compact. The action of I on M is called properly
discontinuous if for any compact sets K o in M, the set {y € I'| v.K1NK,y # @}

is finite, or equivalently if the map

I'x M — M x M, (v,z) — (v.x,x) is proper.

Recall that a map is proper if the preimages of compact sets are compact. Here
I' is assumed endowed with the discrete topology. Recall also that a proper map
between locally compact Hausdorff spaces is closed.

Note that on a locally compact space any properly discontinuous action is discon-
tinuous and any discontinuous action has discrete orbits, but the converses are not
true in general.

The following characterization of properly discontinuously actions will be useful.

Proposition 2.1.2. The action of a group I' on a locally compact space X is properly
discontinuous if and only if all of the following hold:

(i) the space of orbits M /T is Hausdorff with the quotient topology;
(i) each x € M has finite isotropy group;

(i1i) each x € M has a I'p-invariant neighborhood U such that Iy = {y € I'| .U N
U # o}.



Proof. (=) (i) Let = and 2’ be points in M with distinct orbits of I' and let K be a

compact neighborhood of x. Since, by hypothesis, the set {y € I'| v.2’ € K} is
finite we can find a neighborhood U of x which is disjoint from the orbit of z’.
Then U«/er 7.U is a I'-invariant neighborhood of x which does not contain z’ (so
it does not intersect the orbit through z’). Similarly we can find a I'-invariant
neighborhood of ' which does not contain x, hence M/I' is Hausdorff with the
quotient topology.

(ii) is immediate from the definition by considering K; = Ky = {«x}.

(iii) Let Ky = {z} and K5 be a compact neighborhood of z. Since the action
is properly discontinuous, the set {y € I'| v.x € Ky} is finite and contains I',.
Thus we can find a compact neighborhood of z, say K} such that {y € I'| y.z €
K3} = I';. Consider now the set K = (J . 7.K; which is a compact and
[',-invariant neighborhood of x. Applying the definition for K; = Ky = K,
the set {y € I'| 7.K N K # @} is finite and contains I',. Then we can find a
neighborhood of x in K, say U’, such that {y € I'| v.U' NU’" # @} =T, and by
taking U = (J,p, 7.U" we obtain the I',-invariant satisfying (iii).

By (i), for any x,2’ € M such that x and 2’ are not on the same orbit there
are neighborhoods U and U’ such that v.U N U’ = & for any v € I'. If = and
2’ are on the same orbit, then we can find neighborhoods of z and 2/, say U
and U’, such that the set {y € I'| .U N U’" # @} is finite and in fact that it
has the cardinality equal to the order of the isotropy group of x (or z’). Indeed,
assume that x = d.2" for some § & I',, and consider U to be a neighborhood
of x as given by (iii) and U’ to be 0.U. Then {y € | v.UNU" # @} = {y €
U vUNU #£ 2} ={yel|UN(H'0§).U# @} =4I, which by (ii) is
finite. Thus, for any x, 2’ € M we can find neighborhoods U and U’ such that
{v| T.UNU" # @} is at most finite. Let now K be any compact in M. Then
K x K is compact in M x M and so has a finite cover with sets of the form U x U’
where {7| I"'UNU" # @} is finite. Therefore the set {y e I'| . K N K # @} is
finite, i.e. the action is properly discontinuous.

]



Remark 2.1.3. In the above proposition, if the action is free and the space M is a
smooth manifold, then M/T" is also a smooth manifold and the map M — M/T" is a

covering.

Consider now a smooth manifold M and a group I' acting by diffeomorphisms on
it. Note that the action of I' on M induces an action on the tangent bundle 7'M
defined by v.v := (dvy),.v, for any v € I', v € T,M, x € M. It is well known that
if M is also connected and paracompact it admits a Riemannian metric. In the case
when the action of I' on M is proper one can prove that there exists a I'-invariant
Riemannian metric on M. We will include here the proof of this fact in the special

case when I is a finite subgroup of Diffeo(M).

Lemma 2.1.4. Let M be a connected paracompact differentiable manifold and T’
be a finite subgroup of Diffeo(M) acting on M. Then there exists a I'-invariant

Riemannian metric on M.

Proof. Choose a Riemannian metric ¢ on M and define a new one by averaging g

over I
1
Pz ('Uv w) = m Z g’Y-l‘('V"Uv ’7.'&0)

el
for any v,w € T, M and any x € M. Then p is a Riemannian metric on M and it is

I-invariant. H

Remark 2.1.5. In the general case this can be done by averaging over I with respect
to the restriction to I' of a Haar measure p defined on Diffeo(M) and using a Bruhat
function. That is, a smooth function 5 € C*°(M,R) such that

/F B(y.x)du(y) =1

for all x € M. Moreover 3 can be chosen in a such way that I'. K Nsuppf is compact
for all compact subsets K C M.

Let v € I" and denote X, = {x € M| v.x = z} the subset of M which is fixed by
~ and

Sr={zeMT,#1}= (] 3,

vEL v#1



We say that a subset S of M is I'-stable if it is connected and if for any v € T' we
have either v.5 = S or 7.5 NS = &. The isotropy group of the I'-stable set S
is I's = {y € T'| 7.5 = §}. Note that the I'-stable subsets of M are exactly the

connected components of I'-invariant subsets of M and the following holds.

Proposition 2.1.6. If I" is finite, for any x € M there exists an arbitrarily small
open T'-stable neighborhood S of x such that I', = I's (compare with (iii) in previous
proposition). Hence, the open I'-stable subsets of M form a basis for the topology of
M.

Proposition 2.1.7. Let M be a connected, paracompact smooth manifold and I" a
finite subgroup of Diffeo(M). Then Xr is a closed set with empty interior. Moreover,
the homomorphism d, : I'y — Aut(T, M) is injective for every x € M.

Proof. The set

Sr= |J 5, ={re M| IyeT, y#1such that y.o =z}
yely#1

is obviously closed. It is the finite union of the sets of fixed points of a diffeomorphism,
which are closed. An alternative way of seeing this is the following. Consider a
sequence of points (x,) in Xr which converges to a point x in M (we will prove that
x € Yr). Since each z, is in ¥ we can form a sequence of elements of I', 7, such
that v,.z, = x, and v, # 1 for any n. But I is finite, so 7, contains at least a
constant subsequence which we will denote again -, and assume =, = v # 1 for any
n. The corresponding subsequence of x, converges to x and moreover the sequence
Vn-Tp = 7.2, converges to v.x. But ~,.x, = z, for any n so v,.x, converges to x
also. Since the quotient space is Hausdorff we have that v.x = = and since v # 1 we
conclude that z € Xr.

Let’s prove now that it has empty interior. Consider the I'-invariant Riemannian
metric on M given by the above lemma, and consider the exponential map associated
with this metric. Then, for each x € M there are € > 0 and open neighborhood of =z,
U such that

exp, : B(0,e) = U



is a diffeomorphism from the e-ball centered at the origin in the tangent space T, M
to U. Since the metric is I'-invariant, the action of the isotropy group I', on the
tangent space at z is orthogonal, i.e. (dv), is an orthogonal transformation of T, M,

and
exp, © (dV)x =7 © €XP,,

for any v € I';. In particular, if (dv), = id then the restriction |y = id. Since M is

connected this implies v = 1. To see this, consider the set
A={y e M| ~y.y=yand (dv), = id}.

Then, A # @ (since x € A) and it is obviously closed. It is also open. If we assume
that y € A then the condition v.y = y implies that v € I', and the condition that
(d7v), = id implies that the restriction of v to an open neighborhood of y is 1. Hence
the whole neighborhood of y is contained in A, i.e. A is open. The connectedness of
M implies A = M and so, v =1 on M.

This proves that d, : I, — Aut(7,M) is injective, which in particular implies
that ¥, has empty interior, for any v # 1. Indeed, let x € ¥, and assume that there
exists an open neighborhood U of x in 3,. Then the restriction 7|y = 1 and as we
have seen this implies v = 1 on M. Since I' is finite, ¥r has empty interior also and

the proof is complete. O

Remark 2.1.8. The above proposition implies that the only diffeomorphism of finite

order on a connected manifold which fixes an open set is the identity.

Proposition 2.1.9. Let M be a connected, paracompact smooth manifold, I' a finite
subgroup of Diffeo(M) and let ¢ denote the natural projection M — M/T. Let V be
a nonempty, open, connected subset of M and f :V — M a diffeomorphism onto its

image such that ¢ o f = p|y. Then there exists a unique v € I' such that f = |y .

Proof. Consider on M a I'-invariant Riemannian metric given by Lemma 2.1.4. By
the previous result, the set My = M\ X is open and dense in M. For any = € VN M,
the condition o f = |y implies that there is a unique vy € I" such that f(x) = v.z and
on a sufficiently small connected neighborhood of = in V' N My we have (df), = (d7)..
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Since the metric is I-invariant (dv), , this means that (df), preserves the metric at
x. S0, the restriction of f to VN M, is a Riemannian isometry. Since V' N M, is dense
in V, by continuity f is a Riemannian isometry on V' and f = ~ on a neighborhood

of z in V. But V is connected, therefore the two isometries f and 7|y are equal. [

Remark 2.1.10. The last two results are still true in the case where M is assumed
to be a connected topological manifold and I" a finite subgroup of Homeo(M). This
fact is a consequence of a result of Newman (see [?]) which states that a nontriv-
ial homeomorphism of a manifold which fixes an open set cannot have finite order

(compare with Remark 2.1.8).

2.2 Traditional approach to orbifolds

In the following sections we present the definitions and the basic properties of orbifolds
in a traditional approach. The point of view of this chapter is that an orbifold
structure generalizes the manifold topological (differentiable) structure. For more
information the reader is referred to the original work of Satake in [Sal] and also
to that of Thurston in [T]. Other introductions for the classical theory of orbifolds
include chapter 6 in [K] and section 2.4 in [MM]. A different formulation of most of
the concepts presented here as well as a great deal of information on the differential
geometry of orbifolds can be found in the appendix of [CR|. A detailed presentation

of the geometric structure of 2-dimensional orbifolds is provided in [Sc].

Definition 2.2.1. A topological (differentiable) n-dimensional orbifold @ consists of
a Hausdorff space denoted |Q| and called the underlying space of Q, together with an

additional structure given by the following

(i) a countable basis of open sets {U;}ier which is closed under finite intersections
and such that |Q| = U,¢; Ui

(ii) to each U; is associated a finite group T';, an action of T'; on some open subset
U of R™ by homeomorphisms (diffeomorphisms) and a homeomorphism o; :
ﬁz/ Iy — Ui
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(111) whenever U; C U;, there is a monomorphism
)\ij : Fz — Fj

defined only up to conjugation with elements of I'; and such that X\;; induces
an isomorphism between { € T;| v.U; = U;} and {v € I v.ﬁj = 17]-}, and a

Aij-equivariant (smooth) embedding
7y Ui = U,

(i.e., for any v € I, @i;(7.2) = Nj(7).945(T) for all T € (72) defined up to
composition with elements of I'; such that the following diagram commutes

Note that the actions of the I';’s on ﬁi’s can be always assumed to be effective.
Indeed, the set of elements in the group which act trivially form a normal subgroup
and the action of the quotient is effective with the same space of orbits. Then each
I'; can be regarded as a finite subgroup of Homeo((j}) in the topological case and
respectively of Diffeo(U;) in the differentiable case.

The triple (U;, ﬁi/Fi, vi) as in (ii) is called an orbifold coordinate chart over U; or
uniformizing system of U; and the pair (\;;, ©;5) : (U, U /T, i) — (U, ﬁj/Fj, ©;) as

in (iii) an injection between charts.

Remark 2.2.2. It easy to see that the composition of two injections is again an

injection. The well definition of the maps ¢;; up to compositions with elements of
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the group I'; is a consequence of Proposition 2.1.9 in the smooth case and of Remark
2.1.10 in the topological case. Hence if (\ij, ¢s;) and (N};, ¢};) denote two injections
between the same orbifold charts, then there is a unique v € I'; such that &, = 7.9;;

1. In particular if i = j, @; is an element ; € Ty

and in this case Aj; = v+ Ay -y~
and then )\; is just conjugation with 7;. In general it is not true that whenever
Ui C U; C Uy, we have ;i 0 p;; = pir, but there exists an element v € I'y, such that

Gk 0 Pij = 7P and Aji o Aij =7 Aig -7

As in the manifold case, the covering {U;}; is not an intrinsic part of the orbifold
structure. Two coverings will give the same orbifold structure if they can be consis-
tently combined to give a covering which still satisfies the properties (ii) and (iii).
By an orbifold one should understand the orbifold with the structure given by a such
maximal cover.

We begin with the simplest examples of orbifolds, more interesting examples are

given in 2.6.5.

Proposition 2.2.3. Let I' be a group acting properly discontinuously on a manifold

M. Then the quotient space M /T has a natural orbifold structure.

Proof. We have seen already, in Proposition 2.1.2 (i), that under these assumptions
the quotient space M /I" is Hausdorff. We will construct an orbifold atlas for M/T,
% satisfying the conditions (i)-(iii) in definition.

Let 7 : M — M/T" denote the quotient map and let x € M/I". Choose T € M
such that 7(z) = = and let I'z = {y € I'| 7.2 = &} denote the isotropy group of . By
Proposition 2.1.2 (iii), there exists an open connected neighborhood of Z, Uz which
is invariant to I'y and disjoint from its translates by elements of I not in I'z. Then
the restriction

7|, Us — U, := Uz /T
is a homeomorphism. Let U be a maximal atlas on M. By eventually shrinking 175,
we can assume that (75 S U and so there is a homeomorphism ¢ : (75 — (,0([75) C R™

Then the composition

o = (p/T5) " oy, : 0(Us)/Tz — Us
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is again a homeomorphism.

Hence {U,| x € M/I'} form an open cover for M /I" and each U, has an uniformiz-
ing system by (Uy, ¢(Us)/Tz, ¢.). In order to get a suitable cover of M/T" we should
augment the above cover by adjoining finite intersections. Let now xq,xs,... xp €
M/T such that the corresponding sets Uy, , Uy,, - -+ U, as above satisfy U,, N U,, N
-+ NU,, # @. Then, since I' acts by permutations on the set of connected compo-
nents of 77 (U,, NU,, N---NU,,), there exist v1,72,... v € [ such that 71.[751 N
72.1752 N---N vkﬁgk # &, where as above [751 denote neighborhoods of 7; € 7! (x;)
invariant by I'z,. Then this intersection may be taken to be

U, N NU,
which is obviously invariant to the action of the finite subgroup

Q7R S R A EEE A LTS - A T

In this way we obtain a cover % of M /I" which satisfies (i) and (ii) of definition 2.2.1.

We will show that the condition (iii) in the definition is also satisfied. Consider
U and U in % such that U’ C U and let € U’ and ¥ € M such that 7(Z) = z.
For x and U, consider ﬁg and I'; as above and choose ﬁ% (note that it should be the
neighborhood for the same lift of z, ). In order to prove that there is an embedding
between the two charts, it suffices to prove that (7% C (75 To see this, assume it is not
true and choose y € ﬁ% ~Us. Then there should exist v € I'z such that . € U'NU,
since 7(y) = y € U’ C U. But both ﬁ% and Us are D'z-invariant and hence so is
(7% N Us. This means that Y€ (7% N Us which contradicts the fact that Y€ (7% ~ (75,
i.e. proves (7% c Us. O

Note that the orbifold structure on M/T" is natural in the sense that it depends
only on the action of the group I' and not on the choice of the atlas U on M. Tt is
called the orbifold quotient of M by the properly discontinuous action of I'.

Definition 2.2.4. An orbifold is called good if it arises as the global quotient by
a discrete group acting properly discontinuously on a manifold. If the group can be

chosen to be finite, then the orbifold is called very good.
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Remark 2.2.5. Sometimes, we refer to good orbifolds as being developable. In fact,
another approach is to define orbifolds using charts for open sets U; of the form
(X;,T';), where each X; is a manifold and I'; is a discrete group acting properly
discontinuously on X; with X;/T"; homeomorphic to U;. From this point of view, an
orbifold @ is good (or developable) if it admits such an atlas with a single chart. As
in [GH], we call the pair (X;, q;) a uniformizing chart of U;, where ¢; : X; — Uj is
a continuous map which induces a homeomorphism from X;/I"; onto U;. Then the
compatibility condition (iii) in Definition 2.2.1 becomes: for all z; € X; and z; € X
such that ¢;(z;) = g;(z;), there is a homeomorphism(diffeomorphism) h from an open
connected neighborhood W of x; to a neighborhood of z;, such that ¢; o h = ¢;|w.
This time, we will call A a change of charts, and as we already saw it is defined up to
composition with elements of I'; and in particular, if ¢ = j then h is the restriction

of an element of I';.

Similarly, we define orbifolds with boundary by taking as uniformizing systems

open sets in the upper half plane
Rgo = {(«Tl,IQ, .- In)| T, > O}

(or equivalently connected manifolds with boundary). The boundary of such an orb-
ifold consists of points x € |@Q| that correspond to Rf = {(z1, xa,...,2,)| z, = 0} (or
to the boundary of (72) As in the manifold case, the boundary of an orbifold is an

orbifold without boundary. A compact orbifold without boundary is called closed.

2.3 The singular set

Let @@ be an orbifold and let x € . Within an orbifold chart (Ui,ﬁi/Fi,goi) we
can associate to x a group 'Y well defined up to isomorphism in the following way.
Consider 7,7 € U; such that ¢;(Z) = ¢;(#') = . Then their isotropy groups Fg) and
Fg,) are conjugate to each other, since ¥ and 7’ are on the same orbit. Denote this
subgroup by ') and since it is independent of the choice of the lifts of x we will refer

to it as the isotropy group of z in Uj.
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Consider now (U;, U; /T, ¢;) and (U, ﬁj/Fj, ;) two orbifold charts containing x
assume that U; C U;. Let (A, ;) denote the injection between them. Note that
if = has non-trivial isotropy in U; (i.e. re # 1) then it has non-trivial isotropy in
U,. Indeed, since the embedding ¢;; is \;-equivariant, 'Y contains the subgroup
Aij (Fg)) which is not trivial since \;; is injective (the inclusion above is considered
up to isomorphism, i.e. at least one of the isomorphic subgroups defining 'Y should
contain )\ij(F;i)), and this is fine since both T'Y) and Ai; are defined up to conjugation
with elements of I';).

Define the isotropy group at x, I, to be the smallest isotropy group of x corre-
sponding to an orbifold chart containing x, i.e.

I, =T
i€l
It is obvious that ', is always finite. (Equivalently the isotropy group at x can be
defined as the germ of the action of I at x.)
A point = € @ is called a singular point if it has non-trivial isotropy i.e. I'y # {1}

and it is called a regular point otherwise. Define the singular set of an orbifold to be

Yo ={reQ|T.#{1}}.
Then we say that an orbifold is a manifold if the singular set is empty. The following
result concerning the singular set of an orbifold holds:
Proposition 2.3.1. The singular set of an orbifold is closed and nowhere dense.
Proof. Let (U, U /T, ¢) be any orbifold chart that has nonempty intersection with the
singular set. Then
YonNU={zeU|T,#1}
= {r € U| 3y €T,y # 1 such that 7.7 = 7 for some T € ¢ ' (1)}
= U {o(z)| 3y € ',y # 1 such that y.z = 7}

zeU
= SD(U {Z| 3y € T,y # 1 such that 7.7 = 7})
zelU

= ¢(Xr)
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Since Yr is closed and with empty interior (see Proposition 2.1.7 and Remark
2.1.10) and ¢ is a homeomorphism X N U is closed and has empty interior. Hence
¥ is closed and since |Q)] is locally compact and Hausdorff, 3o = |, X¥g N U; has

empty interior. 0

Note that in general the singular set is not a manifold and it may have several
connected components of different dimension. From the definition we can see that
any orbifold is locally compact. If we assume that in any uniformizing system the
elements of the group have the fixed point set of codimension at least two (i.e. the
singular set has the codimension at least two) then the orbifold is also locally path

connected. In this case an orbifold is connected if and only if it is path connected.

2.4 Maps between orbifolds

Consider two orbifolds @ and " and a continuous map f : |Q| — |Q’| between their
underlying spaces.

Let z € |Q| and y = f(z) € || and let V' be an open neighborhood of y and U an
open neighborhood of z such that f(U) C V. Let (V,V/T*,¢*) be an uniformizing
system over V and (U,U/T, ) an uniformizing system over U. Corresponding to
these uniformizing systems, a continuous (resp. smooth) lifting of fly : U — V is a
continuous (resp. smooth) map

FU—=V
such that ¢* o f = f o and for any v € I' there exists v* € I'* satisfying y*f(f) =
f(vi) for any 7 € U.
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For a different choice of uniformizing systems (V, 1% JT¥, ©*) over V, respectively
(U, ﬁ’/F’, ¢') over U, we say that the lifting f’ U — V' is isomorphic to fis there
are bijections

(A\@): (U,UJT,0) = (U,TJT', )

respectively
(A, &) - (V VT, 07) — (V, V)T, ")
such that A\* o f: f’ oA
Let now zo € U and let (Up, Uy/To, o) be a uniformizing system over an open

neighborhood Uy C wu of zy and (Vj, Vi /TS, ¢5) a uniformizing system over a neigh-

borhood Vi C V' of f(zg) such that f(Uy) C Vy. The lifting fwill induce a lifting
fo:Uo = Vo
of flu, : Uy — Vj in the following way. For any injection
(Aos @o) * (Uo, Un/To, 00) — (U, U/T, ),

consider the map fo Xy : Uy — V and note that (¢* o f o X)(Us) C Vo which implies
(f o Xo)(Up) C (¢*)~1(Vp). Therefore there is an injection

(N5 @8) = (Vo, Vo /T, 05) — (V. V /T, ")

such that (f o A)(Up) C A;(Vo). Define now

% = (AS)_l © fo Ao

which is the induced lifting of f|y, : Uy — V. Note that different choices of injections
(Ao, Po) give isomorphic liftings. We say that two liftings are equivalent at a point x
if they induce isomorphic liftings on a smaller neighborhood of x.

A continuous (resp. smooth) lifting of f : |Q| — |@Q’| is the following: given any
point y € |Q’| and any uniformizing chart (V, V /I'*, ¢*) at y there exists a unifomizing
chart (U,U/T,¢) at z € f~'(y) and a continuous (resp. smooth) lifting f, : U — V
of fly : U — V such that for any 2’ € U and any uniformizing chart (U, ﬁ’/F’, ¢
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at ' and such that U’ C U, the lifting J?;/ U — V of flor = U — V is isomorphic
with the induced one on U’ from f,. We say that two liftings of f : |Q| — |Q’| are

equivalent if their local liftings are equivalent at each point in |Q)|.

Definition 2.4.1. A continuous (resp. smooth) orbifold-map between orbifolds QQ —
Q' is an equivalence class of continuous (resp. smooth) liftings of a continuous map

between their underlying spaces |Q| — |Q'|.

We will denote by f: @ — @' an orbifold-map whose underlying continuous map
is f:|Q| — |Q’'|. Note that two different (which are not isomorphic) orbifold-maps
might have the same underlying continuous map (for an example see [CR] Example
4.1.6b in the Appendix)

We will define now a particular kind of orbifold-maps called good maps (see [CR]
Definition 4.4.1). The advantage of using these maps is that we can define the pull-
back bundles, fact which cannot be done by using general orbifold-maps. Also these
good maps match the definition of a morphism in the category of groupoids (see
section 7?7 and also 77).

Let f:Q — @ be an orbifold-map with underlying continuous function f : lg| —
|@'|. Suppose that there is an atlas % for ) and a collection of open subsets %’ of
(' such that there is a one-to-oen correspondence between the elements of % and
W', say U « U’', with f(U) C U" and Uy C U, implies U] C Uj. Moreover, there is a

collection of liftings of f such that fUU’ : U — U’ satisfies that for each injection
(A, @) : (U, U1 /T1, 1) — (Un, Ua/Ta, 02)
there is another injection associated to it
(V) (@) = (U3, U1/, 01) = (U3, U3/T, 65)
such that
fUlU{ oA=v(A)o fU2U2’,

and for any composition of injections A o A we have v(X o \) = v(X) ov(A). The

collection of liftings {fUU/,I/} defines a lifting of f. If this lifting is in the same
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equivalence class as f, then the collection {fUU/, v} is called a compatible system of

f.
Definition 2.4.2. An orbifold-map is called good if it admits a compatible system.

The real line R as a smooth manifold is trivially an orbifold. The smooth orbifold-
maps f : Q) — R are called smooth functions on the orbifold ). Note that an orbifold
function is smooth if and only if the map f o ¢ is smooth for any orbifold chart
(U,U/T, ¢) in an orbifold atlas of Q. A (smooth) map from R (or an interval I) into
an orbifold @ is called a (smooth) path in Q.

Similarly we can define immersions and submersions between orbifolds as dif-
ferentiable maps between orbifolds that locally lift to immersions and submersions,

respectively.
A suborbifold ' C (Q is an orbifold @)’ together with an orbifold embedding

1:Q — Q.

2.5 The tangent space to an orbifold

Suppose now that @ = M/I" is a good orbifold. As we have seen in the previous
section, we can extend the action of I" on M to an action on T'M by setting v.(Z,v) :=
(v.z,d(y)zv), for all v € I and (z,v) € TM. The quotient of T'M by this action is
the tangent bundle T'Q) of the orbifold ). As in Proposition 2.2.3 it inherits a natural
orbifold structure. For z € @), let x € M denote one of its lifts. By taking the
differentials (dv)z of the elements v in the isotropy group I';, we obtain a new group
which acts on T3 M. Since the group is independent of the choice of the lift, we will
denote it by I'y«. Hence the fiber in T'Q) above x € @ is T3Q/T';+ and is denoted
T,.Q. Because T,.(Q) will not be a vector space at the singular points, we will call it
the tangent cone to Q) at x.

Since any orbifold is locally good, the construction above gives a local way to
work with tangent cones to orbifolds. So, if we consider an orbifold atlas (X, ¢;)ics

(see Remark 2.2.5) for the orbifold structure on ), by making a quotient space of
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the tangent bundle T'X; over X; by I'; as above, we obtain a 2n-dimensional orbifold
;. We can easily patch the orbifolds @); together to obtain a 2n-dimensional orbifold
T with a projection map p : T() — @ such that the inverse image of a point in
the orbifold is a vector space modulo a finite group action (the tangent cone). A full
description of the tangent bundle, as well as general bundles over orbifolds will be

given in the next chapter.

2.6 Riemannian orbifolds

Let @ be a differentiable orbifold and let % = {(U;, ﬁi/l“i,goi)}iel be the maximal
orbifold atlas on Q).

Definition 2.6.1. A Riemannian metric on the orbifold Q is a collection p = (p;),
where p; 1s a Riemannian metric on U; such that any embedding ©;; coming from an
injection between orbifold charts (U, ;, ﬁivj/lﬂi,j, @i j) is an isometry as a map between
(Us, pi) to (ﬁj,pj). An orbifold with such a Riemannian metric is called Riemannian
orbifold.

Remark 2.6.2. Note that in particular the Riemannian metrics p; on (72 are I';-
invariant, so locally Riemannian orbifolds look like the quotient of a Riemannian
manifold by a finite group of isometries. By a suitable choice of coordinate charts it
can be assumed that the local group actions are by finite subgroups of O(n) for a gen-
eral n-dimensional Riemannian orbifold, and finite subgroups of SO(n) for orientable

Riemannian orbifolds. As for manifolds, the following proposition holds.
Proposition 2.6.3. Any differentiable orbifold admits a Riemannian metric.

Proof. Let @ be an orbifold and let {(U;, ﬁi/Fi, ©i) }ier denote an orbifold atlas on it.
Since |@Q)] is paracompact we may assume that the cover (U;);es is locally finite. Then
there is a smooth partition of unity f; : U; — R subordinate to it. Indeed, we can
choose on each ﬁ, a I';-invariant, non-negative smooth function 7L, : 171 — R such that

hi = g; o p; can be extended over |Q| by zeroes and such that {supp(h;) C U; :i € I}
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still covers |@|. Denote h(x) = Y;crhi(z) # 0 for all z € @ and consider f; := h;/h.
Then {f; : i € I} is a smooth partition of unity subordinate to the cover U;.
Consider now an arbitrary Riemannian metric g; on each U,. By Lemma 2.1.4
(see also Remark 2.1.5) there exists a [';-invariant Riemannian metric a; on each (7@
obtained from g; by averaging over I';. For any i € I, define a new Riemannian metric

pi on ﬁ, as follows:

(p0)z(v, w) := Bjerfi(i(T)) (@), @) (d(P)3(v), d(@ig)z(w)

for any = € U; and any v,w € T:U; and where ©;; is an embedding coming from an
injection between (U;, U; /T, ;) and any (U;, ﬁj/Fj,gpj), j € I. Then, Lemma 2.1.4
together with the second part of the Remark 6 guarantee that the Riemannian metric
defined in this way is well defined, i.e. it is independent of the choice of the embedding
between the uniformizing charts. It is also easy to check that each embedding is an
isometry, hence the collection p = (p;) is defines a Riemannian metric in the sense of
the definition above. O

Similar to the definition of the Riemannian metric on an orbifold, we can move
on and define general tensor fields. So, in an uniformizing system (Uj, U; /T, 0)i), for
any tensor field w; on ﬁ, by pre-composing with an element v € I'; we obtain a new

tensor field &;" on Uj. Then, by averaging, we obtain a [';-invariant tensor field on

ﬁh
~Ty 1

w; = mzfyepi(;ﬂ.

Such a I'; invariant tensor field on ﬁ, gives a tensor field w on Us.

Definition 2.6.4. A smooth tensor field on an orbifold is one that lifts to smooth

tensor fields of the same type in all uniformizing systems.

Using the Riemannian metrics on the local uniformizing systems we can define

the objects familiar from the Riemannian geometry of manifolds.

Example 2.6.5. (1) (The cone) Let M = R? and let I' = Z,, acting by rotations

on it. The quotient space is topologically R? but metrically is a cone with cone
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angle 27 /n. It is a Riemannian manifold except at the cone point where the
metric has a singularity. In this case, the singular locus consists of a single
point (the cone point) and the isotropy group at any point is trivial except the

singular point where it is Z,.

(2) (The Z,,-football) Let M = S* C R? and I' = Z,, acting by rotations around the
z-axis by an angle of 27 /n. The quotient space is topologically S? but metrically

there are two singular points: the north and the south pole (the points N and
S in figure 2.1).

(3) (The pillow case) Let M = T? and T’ = Z, acting by rotations around one of
its axis. Then the quotient space is an orbifold whose underlying space is S?
and has four singular points with nontrivial isotropy Zs. The sphere inherits a
Riemannian metric of curvature 0 in the complement of the singular locus, and

has curvature 7 at each of the four points.

(4) Let M = R3 and I' = Z, acting by the antipodal map x — —z. Since topo-
logically R?/Z, is a cone over RP?, the underlying space of this orbifold is not
(topologically) a manifold.

(5) (The Z,-teardrop) The underlying space is S* and the singular locus is a single
point with isotropy group Z,, n > 1.

(6) (The Z, — Z,-football) The underlying space is again S* and the singular locus
is a pair of cone points (N and S in figure 2.4) with isotropy Z,, respectively

Zy (p # )

Note that except the last two examples, the orbifolds considered above are good
(actually they are very good). For a proof of the non-developability of the orbifolds

in (5) respectively in (6) see (the fundamental group and Euler number...
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Figure 2.1: The Z,-football is covered by S? and its fundamental group is Z,. The
tangent cone at N is the cone R?/Z,, of angle 27 /n.
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Figure 2.2: The pillowcase is covered by T2.

Figure 2.3: The Z,-teardrop is not developable. The orbifold atlas consists of two
open sets U; and U, uniformized by V; = D? and V, = D?/7Z,, respectively.
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2.7 Universal coverings and the fundamental group

of orbifolds

We begin by briefly recalling the notion of coverings of topological spaces. A projec-
tion 7 : X — X is a covering map if every z € X has a neighborhood U such that
71(U) is a disjoint union of sets V; for each of which the restriction 7|y, : V; — U is
a homeomorphism.

Orbifold covering spaces are defined similarly. A projection p : Q' — @Q between
orbifolds is called a covering map if it satisfies the condition that, for each = € @,
there exists a neighborhood U uniformized by (17 ,[') such that for each connected
component U; of p’ ' (U) in @', the uniformizing systems of U; is ((7 ,I';) for some
subgroup I'; < I'. Note that the underlying space |Q’| is not generally a covering
space of |@|. The universal covering of a connected orbifold @ is a connected covering
orbifold p : @ — (Q such that for any connected covering orbifold p' : Q' — @, @ is a
covering orbifold of @' with a projection pr : @ — @' factoring p : @ — (@ through
p:Q —Q.

Q— @

(0

Q

Thurston proved existence of universal orbifold covers (see Proposition 13.2.4 in
[T]) and used them to define the orbifold fundamental group in terms of deck transfor-
mations. We will present the details of this theory for the special case of 2-dimensional
orbifolds, but before that we discuss the case of a global quotient Q = M/T". The
quotient M — M /T" can be regarded as an orbifold covering with I" as the group of
deck transformations. Similarly, any subgroup I induces an intermediate orbifold
covering M /I — M/T". On the other hand, any manifold covering M — M gives an
orbifold covering by composing with the quotient map M — M/T". In particular, the

universal covering gives rise to a universal orbifold covering of (), and the orbifold
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fundamental group belongs in a short exact sequence
1 —»mM — aQ - T — 1.

For the remainder of this section, we take () to be a 2-dimensional orbifold. For
the purpose of proving the existence of universal covers, we can assume that () has no
boundary, for if it did, by doubling () along its boundary, we get an orbifold without
boundary that double covers () and has the same universal cover as ().

The singular locus of () consists of cone points and corner reflectors, which are
singularities modeled by R?/D,, for the dihedral group of order 2n. We can further
assume () does not contain any corner reflectors, for if it did, then by doubling @)
along the reflector lines, we obtain an orbifold that covers () with two cone points for
each cone point in () and one cone point for each corner reflector.

Denote by ¥ the singular locus of () and suppose p : Q — () is an orbifold covering.
Note that Q —p~'(2) is a manifold cover for the regular set Q\ ¥. Let now z; € ¥ be
a singular point with cone angle 27 /n;. That is, a neighborhood of z; is uniformized
by (R2,Z,,) with z; corresponding to the cone point in R2/Z, . Any point in Q above
x; will have cone angle 27 /m;, where m;|n;. Denote by X the manifold obtained from
@ by removing the interior of small cones centered at the singular points and denote
by X = pHX) C @ Hence the regular set @ \ X is just X with pointed discs
attached to the X. The covering p|s : X — X induced by the orbifold covering
@ — @ has the property that a circle C; of 9X bounding a cone of angle 27 /n; has
the pre-image consisting of circles which projects with degree which divides n;. Thus

ng
7

C;. Define G to be the quotient of 7 (X) by adding the relations «;" = 1 and let H

71(X) contains all conjugates of o, where o; € 7 (X) which represents the circle
be the kernel of the natural homomorphism 7 (X) — G. Clearly H is a subgroup of
7T1()A( ). It follows that the covering X of X determined by H is universal among the
covers of X which extend to a cover for (). By adding to X the appropriate cones
along 0X , we obtain an orbifold @, which is the universal orbifold covering of ). As
Q is the quotient of @ by the action of a group, in this case the group being G, we
call G the fundamental group of Q.
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Inspired by the construction above, we can easily give a presentation of the 7¢"(Q)
in the case when () is a closed 2-dimensional orbifold which has only cone points as
singular points. We start with the fundamental group of the manifold obtained from
() by removing small neighborhoods of the cone points and we add the relations

(o'

; 1. Thus, if the underlying space |@Q| is a closed orientable surface of genus g

and if @ has m cone points of order n;, 1 < i < m, then a presentation for 7¢"°(Q) is

g
e
{al,bl,...,ag,bg,al,...,am ‘ )t = 1,H[a,~,b,~]a1...am = 1}.
i=1

Using this presentation of the orbifold fundamental group, we can see that the
orbifold considered in example (5) above is not covered by a manifold (i.e. is bad).
Indeed, since the underlying space is S?, the orbifold fundamental group for the Z,-
teardrop is obtained from the fundamental group of S? minus a point (which is trivial)
by adding a relation, so it is obviously trivial. Hence the Z,-teardrop has no covering
(other than itself).

We will introduce first the Euler number of good compact 2-dimensional orbifold
Q. First note that in general if X — X is a k-fold covering space then y(X) = kx(X).
As we have seen in the previous section every good compact 2-dimensional orbifold

@ is finitely covered by a manifold N. Thus is natural to define the Euler number of

Q by .
X(Q) = EX(N),

where n is the degree of the covering N — (). Note that the Euler number of an
orbifold is not in general an integer, but is always a rational number. We will compute
X(Q) directly from the description of the orbifold.

Consider first the case when the orbifold () is a good compact 2-dimensional
orbifold which has r cone points of order n;, 1 < ¢ < r as singular points. Let
X be the closure of the manifold obtained from |@| by removing r disjoint 2-discs
Dy, Dy, ..., D, centered at the cone points. Thus |Q| = X U (U:Zl DZ-) and

X(1Q) = x(X) +r
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since x(D;) =1 and x(S') = 0. If p: N — @ is a finite manifold cover of @) as above
and X = p~1(X), then plg : X — X is a manifold covering of the same degree n,
hence y(X) = ny(X). The pre-image in N of the discs D; by p are only n/n; 2-discs,
so we have

X(N) = nx(X) + Zn/n

The formula for the orbifold Euler number, known also as the Riemann-Hurwitz

formula, follows immediately

M@ =x(leh->_(1

Consider now the case when () is a good compact 2-dimensional orbifold which has
r cone points of order n;, 1 < ¢ < r and s corner reflectors of order m;, 1 < j < s. By
doubling () along the reflector curves, we obtain a 2-fold orbifold cover of (), denoted
D@, which has r pairs of cone points with cone angle 27/n;, 1 < i < r and s cone
points with angle 27 /m;, 1 < j < s. Then by above formula we have

S

X(DQ) = x(1DQ ~23- (1= ) = > (1= )

j=1
Since x(DQ) = 2x(Q) and x(|DQ|) = 2x(|@Q|), we obtain in this case the following

formula for the orbifold Euler number

T S

Q=0 =3 (=) =5 (=)

i=1 j=1
This formula works also for the bad orbifolds. The Z, — Z,-football has the Euler
number 2 — (1 — %) —(1— é) = —pp—J;q which proves that the orbifold cannot be covered
by a manifold, hence is bad.
If the orbifold @ is equipped with a Riemannian metric (see Definition 2.6.1), we

can extend to orbifolds the Gauss-Bonnet theorem (see [Sa2])

/ KdA =2mx(Q),
Q
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where K denotes the sectional curvature of @ (see ?77) and dA denotes the area
element. Note that an orbifold has a well defined area which has the same naturality
property as the euler number, i.e. if @ — () is a finite orbifold covering of degree
n, then A(Q) = nA(Q). The argument used in the proof is similar to the one
used above to determine the orbifold Euler number : we consider the manifold with
boundary obtained by removing disjoint small discs containing the singular points
and we apply the usual Gauss-Bonnet theorem for manifolds with boundary. We
say that the orbifold @ has an elliptic, parabolic or hyperbolic structure if x(Q) is

respectively positive, zero or negative. If the @) is elliptic or hyperbolic then the area

A(Q) = 27[x(Q)].
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Figure 2.4: The Z,, — Z,-football is not developable. The orbifold atlas consists of two
open sets Uy and Ug uniformized by Vi = D?/Z, and by Vs = D?/Z, respectively.



Chapter 3
Groupoids

The purpose of this chapter is to describe orbifolds in terms of topological groupoids.
As we will show in section 3.4 any orbifold structure can be represented in a natural
way by an étale groupoid (the étale groupoid associated to the pseudogroup of change
of charts of the orbifold). However, there might be more groupoids representing the
same orbifold structure. In section 3.3 we introduce an equivalence relation between
groupoids, called Morita equivalence and which is a week equivalence of categories. A
theorem of Moerdijk and Pronc [?] states that the category of orbifolds is equivalent to
a quotient category of the proper étale groupoids after inverting Morita equivalence.
Hence, whenever we consider an orbifold, we can chose up to Morita equivalence a
proper étale groupoid representing it. As we will see, the theory of groupoids provides
a more convenient language for developing the foundation of the theory of orbifolds.

In the first section we begin by defining the groupoid and some standard notions
associated to it and then we provide some examples of groupoids. In section 3.2
we investigate the relation between étale groupoids and the pseudogroups of local
homeomorphisms of a topological space. We show there that to each étale groupoid
we can associate a pseudogroup of local homeomorphisms of its space of objects and
conversely that to any pseudogroup of local homeomorphisms of a topological space
X there is associated an étale groupoid whose space of objects is X. However, this

correspondence is not one-to-one as we can see in Remark 3.2.3. In section 3.3 we
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introduce the equivalence of étale groupoids and so we have all the ingredients for
describing orbifolds in terms of étale groupoids which will be done in section 3.4.

In section 3.5 we define the notion of ¢-space and describe the groupoid associated
to the action of a groupoid on a topological space. We emphasis there how the
language of groupoids leads to a uniform definition of structures over orbifolds, like
covering spaces, vector bundles and principal bundles. A more detailed presentation
of the results there is contained in [MM].

In section ?? we introduce morphisms from topological spaces to topological
groupoids to be the groupoid homomorphism between the pair groupoid associated
to the topological space and the topological groupoid. We give there a description
of a morphism in terms of 4-maps and we see that if the groupoid represents an
orbifold, this notion coincides with that of a good orbifold map (introduced in sec-
tion 2.4.1) defined on a topological manifold (considered as an orbifold with trivial
orbifold structure). Another way of describing morphisms from topological spaces to
groupoids is in terms of principal ¢-bundles. We show that there is a natural bijective
correspondence between the set H'(K,%) of morphisms from the topological space
K to the groupoid ¢ and the set of isomorphism classes of principal ¢-bundles over
K. After we introduce the notion of relative morphisms, we describe the homotopy
relative to a given morphism of a subspace and define the homotopy groups of a
topological groupoid.

In section 3.7 we investigate the particular case of morphisms from R to a topo-
logical groupoid. In this case a morphism is described by an equivalence class of
¢-paths (4-maps from R or the interval I = [0, 1] to the groupoid). This allows as to
introduce the set of ¢-paths between two points (objects) in the groupoid as well as
the set of ¥-loops based at a point. We give a description of the fundamental group
of a groupoid based at a point and see that in the case of a connected (¢-connected)
groupoid, up to isomorphism, the fundamental group is independent of the base point.
In the last part we introduce the set of free loops on an orbifold and the set of free
loops projecting to a constant loop, which is the base space of the inertia orbifold as

we will see in chapter 77.
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We conclude this chapter with the section 3.8 on the classifying space of a groupoid.
We see there that an equivalence between groupoids induces a homotopy equivalence
between their classifying spaces. This allows us to define the homotopy type of an
orbifold as being that of the classifying space of a groupoid representing it. In this
way we recover the orbifold homotopy groups defined in section ??. When @ is a
Riemannian orbifold there is an explicit construction of the classifying space of the
groupoid of germs of change of charts, which is independent of the particular atlas
defining the orbifold structure. This construction is due to Haefliger (see [H] and also

[GH]) and we present it here for the sake of completeness.

3.1 Definitions and examples

A groupoid can be thought of as a generalization of a group, a manifold and an
equivalence relation. First as an equivalence relation, a groupoid has a set of relations
that we will think of as arrows. It will be denoted here by ¢. These elements arrows
relate is a set X (that we will think as objects or points). Each arrow g € ¢ has a
source = a(g) € X and a target y = w(g) € X. Then wesay g : * — y, i.e. «
is related to y. We want to have an equivalence relation. Then for the symmetry
we need that each arrow to be invertible, for the reflexivity we need arrows which
have any element in X as source and target at the same time and for transitivity
we need a way to compose arrows. We also require ¢4 and X to be more than just
sets. sometimes we want them to be locally Hausdorff, paracompact, locally compact
topological spaces or smooth manifolds.

Here is the formal definition of the notion of groupoid we will use in this framework.
Definition 3.1.1. A groupoid is a small category in which each arrow is invertible.

We will denote the groupoid (¢, X) and it consists of a set of objects X and a set

of arrows ¢, together with the following structure maps:

(i)
oa,w:9 — X,
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the source and the target maps, which assign to each arrow g € ¢ its initial

object a(g), respectively its terminal object w(g).
(ii)
m:9 xx9 :={(h,g) €9 x99 ah)=w(g)} — ¥,

the composition map, which assign to each pair of arrows (h, g) with a(h) = w(g)
their composition hg with a(hg) = a(g) and w(hg) = w(h). This composition

is required to be associative.
(iii)
u: X -9,

the unit map, which identifies each object x € X with the unit arrow 1, € ¢.
The unit arrow 1, is a two-sided unit for the composition, i.e. gl, = g and

1.h = h for any two arrows g, h € ¢4 such that a(g) = x = w(h).

19 —9,

the inverse map, which assign to each arrow g € ¢ the inverse arrow g~ € ¢
with a(¢7!) = w(g) and w(g™') = a(g). The inverse arrow g~ ! is a two-sided

inverse for the composition, i.e. g7'g = 1, and gg~" = 1,(y).
Let (¢, X) be a groupoid and consider an object x € X. The set
Yo :={9 €9 alg) =wlg) =z}
is a group and it is called the isotropy group of x. The subset
Gr:=(woa)(z)={yeX| g alg)=1rw(g) =y}

is called the 4-orbit of x. The ¥-orbits form a partition of X and the sets of ¢-orbits
will be denoted by X/¥.
A topological (smooth) groupoid (¢, X)) is a groupoid for which the spaces ¢ and X

are endowed with topological (smooth) structure, such that the structure maps are
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continuous (smooth) maps and the unit map is homeomorphism (diffeomorphism)
onto its image.

A topological groupoid is called proper if the map (o, w) : 4 — X x X is a proper
map. Note that in a proper groupoid every isotropy group is compact.

A topological (smooth) groupoid is called a foliation groupoid if each isotropy
group ¥, is discrete.

A topological (smooth) groupoid is called étale if the source and target maps are
étale maps, i.e. are local homeomorphisms (diffeomorphisms). Note that any étale
groupoid is a foliation groupoid and that any proper étale groupoid has finite isotropy
groups.

A groupoid (¢4, X) of local isometries is an étale groupoid with a length metric
on X that induces the given topology on X and is such that the elements of the
associated pseudogroup are local isometries.

A groupoid of local isometries (¢, X) is Hausdorff if 4 is Hausdorff as a topological
space and for every continuous map ¢ : [0,1) — ¢, if lim; ,; a o ¢ and lim;_,; w o ¢
exists, then lim, .; ¢(t) exists.

A groupoid (¢, X) of local isometries of X is complete if X is locally complete
(i.e. each point of X has a complete neighborhood) and if the space of orbits with

the quotient pseudometric is complete.

Example 3.1.2. (1) Any discrete group can be viewed as a groupoid, where the
set of objects is the one-point space and the set of arrows is the group itself.
In this case the composition of the groupoid is just the multiplication of the

group. This groupoid is étale.

(2) Any topological space X can be viewed as an étale groupoid where all the arrows
are units (or equivalently the unit map is a bijection). This is called the unit

groupoid on X or the trivial groupoird X.

(3) Let M be a (smooth) manifold and let Z = {U;}

pair (M, % ) we associate a groupoid defined as follows. An object is a pair (m, 1)

;e; be an open cover. To the

such that m € U; and endow the space of objects with the topology of [[,.; U.
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The arrows are triples (m, i, j) such that m € U; NU; = U;; and the topology of
the space of arrows is that of ]_L.j Ui;. Note that in this notation U;; # Uj;. The

structure maps are defined to be the natural maps: a|Uij : U;j — U, the source,

w Uij : Uij — Uj the target, U|UZ. : Uz — Uz = Um the unit map, i|Uij : Uij — Uji
the inverse map and respectively m|Ul.jk : Uijr — Uj, the multiplication map.

The groupoid above is called the covering groupoid and is denoted My, .

(4) Let X be a topological space and I' a group acting by homeomorphisms on it.
One can define the étale groupoid associated to this action (I' x X, X) to be
the category whose space of objects is the space X and whose space of arrows
¢ =1 x X, where I' is endowed with the discrete topology. The source and
the target map are defined to be: (v, x) = x the projection, and w(v,z) = v.x
the action. The composition is defined from the multiplication of the group
by (v,z)(7,2') = (v-+/,2"), whenever x = .2/, and the inverse of (v, z) is
(v 1),

(5) If a group I" acts by isometries on a length space X, then the associated groupoid
(I' x X, X) is a groupoid of local isometries and it is Hausdorff. It is complete

if and only if X is complete as metric space.

3.2 Pseudogroups of local homeomorphisms

Of a particular interest is the correspondence between the étale groupoids (¢, X) and
the pseudogroup of local homeomorphisms of X.
First recall that a pseudogroup 7 of local homeomorphisms of a topological space

X is a collection #Z of homeomorphisms h : U — V of open sets of X such that:

(i) the inverse and the composition of elements in J# (whenever it is possible) are

in J7;
(ii) the restriction of an element of .7 to any open subset of X belongs to J¢;

(iii) the identity of X belongs to 7
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(iv) 4 is closed under union of elements in J7Z.

Proposition 3.2.1. To each étale groupoid (¢4, X) there is associated a pseudogroup

of local homeomorphisms of X.

Indeed, if (¢, X) is an étale groupoid, then each arrow g € ¢ with a(g) = =
and w(g) = y, induces a well defined germ of a homeomorphism g : U, — V, of the
form g = w o s, where s : U, — ¢ is a continuous section of « over the (sufficiently
small) open neighborhood U, of x such that s(x) = g. It is easy to see now that
the collection of all such local homeomorphisms induced by the arrows of ¢ form a
pseudogroup.

The groupoid (¢4, X) is called effective (or reduced) if the assignment g +— g is
faithful, i.e. for each point € X the map ¢ — ¢ induces an injective group homo-
morphism between ¥, the isotropy group of z, and the group Hom,(X) of homeo-
morphisms of X which fixes x. If X is a differentiable manifold and if the elements of
the pseudogroup associated are diffeomorphisms, then the groupoid (¢, X) is what

we defined to be a differentiable or a smooth étale groupoid.

Proposition 3.2.2. To each pseudogroup of local homeomorphisms we can associate

an €étale groupoid.

Let 57 be a pseudogroup of local homeomorphisms of a topological space X. Let
f:U — V be an element of 5 and consider (f,x), its germ at some x € U. That is,
the equivalence class of pairs (f, z), given by the equivalence relation (f,z) ~ (f', 2'),
if and only if z = 2/ and f is equal to f’ on some neighborhood of z. The point x is
called the source and the point f(x) is called the target of the germ of f at x.

Denote by .#,(X) the space of germs of the local homeomorphisms of 7. This
is an open subspace of the space .# (X) of germs of continuous maps from open sets
of X to X, endowed it with the germ topology (a basis of which consists of the subsets
U; which are the unions of germs of continuous maps f : U — X at various points of

U).
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Define the source and target maps
a,w: My(X)— X

associating to each germ its source, respectively its target. With respect to the
subspace topology on .#,(X), the maps a and w are étale maps, i.e. they are
continuous, open maps and their restriction to any sufficiently small open set is a

homeomorphism into its image. We can also define a continuous composition map

by associating to any two germs (f, z) and (f’, f(z)) their (well defined) composition,
the germ (f’ o f,x). The unit map is the natural inclusion of X in .#,(X) which
associates to each x € X the germ (idx,x) and the inverse map ¢ : A »(X) —
M (X)) associates to each germ (f,z) the well defined germ (f~1, f(z)).

Hence, we obtained an étale groupoid (¢, X), with ¢ = # »(X), of all the germs
of the elements oh .77, called the étale groupoid associated to 7.

Remark 3.2.3. From the étale groupoid (¢, X) associated to a pseudogroup of local
homeomorphisms " one can reconstruct ¢ by considering the pseudogroup asso-
ciated to (¢,X). In general, the converse is not true. If % is the pseudogroup
associated to an étale groupoid (¢, X), then the étale groupoid associated to ¢
is a quotient of the original groupoid (¢, X). For instance one can consider the
étale groupoid in Example 3.1.2 (1). In this case, the elements of the associated
pseudogroup are the elements of the group and the space of germs of local homeo-

morphisms has only one element.

3.3 Morita equivalence

In this section we introduce the equivalence of étale groupoids and an equivalence
relation among étale groupoids, namely the Morita equivalence. The reader should

be warned that the exposition in this section is very succinct. For a more general
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definition of Morita equivalent groupoids (not necessarily étale) and also for the prop-
erties of groupoids which are invariant under the Morita equivalence, the reader is
referred to [MM].

A homomorphism (¢, f) : (4,X) — (¢4, X') between two étale groupoids consists
of a continuous functor ¢ : ¢ — ¢’ inducing a continuous map [ : X — X’'. We say
that (¢, f) is an étale homomorphism if f is an étale map.

We say that the homomorphism (¢, f) : (¢, X) — (¢', X') is an equivalence if it

is étale and the functor ¢ is an equivalence, that is:

(i) for each x € X, 1 induces an group isomorphism from ¥, onto g]ﬁ(x),

(ii) f:X — X’ induces a bijection between the orbits sets X/¥ and X'/¥’.

The equivalences between groupoids generate an equivalence relation among étale
groupoids in the following way. We say that two étale groupoids (¢, X;) and (%, X»)
are Morita equivalent (or weak equivalent) if there exists a third étale groupoid (¢, X)
and two étale homomorphisms (¢, f;) : (¢, X) — (¥4, X;), i = 1,2 which are equiv-

alences.

(¢, X)
(d’ly \(wi,fz)

(%, X4) G, X3).

The reflexivity and the symmetry of this relation between étale groupoids are
obvious. Before we check the transitivity, note the following: if (¢;, h;) : (4, X;) —
(¢', X') are two étale homomorphisms which are equivalences, then the fiber product
(9, X) := (4 Xg %o, Xq Xx Xo) is naturally an étale groupoid and the projections
(9,X) — (%, X;) are equivalences.

(G g Gy, X1 xx0 Xp) 2 (9, X))

pml l(m,hﬂ

Gy, X (9. X))
(%2, Xz) I ( )
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Then the transitivity follows easily from the diagram

pri
gth) (g27X2

(
ASONE

(%, X1) (¢, X")
(

(¢, X)

)
y‘
(95, X3).

If (4,X) and (¢, X’) are differentiable étale groupoids, then a homomorphism
(U, f): (9,X) = (9, X') is called a differentiable equivalence if it is an equivalence
and f is locally diffeomorphism. The equivalence generated by this relation is called
differentiable equivalence.

In the case of groupoids of local isometries, the equivalence is generated by étale
homomorphisms of groupoids (¢, f) : (¢, X) — (¢’, X’) which are equivalences and
such that f: X — X’ is locally an isometry.

Definition 3.3.1. An étale groupoid (¢, X) is developable if it is Morita equivalent
to the groupoid (I" x X, )Af) associated to an action of a group I' by homeomorphisms

of a space X.

3.4 Orbifold groupoids

Recall the definition of a differentiable orbifold given in Remark 2.2.5 with the orbifold
Xi- We

identify each X; to a connected component of the differentiable manifold X and

structure given by an atlas of uniformizing charts {(X;, ¢;) }ies. Let X =] |,,
denote by ¢ : X — |Q] the union of maps ¢;, that is ¢(x) = ¢;(z) whenever z € Xj.
Any diffeomorphism h from an open subset U of X to an open subset of X such that
q o h = q|y will be called a change of charts. The collection of change of charts form
a pseudogroup ¢ of local diffeomorphisms of X, called the pseudogroup of change
of charts of the orbifold with respect to the atlas {(Xj, ¢;)}ic;. We have seen that if

h : U — V is a change of charts such that U and V' are contained in the same X; and
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U is connected, then h is the restriction to U of an element of I';, hence .7 contains in
particular all the elements of the groups I';. We say that two points x, 2’ € X are on
the same orbit of S if there is an element h € S such that h(x) = 2’. This defines
an equivalent relation on X whose classes are called the orbits of 777. We will denote
X /A the set of orbits endowed with the quotient topology. The map ¢ : X — |Q|
induces a homeomorphism from X/ to |@Q)|.

Let now {(Xi(l),qi(l))}ig1 and {(Xi(2),qi(2))}i€[2 be two atlases defining the same
orbifold structure on |@|, and let J# respectively % be their pseudogroups of change
of charts. We say that the two pseudogroups are equivalent if there is a pseudogroup
 of local diffeomorphisms of the disjoint union X = X; U X5 whose restriction to
each X is equal to ¢ and such that the inclusions of X, into X induces homeomor-
phisms between the orbit spaces X;/7; — X/, j=1,2.

More generally, consider a pseudogroup of local diffeomorphisms 77 of a differ-
entiable manifold X such that each point x € X has a neighborhood U such that
the restriction of 7 to U is generated by a finite group of diffeomorphisms I'y; of
diffeomorphisms of U. Assume moreover that the space of orbits is Hausdorff. Then
X/ has a natural orbifold structure (compare with Proposition 2.2.3).

To the pseudogroup 5 of change of charts of an atlas of uniformizing charts
{(X5, ¢;) }ier defining an orbifold @) , we can associate the étale groupoid (¢, X) of all
the germs of change of charts, with the topology of germs. Then ¢ : X — |Q| induces
an homeomorphism between the space of orbits X/¥4 to |@|. As we have seen, we
can reconstruct .7 from (¢, X) and we will use the notation @ = X/¥ to denote
the orbifold whose pseudogroup of change of charts is equivalent to the pseudogroup
associated to the étale groupoid (¢, X). Note that this groupoid is also proper.

An orbifold structure on a topological space () could be defined as a differentiable
equivalence class of (differentiable) proper étale groupoids (¢, X) together with a
homeomorphism from X/¥ to @, such that

(i) X/¥ is Hausdorff, and
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(ii) each point of X has a neighborhood U such that the restriction of (¢, X) to U

is the groupoid associated to an effective action of a finite group on U.

In fact, any proper étale groupoid (¢, X) comes from an orbifold in this way.
To see this, note first that any isotropy group of a proper étale groupoid is finite.
Furthermore, any proper étale groupoid locally looks like the translation groupoid
with respect to an action of the isotropy group. That is, for any z € X there exists
an open neighborhood U C X with an action of the isotropy group ¥, such that the
restriction (¢|y, U) is isomorphic to (U x ¥4,,U).

The étale groupoid of change of charts of an orbifold is developable if and only if
the orbifold structure is developable.

Recall that an orbifold structure @ is said to be Riemannian if each X; is a
Riemannian manifold and if the changes of charts are Riemannian isometries. On
X = UX; the Riemannian metric induces a length metric whose quotient gives a
pseudometric on the space of orbits |@|. In this case, the groupoid (¢, X) of germs
of changes of uniformizing charts is a groupoid of local isometries. The fact that |Q)|
is Hausdorff implies that the quotient pseudometric is always a metric and induces
the given topology on |Q|. Moreover the groupoid (¢, X) is complete if and only if

is complete.
Q) p

3.5 Structures over groupoids

Recall that if G be a topological group then topological space Y is called a (right) G-
space if there is a continuous right action Y x G — Y, written (y, g) = y.g satisfying
(y.9).9 =y.(9¢") and y.1g = y for any ¢g,¢' € G and y € Y.

Let now (¥, X) denote a topological (smooth) groupoid with source and target
projections o, w : ¢4 — X. A (right) ¢-space is a topological (smooth) manifold
together with a continuous (smooth) map pg : E — X and a continuous (smooth)
right action of ¢4 on E with respect to the map pg. That is, a continuous (smooth)

map from
Exx 9 :={(e,9)| prle) = w(g)}
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to E, written (e,g) = e.g, and such that a(g) = pg(e.g), (e.g).g = e.(g9¢") and
e.1, = e. Note that for any groupoid (¢, X), the space X is trivially a ¢-space.

For two such ¢-spaces (E,pg) and (E', pg:), a map of ¥-spaces is a continuous
(smooth) map h : E — E’ which commutes with the structure, i.e. pgpr o h = pg and
h(e.g) = h(e).g (here each action is to be considered in the corresponding ¥-space).

This defines a category (¢ — spaces). If
(W, f): (¢",2) — (4. X)
is a homomorphism of groupoids, then there is a functor
V* (4 — spaces) — (9" — spaces)

which associates to each ¥-space E the pullback F x x X’ with the induced action. If
(1, f) is an equivalence of groupoids, then 1* is an equivalence of categories. Thus,
up to equivalence of categories, the category (¢ — spaces) depends only on the Morita
equivalence of the groupoid ¥.

Similar to the group case, if E' is a &-space, one can define the groupoid associated
to the action of &4 on E to be the groupoid (E xx ¢, E). Its arrows g : ¢/ — e are

arrows ¢ : pg(€’) — pe(e) in 4 with e.g = ¢/, and its source and target
OéE,wEZEXXg%E

are given by ag(e, g) = €' the action and wg(e, g) = e the projection. We will denote
this groupoid by (E x ¢, E), its dependance of the space X is to be understood.

There is an obvious homomorphism of groupoids
(mypp): (ExX¥Y, E)— (¥9,X)

and the fiber over x € X is pp'(r) C E. Note that if (¢, f) : (9, X') — (¥4, X) is a
homomorphism of groupoids, then the diagram
(V" (E) x4 " (E)) —— (Ex ¥, E)
! Jeo
g X' 9, X
( ) W ( )
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is a week pullback up to Morita equivalence. We will define the quotient E/¥ to be
the space of orbits of the groupoid (£ x ¢, E'). This in general is not a manifold and
note that at the level of orbit spaces /4 — X /¥ the fiber above x is p' (z)/%,.

It is easy to see that if the groupoid (¢, X) is an étale groupoid or is a foliation
groupoid, then so is the groupoid (F x ¥, E). Moreover, if E is Hausdorff and (¢, X)
is proper, then (£ x ¢, F) is also proper. In particular, if the groupoid (¢, X) rep-
resents an orbifold @ = X/¥, then any Hausdorff ¢-space F represents an orbifold
E/E XY — X/9 over Q.

A covering space over a groupoid (¢4, X) is a ¥-space X for which the the map

p: X — X is a covering map. The covering spaces of an groupoid form a full
subcategory of (¢ — spaces) denoted Cov(¥). If (¢, f) : (9", X') — (4,X) is a
groupoid homomorphism, the functor ¢* : (¢ — spaces) — (4’ — spaces) restricts to
functor from Cov(¥) to Cov(¥’) and this is an equivalence of categories whenever
(¢, f) is an equivalence of groupoids.

Let T" be a group acting by homeomorphisms on a simply connected topological
space X. let 'y be a subgroup of I". Let X=X x ['/T, where I'/T'y has the discrete
topology. The group I' acts naturally on X by the rule (x,7'Ty).y = (z.v,7'To7).
Let p: X xI'/Ty — X be the natural projection. The functor 7 : Xx[ = XxT
mapping (Z,7) — (p(Z),7) gives the morphism (m,p) : (X x ', X) — (X x T, X)
which can be considered as a covering. The natural inclusion X xI'y — XxT sending
(z,7) — ((z,T9), ) defines an étale homomorphism (X x Iy, X) — (X x I, X)
which is an equivalence. In fact the equivalence classes of connected coverings of the
groupoid (X x I', X) are in bijective correspondence with the conjugacy classes of
subgroups of T'.

In particular, for an orbifold @), up to equivalence of categories, there is a well
defined category Cov(Q). In this case, (¢, X) is the associated groupoid of germs of
changes of charts of an atlas defining the orbifold structure on @), then any covering
(g?, X) of (4, X) is the groupoid of germs of changes of charts of an orbifold structure
on the space of orbits @ =X / g?, and @ is a covering orbifold.***
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A wector bundle over a groupoid (¢, X) is a ¥-space E for which the projection
map p : F — X is a vector bundle over the space of objects and the action of 4 on F
is fiberwise linear. In particular each fiber F, is a linear representation of the isotropy
group ¥,. We denote Vect(¥) for the category of vector bundles over (¢, X). If the
groupoid (¢, X) is Morita equivalent to another groupoid (¢’, X’) then the category
Vect(9) is equivalent to Vect(4'). In particular, if (¢, X) represents an orbifold
() then up to equivalence of categories there is a well defined a category of vector
bundles over @) denoted Vect(Q). It is easy to see that the tangent bundle T'X of
the space of objects of a groupoid (¢, X) has a natural structure of a vector bundle
over (¢,X). A metric on such a vector bundle is a metric in the usual sense which is
preserved by the action of ¢.

Let G be a topological group. A principal G-bundle over a groupoid (¢, X) is a
¢-space P with a left action G x P — P which makes the projection p : P — X
into a principal G-bundle over X and is compatible with the groupoid action in the

following sense: for any e € P, v € G and g € ¢ such that w(g) = p(e) we have
(ve).g = (e.g).

3.6 Morphisms from spaces to topological groupoids.

The homotopy groups

Let K be a topological space and (¢, X) be a topological groupoid with source and
target projections a,w : ¢ — X. A morphism from K to (¢, X) is a homomorphism
between the pair groupoid (K x K, K) (see examples of groupoids) to the groupoid
(¢, X). A more direct definition of a morphism from a topological space to a groupoid
can be given using ¢-maps (or cocycles. See [GH]).

Let % := {U,}ic; be an open cover of the topological space K. A 4-map from K

to (¢, X) over the cover % is a collection of continuous maps f; : U; — X such that
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whenever U; N U; # @ there is a continuous map
fij :UiNU; — & with a(fi;(2)) = fi(z) and w(f;(2)) = f;(z)

and which satisfies the cocycle condition

fie(x) = fij (@) fix(2),

for any x € U; N U; N Ug. Note that the cocycle condition implies in particular that
each f;;(x) is a unit of 4 and also that Z-;1 = fji. Moreover, since the maps f; can
be identified with the maps f;; via the the natural inclusion X — ¢ the ¥-map over
% is completely characterized by the 1-cocycle f;; over % .

Two ¥-maps over two open covers of K with value in ¢4 are equivalent if there is a
¢-map with value in ¢ on the disjoint union of those two covers extending the given
ones on each of them. An equivalence class of ¥-map is called a morphism from K
to & (or when @ is an orbifold ¥\ X a ”continuous map” from K to (). The set of
equivalence classes of ¥-maps on K with value in ¢ is denoted, according Haefliger,
by HY(K,%). Any morphism from K to ¢ projects, via ¢ : X — 4\X = |Q], to a
continuous map from K to |@Q|; note that two distinct morphisms may have the same
projection.

If 4 and ¢’ are the groupoids of germs of the changes of charts of two atlases
defining the same orbifold structure on a space |@|, then there is a natural bijection
between the sets H'(K,%4) and H'(K,%’). Any continuous map between topological

spaces f : K’ — K induces a map
f*HYK,9) — H (K',9).

Two morphisms from K to ¢ are homotopic if there is a morphism from K x [0, 1]
to ¢4 such that the morphisms from K to ¢ induced by the natural inclusions k —
(k,7),i=0,1, from K to K x [0, 1] are the given morphisms.

Another description of morphisms from K to ¢ can be given in terms of isomor-

phism classes of principal ¢-bundles over K (see [GH]).
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A principal 9-bundle over K is a topological space E together with a surjective
continuous map p : £ — K and a continuous action (e, g) +— e.g of 4 on E with
respect to a continuous map ¢g : E — X such that p(e.g) = p(e). Moreover we
assume that the action is simply transitive on the fibers of p in the following sense.
Each point of K has an open neighborhood U with a continuous section s : U — E
with respect to p such that the map U x x ¢ — p~'(U) mapping pairs (u,g) € U X ¥4
with w(g) = grs(u) to s(u).g is a homeomorphism. It follows that if % = (U,)ics is
an open cover of K and if s; : U; — E is a local continuous section of p above U;
for each ¢ € I, then there are unique continuous maps f;; : U; N U; — ¢ such that
si(u) = s;j(u)fji(u) for each u € U; NU;. Thus f = (fi;) is a 1-cocycle over % with
value in ¢.

If f=(fi;) is a 1-cocycle over an open cover % = (U;);e; of K with value in ¥,
then we can construct a principal ¢4-bundle E over K by identifying in the disjoint

union of the fiber products
Uixx 9 ={(u,9) €U; x4 :w(g) = fu(u)}

the point (u,g) € U; xx 4, v € U; N U;, with the point (u, f;i(u)g) € U; xx 4. The
projections p: E — K and gg : E — X map the equivalence class of (u,g) € U; xx ¥4
to u and a(g) resp. and the action of ¢’ on the class of (u, g) is the class of (u, gg’). A
principal ¢-bundle obtained in this way by using an equivalent cocycle is isomorphic
to the preceding one, i.e. there is a homeomorphism between them projecting to the
identity of K and commuting with the action of ¢. This isomorphism is determined
uniquely by a cocycle extending the two given cocycles.

Therefore we see that there is a natural bijection between the set H'(K,9) and
the set of isomorphism classes of principal 4 -bundles over K. This correspondence
is functorial via pull back: if F is a principal ¢-bundle over K and if f : K’ — K is
a continuous map, then the pull back f*FE of E by f (or the bundle induced from F
by f) is the bundle K’ X Y whose elements are the pairs (k’,e) € K’ x E such that
f (k) is the projection of e.
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¢ itself can be considered as a principal ¢-bundle over X with respect to the
projection w : ¢4 — X, the map gy : 4 — X being the source projection. Any
continuous map f : K — X induces the principal ¢-bundle f*¢Y = K xx ¢ over K.

Let K be a topological space, L. C K be a subspace and F' be a principal ¢-
bundle over L. A morphism from K to ¢ relative to F is represented by a pair (E, ¢)
where E' is a principal ¢-bundles E over K and ¢ is an isomorphism from F to the
restriction Ej; of £ above L. Two such pairs (£, ¢) and (E', ¢’) represent the same
morphism from K to ¢ relative to F' if there is an isomorphism ® : £ — E’ such
that ¢’ = ® o .

Two morphisms represented by (Ey, o) and (E1, @) from K to ¢ relative to F
are homotopic (relative to F') if there is a bundle E over K x I and an isomorphism
from Ejk xanu(wxr) to the bundle obtained by gluing F' x I to Ey x {0} and Ey x {1}
using the isomorphism ¢y and ¢;.

Let I"™ = [0, 1]™ be the n-cube, and let OI" be its boundary. Fix a base point x in
X. Let F be the bundle over 01" induced from the bundle ¢4 by the constant map
JI™ — X onto the point 2. We define 7,((¢4, X), z) as the set of homotopy classes of
principal ¢-bundle over I" relative to F'. Similar to the case of topological spaces one
proves that this set has a natural group structure, called the n*’- homotopy group of
(¢, X) based at x. In the case where (¢, X) represents a connected orbifold @, this
group is called the n-th homotopy group of @, and for n=1 the (orbifold) fundamental

group of Q).

3.7 Paths and loops on orbifolds

Let (¢, X) be an étale topological groupoid representing an orbifold ). A ¢-path on
@ is a morphism from R to (¢, X). If x and y are two points in X a ¢-path between
them parametrized by [0, 1] is just a morphism from [0, 1] as topological space to
(¢, X). Using the compactness of [0, 1], such a morphism can be represented over a

finite subdivision of the unit interval.
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Definition 3.7.1. Let x and y be two points of X. A ¥-path from x to y over
a subdivision 0 = tg < t; < --- < t, = 1 of the interval [0,1] is a sequence ¢ =

(90, C1,915 - - - Cks gk) where:
(i) ¢;: [ti—1,ti] — X are continuous maps,

(ii) g; are elements of 4 such that a(g;) = ¢;(t;) fori=1,2,... k, w(g;) = cip1(t;)
fori=0,1,...k—1 and a(go) = =, w(gr) = y.

If (¢, X) is a groupoid of local isometries (for example if (¢, X) represents a Rie-
mannian orbifold @) then we can define the length of the ¥-path ¢ = (go, 1, g1, - - - C, Gi),
l(c) as being the sum of the length of the paths ¢;. The pseudodistance on the space
of orbits X /¥ between the orbits of two points x and y is the infimum of the length
of the paths joining = to y.

Among ¥-paths from = to y parametrized by [0, 1] we can define an equivalence

relation given by the following operations:

(i) Given a ¢-path ¢ = (go,¢1,91,---,Ck, gr) over the subdivision 0 = ¢y < t; <
- <t = 1, we can add a new point t' € (t;_1,t;) together with the unit

/

element ¢’ = 1.,y to get a new sequence, replacing ¢; in ¢ by ¢}, ¢', ¢/, where ¢,

and ¢ are the restriction of ¢; to the intervals [t;_1,t'] respectively [t', ¢;].

(ii) Replace the ¥-path ¢ by a new one ¢ = (g{,¢}, g4, .-, ¢, gi.) over the same
subdivision as follows: for each ¢ = 1,...,k choose continuous maps h; :
[ti—1,t;] — & such that a(hi(t)) = ¢(t), and define (t) := w(hi(t)), g; =
hir(t:)gi(hi(t:)) =" for i =1,...,k — 1 and gg := hi(0)go, g5, := gr(hi(1))~".

Remark 3.7.2. (a) if two ¢-paths on different subdivisions are equivalent, then
we can pass from one to another first by considering their equivalent paths by

(i) on a suitable common subdivision, and then by an operation similar to (ii).

(b) note that two equivalent ¢-paths have the same initial and terminal point.
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(c) for any ¥-path ¢ = (go,¢1,91,---,Ck, gr) From x to y, we can find equivalent
paths ¢ = (g, ¢}, 9,1, ..., g)) such that gj = 1, or g, = 1,. For this reason,
by abuse of notation we will denote sometimes the initial point of ¢ by ¢(0) and

the terminal point by ¢(1), even if gy or g; may not be units.

(d) since the groupoid (¢, X) is Hausdorff and étale, then the continuous maps h;

in (ii) above are uniquely defined by ¢ and ¢'.

(e) if a ¥-path ¢ from z to y is such that all the ¢;’s are constant, then the equiva-
lence class of ¢ is completely characterized by an element ¢ € 4 with a(g) =«

and w(g) = y.

The equivalence class of a ¢-path ¢ from z to y will be denoted by [c],,, and the
set of such equivalence classes will be denoted by €, (%), or simply by €, ,.

As we have seen in the previous section, the set €2, , corresponds bijectively to
the set of isomorphism classes of principal ¢-bundles E over I = [0, 1] relative to
the bundle F' over I induced from ¢ by the map 0 — X sending 0 to z and 1
to y. The bundle E is obtained from ¢ as the quotient of the union of the bundles
ci () by the equivalence relation identifying (t;, g:9) € ¢;(¥) to (ti,g) € ¢, (%) for

i=1,...,k—1. The isomorphism from E|s; to F' maps (0, g) € c(¥) to (0, gog) and
(1.9) € Gi() to (1,g7"9).

If x =y, cis called a closed ¥-path (based at x). Its equivalence class is called a
¢-loop based at x and is denoted by [c|,. The set of ¥-loops based at z is denoted
by €,(%) or simply €2,. The set |,y . of based loops will be denoted by Qx.

The set €2, is in bijective correspondence with the set of isomorphisms classes of
principal ¢-bundle over the circle S' relative to the bundle F over 1 € S' induced
from ¢ by the map sending 1 to z. The relative bundle Ej;, corresponding to c is
constructed as follows. For j = 1,...,k, let S} be the image of the interval [t;_i, ;]
by the map t — e*™; let E; be the pull back of the principal ¢-bundle ¢ by the map
Sj — X sending €*™ to ¢;(t). The bundle Ejg, is the quotient of the disjoint of the

2imt;

E; by the equivalence relation identifying (e*™, g) € E;,1 to (e*™,g,9) € E; for
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j < kand (1,9) € Ey to (1,grg09) € Ex. The isomorphism from the restriction of
E}g, over {1} to F' maps the equivalence class of (1,g) € E to (1,g09) € F.

Remark 3.7.3. If ¢ = (go,¢1,01,--- ¢k, 95) and ¢ = (g, ¢}, 91, .- ¢, g5.) are two
equivalent ¢-paths from x to y (or closed ¥-loops at z) over the same subdivision,
then the maps h; in (i) above induces an isomorphism from the relative principal
¢-bundle associated to ¢ to the one associated to ¢’. By Remark 3.7.2 (d) this

isomorphism is unique.

Let z,y € X and ¢ = (g0, 1,91, - - -, Ck, gr) be a ¥-path from z to y, defined over
the subdivision 0 =ty < t; < --- < t, = 1. We can define the inverse of ¢ to be the

¢-path from y to = given by ¢! = (g}, c}, g}, ..., ¢, i) defined over the subdivision

O=t)<th<--<t, =1, whereforeachi=0,...,kwehave t, = 1—t,_;, g/ = g,
and c(t) = cx—i(1 —t) for t € [t}_,,t!] and ¢ = 1,..., k. It is easy to see that the

inverses of equivalent ¢-paths are equivalent.

If we are given two ¢-paths ¢ = (go, ¢1, 91, - - -, Ck, gr) Over a subdivision 0 = t5 <
ty <---<tp=1and ¢ = (g,,¢, 91, -, Cr, ghs) Over 0 =t <t} <--- <t;, =1such
that the initial point of ¢ is the terminal point of ¢, we can define their composition(or
concatenation) ¢ * ¢ to be the ¥-path ¢’ = (gg,¢/,97,...,¢., g;) over a subdivision

0=ty <t <--- <t =1, where
t! =1t;/2, for i=0,...,k and ¢ =1/2+t,_,/2, for i=k,....k+k;

c(t)=c(t/2), for i=1,....k and /(t)=c,_,(2t—1), for i=k+1,...,k+k;

and ¢/ =g;, for 0,....k—1i, g =go9k, g =gy, for i=k+1,.... k+K.

Again, if ¢ is equivalent to ¢ and ¢’ is equivalent to @, then the composition ¢ * ¢’ is
equivalent to ¢ @.

An elementary homotopy between two ¢-paths ¢ = (go, c1, 91, - - -, Ck, gr) OVer 0 =
to <ty <---<tp=1and d =g\, g1, gp) over 0 =1t; <ty <--- <t =1,
with the same end points, is a family of ¥-paths parametrized by s € [sq, s1], ¢® =
(95,¢5,95,...,¢h,g8) over 0 = t§ < t§ < --- < t; = 1 where t{, ¢ and g7 depend

continuously on the parameter s, g; and g; are independent of s and ¢*° = ¢, ¢** = c.
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We say that two paths are homotopic (relative to their end points) if one can be

obtain from the other by a finite sequence of the following operations:

(i) equivalence of ¥-paths,

(ii) elementary homotopies.

The homotopy class of a ¢-path ¢ will be denoted by [¢]. If ¢ and ¢ are two
composable ¥-paths, the homotopy class of ¢ * ¢ depends only on the homotopy
classes of ¢ and ¢ and will be denoted [cx | = [c] *[¢/]. If ¢, ¢ and ¢’ are composable
&-paths, then [c* ] % [¢"] = [c] * [ * "] = [c] * [] * [].

With the operation of composition of ¢-paths, the set of homotopy classes of ¥-
loops based at a point xg form a group called the fundamental group m ((¢4,X), o) of
(¢, X) based at xy. A continuous homomorphism of étale groupoids (¢, f) : (¢4, X) —
(¢', X') induces a homomorphism m1((¢, X), xo) — m (¢, X'), f(x0)).

As we can see in the following proposition in the case of a ¥-connected étale
groupoid, up to isomorphism, the fundamental group m ((¢, X), zo) is independent

of the choice of the base point (see [BH]).

Proposition 3.7.4. Let (¢4, X) be an étale groupoid and o € X be a base point
and let a be a 9-path joining xo to x1 € X. Then the map that associates to each
G -loop based at xo the G-loop a=* * ¢ * a based at x, induces an isomorphism from
(4, X),x0) to m((¥4,X),z1).

If (0, f): (¢9,X) — (¢, X") is an equivalence of étale groupoids, then the induced

homomorphism on the fundamental groups is an isomorphism.

A groupoid is called simply connected if it is ¢ connected and its fundamental
group is trivial.

In the case when the groupoid (¢, X) represents a connected orbifold @) the funda-
mental group 7 ((¢, X), *) is denoted 72°(Q) and it is called the orbifold fundamental

group of Q.
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Let @ be a topological orbifold and (¢, X) the étale groupoid associated to the
pseudogroup of change of uniformizing charts. The set of free loops on @ is the set
of equivalence classes of morphisms from the circle S! to (¢, X). Such a morphism
can be represented by a closed ¢-path ¢ = (go, 1,91, .-,k gr) Over a subdivision
0=ty <tg <--- <t =1 based at some point x € X. This time the equivalence

relation is generated by i) and ii) from the previous section together with

(iii) for any element g € ¢ such that a(g) = =, then ¢ = (go,c1,91,---,Ck, gx) 18

equivalent to c.g := (gog, 1,91, -+, Cks G Gk)-

The class of ¢ under this equivalence relation is noted || and is called a free loop on
Q. Tt depends only of the orbifold structure () and not on a particular atlas defining
Q.

The groupoid ¢ acts naturally on the right on the set {2x of based ¥-loops with
respect to the projection p : Qx — X associating to a ¢-loop based at x the point
x: if g is an element of ¢ with source = and target y, then [c|,.g € Q, is the ¥-loop
based at y represented by c.g. The action of ¢ on Qx with respect to the projection
assigning to a based ¢-loop its base point is continuous. The quotient of Q2x by this
action is by definition the ”space” of (continuous) free loops |A(¥)| = |[AQ]| on Q.

Under the projection g : X — |@Q|, every free ¥-loop is mapped to a free loop on
|@Q|. Therefore if A|Q)| is the space of free loops on the topological space |Q)|, we have

a map
AQ] — A[Q].

We denote |[A°Q| the subset of |AQ| formed by the free loops on @Q projecting to
a constant loop. An element of this subset is represented by a closed ¥-path ¢ =
(9o, c1, g1), where gq is a unit 1,, ¢; is the constant map from [0, 1] to x and ¢; is an
element of the subgroup ¢, = {{g € 4 : a(g9) = w(g) = x}. The equivalence class |[c]
of ¢ correspond to the conjugacy class of ¢g; in ¥,.

In the developable case, if ) is the quotient of a connected manifold X by a

properly discontinuous action of a discrete subgroup I' of its group of diffeomorphisms,
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then the free loops based at € X are in bijective correspondence with pairs (c,7),
where ¢ : [0,1] — X is a continuous path with ¢(0) = x and ~ is an element of I'
mapping ¢(1) to . The free loops on @ are represented by classes of pairs (c,7)
like above, this pair being equivalent to (c o §,671vd), where 6 € I'. Assuming X
simply connected, the set of homotopy classes of elements of |[AQ| is in bijective
correspondence with the set of conjugacy classes in I'.

For instance let X = R? and I' be the group generated by a rotation p fixing 0
and of angle 27 /n. Let 4 be the groupoid associated to the action of I' on X. The
orbifold @ = X/¥ is a cone. Consider the closed free ¢-loop represented by the pair
(¢, p*), where c is the constant path at 0. If we deform this loop slightly so that
it avoids the origin, its projection to the cone || will be a curve going around the
vertex a number of times congruent to £ modulo n ; in particular, when k = n, it
could also be a constant loop.

On free loop space, we have two operations, the first one defined by a change of
parameter, and the second one by m-times iteration.

Since |AQ| = H'(S',¥), a homeomorphism % : S' — S!' induces a bijection
h* . H'(S',9) — H'(S',¥). This gives a continuous action on |AQ| of the group of
homeomorphisms of S! leaving invariant the subspace |A°Q]| of free loops of length 0.
By restriction we get an action of the group O(2) of isometries of S' on |AQ]|. The
fixed points set of the action of O(2) (or SO(2)) on |[AQ)] is the subspace |A°Q)| of free
loops of length zero.

2imt

For a positive integer m, the map €™ — 2™ from S! to S! induces a map

HY(SY,9) — HY(S',9). Ifc = (go,c1, - - -, Cr, Gr) s a closed ¥-path over a subdivision
0=ty <--- <t =1, the image of [c] by this map is equal to [¢™], where ¢™ is the

m-th iterate of c.

3.8 Classifying space

Given an groupoid ¢ a very important construction is that of its classifying space

B%Y, the base space of a principal ¢-bundle EY — ¢. In the general case one possible
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construction is the geometric realization of the nerve of the groupoid representing the
orbifold. This follows Segal’s fat realization construction. An alternative method is
Milnor’s infinite join construction.

Let (¢, X) denote a topological groupoid with source and target maps o, w : ¢ —
X. Let 4™ denote the iterated fiber product

g(n) = {(917927 .- 7gn) | 9i € gaa(gl) = w(gi-i-l) fOT’i = 17' <y — 1}

and let 49 = X denote the set of objects. It is worth thinking of 4™ as the manifold

of composable strings of arrows in ¢:

g1 g2 gn
Zo Zy X2 R e )

With this data we can form a simplicial set (see [Se]).

Definition 3.8.1. A semi-simplicial set (resp. group, space, manifold) A, is a se-

quence of sets (resp. groups, spaces, manifolds) { A, }nen together with maps

AR AR A - DA

az':14m_>AAm—1> Sj:Am_)Am—i-la 0<2,]<m

called boundary and degeneracy maps, satisfying

0,0; = 0;210; ifi<j
5i8; = Sjp18;i fi <]
5;-10; ifi <y
Osj = ¢ 1 ifi=j,j+1
s;0i1 ifi>j+1
The nerve of a category € (see [Se|) is a semi-simplicial set N€ where the objects

of € are vertices, the morphisms of € are the 1-simplexes, the triangular commutative

diagrams are the 2-simplexes, and so on.
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For a groupoid (¢, X), the corresponding simplicial object N9 is defined by
N%, = A, = %4™ and the boundary maps 9; : 4™ — @n-1).

(92 9n) ifi=0
0i(q1y---,0n) = (g1, ,m(gi, Giv1),- -y 9n) f1<i<n-—1
(91,---,9n—1) ifi=n

and the degeneracy maps s; : ¥ — @n+1).

) (uladg1)), 915 - - -5 Gn) for j =0
Si(gry .- s gn) =

(gla'">gjau(w(gj))7gj+la'"7971) fOI'j Z 1

Denote by A" the standard n-simplex in R”. Let 6;: A"™! — A" be the linear
embedding of A"™! into A" as the i-th face, and let o;: A" — A" be the linear
projection of A" onto its j-th face. Define the spaces A™ x 4™ where the points of
A" X (g1, 92, - - -, gn) are understood as the points in the simplex with longest sequence
of edges being named as (g1, 92, - - -, gn)-

By gluing these spaces together along the simplicial operators we obtain the so

called geometric realisation of the simplicial object A,.

Definition 3.8.2. The geometric realization |As| of the simplicial object Ay is the

space

(2,0i(2)) ~ (3:(2), )
A = A" x A,
el /o

neN z,85(x)) ~ (0;(2), v)

The semi-simplicial object N% determines ¢ and its topological realization B% is
called the classifying space of the category. Here € is a topological category in Segal’s
sense [Se].

For a groupoid (¢, X) we will call B(¢,X) = BY = |N¥| the classifying space
of the groupoid. Note that B¥ is an infinite dimensional space and the topology of
B% is the quotient topology induced from the topology of [J A" x 4™ (hence the

topologies of ¥(™’s are relevant here).
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An important basic property of the classifying space construction is that an equiv-
alence between groupoids (¢, ) : (¢4, X) — (¢4, X') induces a homotopy equivalence

between their classifying spaces (see [Se|, [M])
By : BY — BY'.

This means that for any point € X, the equivalence (¢, f) induces an isomorphism
of homotopy groups
T(BY, x) = m,(BY', f (7).

Thus, if @ is an orbifold whose orbifold structure is given by the groupoid (¢, X) we
can define its homotopy type as being that of the classifying space BY:

szrb(Qa x) = 71-n(nga j)

the definition being independent of the choice of the groupoid representing the orbifold
and of the base point = € @) and of the lift # € X for which ¢(Z) € |@Q| is mapped to
x by the induced homeomorphism X/¥ — |Q).

Example 3.8.3. (1) For the groupoid (x,G) the classifying space coincides with
the classifying space BG of the group G. This space classifies the principal
G-bundles.

(2) If (M, % ) is a manifold then the classifying space of the groupoid My is homo-
topy equivalent to M: BMy ~ M. (see Se)

(3) For the groupoid (G x M, M) associated to an action of a group G on a topo-
logical space M, the classifying space is the homotopy quotient

B(Gx M)~ Mg=(EG x M)/G
where the action of G is given by g.(e,z) = (eg™!, gz) .

When ¥ is the groupoid of germs of changes of charts of an atlas of uniformizing

charts for a Riemannian orbifold @) of dimension n, there is an explicit construction of
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B% which is independent of the particular atlas defining () and which will be therefore
be denoted BQ (see [GH]). Indeed consider the bundle of orthonormal coframes F'X
on X; an element of F'X above z € X can be identified to a linear isometry from the
tangent space T, X at x to the Euclidean space R™; the group O(n) of isometries of
R"™ acts naturally on the left on F'X and this action commutes with the right action of
the groupoid ¢ on F X through the composition with the differential of the elements
of 4. As the action of 4 on FX is free, the quotient F'X/¥ is a smooth manifold
depending only on ) and not on a particular atlas defining ). The left action of
O(n) on FX gives a locally free action of O(n) on FFX/9.

Choose a principal universal O(n)-bundle EO(n) — BO(n) for the orthogonal
group O(n) and take for £% the associated bundle FO(n) xom) F'X, quotient of
EO(n) x FX by the diagonal action of O(n). The projection from FX to X gives a
projection qpy : E4 — X with contractible fibers isomorphic to FO(n). As the action
of O(n) on FFX commutes with the natural right action of ¢, we get a free action of ¢4
on £ with respect to the projection qpy, and £Y — EY /9 = EO(n) xom) FX/9
is a universal principal ¢-bundle whose base space BY = E¥ /9 will be noted BQ.
There is a canonical map 7 : BQ — |Q| induced from the map ¢ o qpy : EY —
X/9 = |Q|; it is the projection of the morphism from BQ to ¢ associated to the
principal ¢-bundle FY — BQ); the fiber of m above a point z = ¢(z) is an acyclic

space with fundamental group isomorphic to the isotropy subgroup ¥, of x.



Figure 3.1: A ¢-path.
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Figure 3.2: Equivalent ¢-path over a subdivision with a new point t' € (¢;_1,;) .



Figure 3.3: Equivalent ¢-paths over the same subdivision.
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Figure 3.4: An elementary homotopy of ¢-paths.
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Figure 3.5: A description of A3 x (g1, g2, g3) and its boundary A2 x (g1, g2g3).
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Chapter 4

Developability of orbifolds of non

positive curvature

In this chapter we give a proof of developability for complete Riemannian orbifolds
of non positive curvature. Apparently (we do not know a reference yet) the result
was first proved by Gromov. However, the developability of complete orbifolds of non
positive curvature appears as an exercise in [BGS] (see exercise (a) on page 16). This
result is also a direct consequence of a result in [BH] (Theorem 2.15 and Corollary
2.16 in chapter II1.¢). It is proved there that if (¢, X) is a connected groupoid
of local isometries which is Hausdorff and complete and such that the metric on
X is locally convex, then it is developable. The proof there follows the Alexander-
Bishop proof of the Cartan-Hadamard Theorem (see 1.4 in [BH]). The chapter is
structured as follows. In first section we introduce the notion of ¢-geodesic path
on a connected Riemannian orbifold, where (¢, X) is the groupoid associated to the
germs of change of charts of the orbifold structure. This is possible since in this case
(¢, X) is a groupoid of local isometries which is Hausdorff and is ¢-connected. It is
also complete if the orbifold is assumed to be complete. In section 4.2 we introduce
an analogue of the exponential map from the manifold case, as being the map that
associates to any (sufficiently short) vector v € T, X the end point of a ¥-geodesic

issuing at x with velocity vector v. Note that this map is well defined (even as a
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map) up to the choice of the terminal point within its orbit. However, this gives a
well defined map on the space of orbits which is the base map of a morphism from
the tangent cone at the projection of x into (). This is also the base map of the good
C* orbifold map Ezp considered by Ruan and Chen in [CR].

In section 4.3 we investigate the relation between completeness and the geodesi-
cally completeness of the orbifold and we will prove a result similar to the Hoph-Rinow
Theorem for manifolds that is, a connected Riemannian orbifold is complete if and
only if it is geodesically complete. We also prove there that in a connected Rieman-
nian orbifold which is complete any two points can be joined by a minimal geodesic
¢-path.

In section 4.4 we introduce Jacobi fields and the notion of conjugate points along
a ¥-geodesic in an orbifold. Via the definition of Jacobi fields using the exponential
map we relate the the conjugate points to the critical points of the exponential map.

In the last section we consider the case of complete Riemannian orbifolds of non
positive curvature. Using Jacobi fields we prove that in this case there are no con-
jugate points along any ¥¢-geodesic and using the results in section 4.4 we conclude
that the exponential map is étale. Moreover, we can prove in this case that it is also a
covering map. Then the morphism from the developable (by Lemma 4.5.3) groupoid
associated to the action of ¢ on T, X into (¢, X) whose base map is the exponential
map is a covering. This proves that (¢, X) is developable, i.e. the orbifold @ is
developable. The same proof works for the case when @ is a complete Riemannian
orbifold which contains a pole by using the exponential map at the pole. The only
thing to prove in that case is that the exp map is a covering map, without using the
non positive curvature. This is possible since exp is étale and has the path lifting
property. A different approach of proving this is by using the path space (at least in

the simply connected case)?
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4.1 Geodesic ¢4-paths

Let @ be a Riemannian orbifold. Recall that an orbifold structure is said to be
Riemannian if each uniformizing chart X; is a Riemannian manifold and if the change
of charts are local isometries. On X = X, a Riemannian metric is defined as the
union of the riemannian metrics on each X; and this Riemannian structure induces
a length metric whose quotient gives a pseudo-metric on the space of orbits |@|. In
this case, the étale groupoid of germs of change of uniformizing charts is a group
of local isometries. The fact that the base space |@| is Hausdorff implies that the
pseudometric is always a metric and induces the given topology on |Q|. Moreover the
groupoid (¢, X) is always Hausdorff and it is complete if and only if @) is complete.

In the case when @ is connected note that X as a disjoint union is not connected
but it is ¢-connected in the following way (it is ¢-path connected). For any two
points z,y € X there is a sequence of points (x1, 1, ..., xk, yx) such that z; = z,
yr = y and each z; is in the orbit of y;_; for all + = 2,...k and there is a path
(in some X;) joining x; to y; for all ¢ = 1,... k (or equivalently, there is a ¢-path
c = (1;,¢1,99,-..,c 1) defined over some subdivision 0 = ¢y < t; < --- < ¢}, =1

connecting x to y). We will assume in what follows that @ is connected.

Definition 4.1.1. A geodesic ¢-path from x to y in a Riemannian orbifold is a
& -path ¢ = (go, €1, 91, - - -, Ck, Gr) from x to y such that:

(i) each ¢; : [ti1,t;] — X is a geodesic segment with constant speed ¢;;

(ii) the differential dg; of a representative of g; at c;(t;), maps the velocity vector

¢i(t;) to the velocity vector ¢;vq(t;).

We say that a geodesic ¢-path ¢ = (go, 1,91, - - -, Ck, gr) is normalized if the all
the geodesic segments ¢; are normalized geodesics, i.e. they are parametrized by the
arc-length. In what follows we will consider normalized geodesic ¥-paths.

If ¢ is a closed ¢¥-path, it represents a closed geodesic [c] (or a geodesic loop) on @
if moreover the differential of gogr maps the velocity vector ¢, (1) to the vector ¢,(0).

A free loop of length 0 is always a closed geodesic.
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Note that the projection ¢ : X — |Q| associates uniquely to each equivalence
class of ¥-geodesics [c] parametrized over [0, 1] a continuous path [0, 1] — |Q|. This
is the base map of a smooth orbifold map which is also good in the sense of the
Definition 2.4.2. Equivalently we could define a geodesic on an orbifold to be a good
C* orbifold map from [0, 1] to @ which locally lifts to geodesics. When there is no
place of confusion, we will refer to the underlying map as of the geodesic path on the
orbifold. Sometimes is convenient to consider the geodesic ¢-paths issuing at a point
which can be extended indefinitely. Then, one should consider (admissible) covers
of R (or [0,00)) and the associated (possible infinite) sequence of elements g; and
geodesic paths ¢; as in definition 4.1.

It is easy to see that if ¢ is a geodesic ¥-path from x to y, then the vector
d(go)~1¢1(0) at z is an invariant of the equivalence class [c],, and is called the initial
vector of the ¥-geodesic c.

In the developable case, if the orbifold @) is the quotient of a connected Riemannian
manifold X by a discrete subgroup I' of its group of isometries, then any closed
geodesic on () is represented by a pair (¢,7y), where ¢ : [0,1] — X is a geodesic and =
an element of I" such that the differential of v at ¢(1) maps the velocity vector ¢(1)
to ¢(0); another such pair (¢/,~’) represents the same geodesic if and only if there is
an element ¢ € I such that ¢ = d.c and 7' = §~140.

As an example (see [GH]), consider the orbifold @) which is the quotient of the
round 2-sphere S? by a rotation p of angle 7 fixing the north pole N and the south
pole S. The quotient space |@| is a sphere with two conical points [N] and [S], images
of N and S. There are two homotopy classes of free loops on (). Closed geodesics
homotopic to a constant loop are represented by a closed geodesic on S? (their length
is an integral multiple of 27). If they have positive length, their image in |Q)] is either
the equator, a figure eight or a meridian. Closed geodesics in the other homotopy
class are represented by a pair (¢, p), where ¢ is either the constant map to N or S,

or a geodesic arc on the equator of length an integral odd multiple of .
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4.2 Exponential map

We would like to introduce on X a correspondent of the exponential map such that
the geodesic ¥-paths could be the image of a line segment containing the origin in
T,X. We will have to overcome the following difficulty. For any point z € X there is
a uniquely defined exponential map for sufficiently small vectors v € T, X using the
Riemannian structure on the connected component X; which contains x. In this case
the geodesic obtained as the image by the exponential map of a segment containing
the origin in the tangent space 7, X would lie in the connected component X;, hence
it would be just a particular type of ¢-geodesic, namely one that can be represented
over the entire interval. This is not enough since the ¥-geodesics can have their
terminal point in other connected components of X. Using the local existence of the
exponential map and the groupoid structure we will construct an ”exponential map”
which is well defined up to a choice of an element in its fiber.

Let xg € X. Then zy € X; for some ¢ and recall from the Riemannian geometry
of manifolds that there exist a neighborhood U C X; of 2y and ¢ > 0 such that for
each x € U and each tangent vector v € T, X with length less then € there is a unique
geodesic ¢; : (—2,2) — X; satisfying the conditions ¢;(0) = z and ¢;(0) = v. In this
case there is a uniquely defined map denoted exp,, given by exp,(v) = ¢(1) and the
geodesic ¢ : [0, 1] — X; can be described by the formula c(t) = exp,(tv).

Thus for every ¢« and z € X; the exponential map exp, is defined throughout
a neighborhood of (x,0) in 7,X and it is differentiable. Moreover there exists a
neighborhood V' of the origin in 7, X such that exp,|y is a diffeomorphism and the
image exp, (V) = U C X is called a geodesic neighborhood of z. If the open ball
B(0,6) C T, X is such that B(0,8) C V then we call the image e,(B(0,4)) = B(z,d)
the geodesic ball centered at x and of radius 4. The boundary of the geodesic ball
is a submanifold of codimension one in X which is orthogonal to the geodesics rays
issuing from x. Furthermore for any point x € X; there exists a neighborhood W of x
which is a geodesic neighborhood of each point point y € W. That is, a neighborhood
W C X, of x together with a 6 > 0, such that for every y € W, the exponential map
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exp,, is a diffeomorphism on B(0,§) C T, X and the geodesic ball B(y, ) contains .
A such of pair (W, 0) is called a totally geodesic neighborhood for z. Note that any
two points of W can be joined by a unique geodesic in X; of length less than 9.

The following lemma (see [GH]) will allow us to extend the image of the exponen-

tial map to other connected components X; of X.

Lemma 4.2.1. Let QQ = X/¥9 be a Riemannian orbifold. Let g € 4 with x = a(g)
and y = w(g). Let € > 0 be such that B(x,€) and B(y,¢€) are convezr geodesic balls
at x and y respectively. Then there is an element h of the pseudogroup of change of

charts of Q which is an isometry from B(x,€) and B(y,¢€).

Proof. Let h : B(x,e) — B(y,€) be the diffeomorphism which maps isometrically
geodesic rays issuing from z to the geodesic rays issuing from y and such that the
differential dh, = dg. For 0 < r < € sufficiently small the restriction A, of h to the
B(z,r) is an element of the pseudogroup of change of charts 7 (see 3.2 and also
3.1). It is sufficient to prove that the restriction of h to a neighborhood of the closure
of B(xz,r) is also an element of J#. Let z € dB(x,r). Since the space of orbits is
Hausdorff, the point z and its image h(z) are in the same orbit of . Then there
are sufficiently small neighborhoods U of z and V' of h(z) and an element f: U — V
of # with f(z) = h(z) and such that the restriction of .7 to the open neighborhood
U is generated by a group I'y of diffeomorphisms of U and such that the germ of any
element of # defined on U with the target in V is the germ of a the composition of
f to an element of I'yy. Since f is a Riemannian isometry, it must coincide with h|y

on the geodesic rays issuing from x and hence on U. O

The above lemma allows us to consider the following construction. Let v € T, X
such that the exp,(v) is defined. Since the length of the geodesic exp,(tv) is finite
there exists an € > 0 and a subdivision 0 = t) < t; < --- < t;, = 1 of the interval
[0,1] such that B(exp,(t;v),€) are convex geodesic balls. By applying inductively
the above lemma for ¢ = 1,... k it is easy to see that we obtain a ¥-geodesic ¢ =
(9o, 1,91, C2, - - -, Ck, gi) equivalent with the initial one. Note that the g;’s may be units

and that each ¢;11(¢;) respectively ¢;(t;) are in the orbit of exp,(¢;v). In particular,
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the "end point” w(gx) of the ¥-geodesic ¢ is in the same orbit of exp,(v). Hence
we can associate to any pair (z,v) where x is a point in X and v is a vector T, X
of small enough length the orbit through exp, (v). This gives a well defined map
on the space of orbits which we will still denote exp; : |1TzQ| ~ T, X/9Y, — |Q)|
where ¢(z) = T € |Q| associating to & € |T3Q)| of small enough norm, the projection
q(exp,(v)) where v € T, X such that v = dgg(§) where g is the element of 'z which
lifts = to z. Note that this map is continuous (even more it is étale) and induces an
étale groupoid homomorphism from the groupoid associated to the action of ¥4, on
T.X to the groupoid (¢, X). Note also that this exponential map can be seen as the
base map of the good orbifold map Exp considered by Ruan and Chen in [CR).

4.3 Geodesically complete orbifolds

Note that the construction above works for ”short” vectors v € T, X and we would like
to investigate weather a such exponential map can be defined for vectors of arbitrarily
length. Similar to the manifold case, we will call an orbifold geodesically complete if
the exponential map exp, : |T,Q| — |Q| is defined for all |T,Q|. That is, (by the
above argument) if for every x € X the exponential map exp, is defined on all T, X,
i.e. any ¥-geodesic starting at x can be extended infinitely. By analogy, we will say
in this situation that X is ¢-geodesically complete. We will see that this is always
the case when the orbifold () is complete.

In what follows, using the connectedness of () (or equivalently the ¢-connectedness
of X) we will introduce a pseudodistance topology on X which agrees the induced
topology on X by the Riemannian structure (this could be easily avoided, it just
make the analogy with the manifold case simpler). Define the ¢-distance between

the two points by
k
i=1

where the infimum is considered on all possible sequences (z1, ¥, .., Tk, yx) and for

all k£ and d(-,-) denotes the distance induced by the Riemannian metric on each
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connected component in X. Note that dy defines a pseudo-distance on X (it is not
a distance since any two distinct points in the same orbit have dy distance zero) and
that its restriction to each connected component X; C X is a distance which agrees
with the induced by the Riemannian structure. This implies that the topology on
each component is the same as the one induced (as the subspace topology) by the
pseudo-distance topology given by dy on X. Note that the pseudo-distance topology
on X is not Hausdorff (it is not even Kolgomorov (75)). Moreover the projection
q : X — |Q| becomes an isometry. With respect to this pseudo-distance topology,
the association via the exponential map (x,v) — y, where z € X and v € T, X of
small norm and y is a point in the orbit of exp,(v) (i.e. it is the ’end point’ of the
¢-geodesic given by exp,(tv), t € [0,1]) is continuous.

We will say that a sequence {#(™}, of points in X is ¥-convergent to a point
x € X if it is convergent in the pseudo-distance topology, i.e. if for every € > 0 there
is 1) such that for any n > n() we have dy (2™, x) < e. As expected the limit point
of the sequence (™ is not unique and obviously any other point in the orbit of = will
also be the limit point. In a similar way we say that the sequence ™ of points in
X is 9-fundamental if for every € > 0 there is n() such that for any n,m > n. we
have dgy(x™, (™) < €. It is easy to see that the completeness of |Q] is equivalent
with the ¥-completeness of X via the projection ¢ : X — |Q)|.

The following proposition is an important property of geodesically complete orb-
ifolds.

Proposition 4.3.1. If a connected Riemannian orbifold Q = X/¥9 is geodesically

complete then any two points can be joined by a minimal geodesic 4 -path.

Proof. Let z and y be two points in X and let r denote the ¢¥-distance between them.
Consider a geodesic ball B(x, ) at x (note that this ball is contained in the connected
component of X containing x). The boundary of this ball is quasi-compact in the

pseudometric topology and since the function



72

is continuous, there exist a point in zg € dB(z, ) such that dgy(y,0B(z,J)) attains
its minimum. Then zy = exp,(dv) for some v € T, X with norm one.

Since X is ¥-geodesically complete, there is an equivalence class of geodesic ¥-
path issuing from x with velocity v and which can be extended indefinitely. We will
show that these geodesic & paths intersect the orbit through y and therefore there
exists a ¢-geodesic in this equivalence class which contain y. Moreover, we well prove
that the length of this geodesic is equal to 7.

Similar to the manifold case we will prove that a point which moves along one
of the geodesic ¥-paths as above must get closer (with respect to dy) to y. Let ¢
be a such geodesic ¥-path which is represented over an admissible cover of [0, 00) by
a sequence ¢ = (go, 1,91, -+, Jk—1,Ck,---). For convenience we will denote c(t) the
point ¢;(t) for t € [t;_1,t].

Consider the equation

dg(c(t),y) =1 —t
and let A be the set of points in [0, r] for which the equation holds.

A is not empty since the above equation is satisfied for ¢t = 0 and it is clearly
closed. Let t* € A. We will show that if t* < r then the equation holds for t* + ¢,
where ¢’ > 0 is sufficiently small. This implies that sup A = r and since A is closed we
conclude that r € A, i.e. ¢(r) is in the orbit of y. Denote z* = ¢(t*) € X and consider
a geodesic ball B(z*,d') at z*. Let z; € 0B(z*,d’) be the point which minimizes
the ¢-distance dg(y,0B(x*,0")). Note that by the previous lemma, we can assume
without loss of generality that [t* — &', " 4+ 0’| C (t;-1,¢;) for some 7. Then it suffices
to show that the point xj = c(t* + §').

Note first that

dg(c(t’),y) = Zeaggw (dy (2", 2) + dy(2,y)) = &' + dg(5,y)

and since dy(c(t*),y) = r — t*, it follows that
r—t"=0"+dg(x,y) = dg(c(t” +0'),y),

i.e.
dg(c(t"+8),y) =r— (" + 7).
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To prove now that z(, = ¢(t* + ¢’), note that using (*)
dg(flf,xé)) > d‘f(xvy> - d‘f(yvxé)) =r- (T -t = 5/> =t"+7

On the other hand, the ¥-distance between x and z{, measured along the ¢-geodesic

c up to z* and then along the geodesic ray joining z* to x gives
dy(z,xp) < dg(x,x*) + dy(a*, xy) = t* + .

Hence dy(x,zf) = t*+¢'. Consider now ¢(¢;_1) which is a point in the same connected
component of X as z*. Clearly d(c(t;—1),xy) < d(c(ti—1), z*)+d(z*, xy). We claim that
we have equality in the inequality above. Indeed, if we assume that d(c(t;—1), z() <
d(e(ti—y), z*) + d(z*, z() then we have

t* 4+ 0 = dy(x, ) < dg(z,c(ti—1)) + d(c(ti—1), xp)
c(ti-1)) + d(c(tiza), ) + d(z*, xp)

(z,
= dg(z,2*) + dy(x*, xy)
=t"+ 0

<dg¢

which cannot be true. This means that the broken path obtained from the geodesic
segment ¢;|p, , ) and the minimal geodesic joining x* = ¢;(t*) to xf, is distance
minimizing, and so it is a (unbroken) geodesic, i.e. it coincides with ¢;. This proves

that xy = ¢(t* + ¢') and completes the proof. O

The following proposition relates the concepts of ¢-completeness and ¢-geodesically
completeness of X. It is the similar of the Hoph-Rinow Theorem in the manifold case

(or even more generally for length spaces (see [?]).

Theorem 4.3.2. Let Q = X/9 be a connected Riemannian orbifold. Then X is
G -complete if and only if it is &-geodesically complete.
Thus, a connected Riemannian orbifold () is complete if and only if it is geodesi-

cally complete.

Proof. Assume that X is ¢-complete and suppose that it is not ¢-geodesically com-

plete. That is, there exist a point z € X and a (normalized) ¥-geodesic issuing from x
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which is defined for ¢t < t* and is not defined for t*. Let 0 =ty < t;1 < -+ < tp_1 < t*
be a subdivision of [0,¢*] and ¢ = (go,c1,91,-..,¢k) be a representative of this ¢-
geodesic over it such that ¢ is defined for t € [ty_1,t*) and not for ¢t*. Consider a se-
quence (t"), in [0, t*) which converges at t*. We can assume without loss of generality
that t" € [tx_1,t"). Note that ™ is Cauchy and therefore for every € > 0 there exists
n. such that if n, m > n, then [t"—t"| < €. Since ¢ is a normalized ¢-geodesic, this im-
plies that dg(ci(t"), cx(t™)) < [t" —1t™| < €, i.e. the sequence c;(t") is ¥-fundamental.
Hence it is ¥-convergent to a point y € X (actually it is ¥-convergent to any point
in the orbit of y). Let (I, d) be a totally geodesic neighborhood of y. For § > 0 there
exists ng such that for n > ns we have dy (¢, (t"), cx(t™)) < §. We can choose ngs large
enough such that (eventually passing to a subsequence) the orbits through ¢ (") have
nonempty intersection with W. Denote these intersections with x,. It follows that
for any n,m > ns we have d(z,, Tm) = dg(Tn, Tm) = dg(ck(t™), cx(t™)) < 0. Then,
there exists a unique geodesic connecting x,, to x,, of length smaller than . Denote ¢/
this geodesic. It is clear that this geodesic is equivalent to ¢, whenever this is defined.
Since exp, is a diffeomorphism on B(0,d) C T,,X and W C exp, (B(0,6)), the
geodesic ¢’ can be extended over t*. By replacing in ¢ = (go, 1, .., k) the geodesic
¢, with ¢ we obtain a ¢¥-geodesic path issuing at x which is defined beyond ¢* and
whose restriction to [0,¢*) is equivalent to ¢, i.e. ¢ can be extended in its equivalence
class. This leads to a contradiction and proves the claim.

Conversely, assume that X is ¢-geodesically complete. Consider a ¢-fundamental
sequence ("), in X. It is clearly that the set A = {z" | n} is bounded in the ¢-
distance. Thus there exist a ball By centered at a point z € X which contains its
closure. By the above proposition, there exists a ball B(0,r) C T, X such that By C
exp,(B(0,7)). As the map exp, is continuous in the pseudo-distance topology and
B(0,r) is compact in T, X, the image exp,(B(0,7)) is quasi-compact in X. Then the
closure of A is also quasi-compact and so the sequence (z") contains a ¢-convergent
subsequence and being ¢-fundamental, it converges. This proves that X is also ¥-

complete. O
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4.4 Jacobi fields

Let z,y € X and ¢ = (go,c1,--.,cx) be a geodesic ¥-path connecting them over a

subdivision 0 =ty <t; < --- <t = 1.

Definition 4.4.1. A Jacobi field along ¢ is a sequence J = (Ji,...,Jx) of vector
fields J; along ¢; and such that

(i) dg; maps (J;, %Ji(ti)) = (i1, %Ji—l—l(ti)); fori=1,... k-1

(i) each J; is a Jacobi field along c;, i.e. satisfies the Jacobi equation:

D?J;
dt?

(t) + R(é:(t), Ji(t)es(t) = 0,
for any t € [t;_q1,t;] andi=1,... k.

If ¢ is a closed geodesic, a periodic Jacobi field is a Jacobi field such that the
differential d(gogr) maps (Ji(1), %(1)) to (J1(0), 22(0)).

Note that for each ¢ the Jacobi equation (*), as a second order differential equation,
has 2n linearly independent smooth solutions. Since each J; along the geodesic ¢; is
uniquely determined by its initial conditions (J;(¢;_1), 2%(t;_1)), by condition (i) in
the definition we see that a Jacobi field J along a ¢-geodesic ¢ is uniquely determined
by (J1(0), 221(0)). So there are 2n linearly independent Jacobi fields, each of which
can be defined throughout ¢. Moreover, note that the vector fields ¢(t) and té(t) are
Jacobi fields along c¢. The first one has the derivative zero and vanishes nowhere,
and the second one is zero if and only if ¢ = 0. Note also that the Jacobi fields
do not depend on a particular choice of ¢ in its equivalence class. That is, if ¢ =
(96, 1y 91y Chy o ooy Chy gr) 1S another representative of the geodesic ¥-path ¢ over the
same subdivision then J' = (Ji,J3,...,J};) given by J/(t) = (dhi(t))ci(t)(Ji(t)) is a
Jacobi field along ¢/, where the h;’s are as in (ii), and J’ is uniquely determined since
the h;’s are unique by Remark 3.7.2 (d).

As in the manifold case, one can prove that every Jacobi field along a geodesic

¢-path ¢ may be obtained by a one-parameter variation of ¢ through geodesics. That
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is, a sequence v = (79,1, T1, Vo, - . ., Tk—1, Vk) associated to the division 0 =ty < t; <

--- <t = 1, where

(i) for each i = 1,...,k, v; : (—¢,¢e) X [ti—1,t;] — X are differentiable functions
such that v;(0,t) = ¢;(t) and each 7;(s), s € (—¢,¢) given by 7;(s)(t) = vi(s,t)

is a geodesic, and

(ii) each 7; : (—e,6) = ¥, i =0,...,k are ¥-valued differentiable functions such
that 7,(0) = g; and such that a(7;(s)) = vi(s,t;) and w(r(s)) = viqa(s,t;) for
any s € (—g,e) and any 1 =0,...,k — 1.

We will give a construction of Jacobi fields along a geodesic ¥-path using the
exponential map. Here we will consider only Jacobi fields which satisfy J(0) = 0, but
analogous constructions can be obtain in the general case.

Let ¢ be a geodesic 4-path on Q = X /¥ and J a Jacobi field along ¢ with J(0) = 0.
Denote v = ¢(0) € T,0)X and w = £2(0) € T,(T,(0)X) and construct a (*) path v(s)
in Te)X with v(0) = v and 9(0) = w. Put v(s,t) = exp,q)(tv(s)) and define the
Jacobi field J along ¢ by J(t) = 94(0, ).

Proposition 4.4.2. With the notations above, J = J on [0,1].

Proof. At s =0 we have

Dov D D
Bos E((dexpc(o))w(tw)) = E(t(dech(O))t”(w))

= (dexpo))u() + 12 ((dexpyo ()

Therefore, for t = 0

DJ B D ov

E(O) - ag(O, 0) = (dexp,(g))Jo(w) = w.

Since the initial conditions are J(0) = J(0) = 0 and £2(0) = g—tj(O) = w, from the

uniqueness of the Jacobi fields, we conclude that J = J. O
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Corollary 4.4.3. Let ¢ be a geodesic G-path. Then a Jacobi field J along ¢ with
J(0) = 0 is given by

DJ

ﬁ(O)), te0,1].

J(t) = (dexpe (o) )ueqo) (¢

Definition 4.4.4. A point c¢(t') € X is conjugate to c¢(0) € X along the geodesic
& -path c if there exists a non-zero Jacobi field along ¢ such that J(0) = 0 = J(t').
The maximum number of such linearly independent fields is called the multiplicity of

c(0) and c(t') as conjugate points.

Note that the multiplicity of two conjugate points never exceeds n — 1. Indeed,
the dimension of the vector space consisting of all Jacobi fields which vanish at ¢ = 0
has dimension at most n and the non-zero Jacobi field J(t) = té(t) never vanishes for
t#0.

Note that this gives on the space of orbits |Q)| a well defined notion of conjugate
points along a geodesic path and of their multiplicity. Thus two points z, 2’ € |Q] on a
geodesic path [c] are conjugate if their lifts to X are conjugate along a representative
of [¢].

The relation between the conjugate points and the critical points of the exponential

map is given by the following proposition.

Proposition 4.4.5. Let ¢ be a geodesic G -path. Then c(t') is conjugate to ¢(0) along ¢
if and only if the vector t'¢(0) is a critical point for exp.()- Moreover, the multiplicity

of c(t') as conjugate to c(0) is equal to the dimension of the kernel of the linear map

(dech(O) )t’c'(O) .

Proof. Let J be a non-zero Jacobi field along ¢ which vanishes at 0 and ¢’. Denote
v = ¢(0) and w = J'(0). Then, from the Corollary 4.4 J(t) = (dexp,))uw(tw), t €
[0, 1] and since (dexp,g))sw is linear, we have that w # 0, as J is not identically zero.
But 0 = J(t') = (dexp,(g))ro(t'w) for t' # 0 and w # 0, which is possible if and only
if t'v is a critical point of the exponential map at ¢(0).

For the second part of the proposition note that the Jacobi fields J, J& . Jm)

along ¢ which are zero at t = 0 are linear independent if and only if the vectors
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(BJW)(0), B(J@)(0),..., 2(J0™))(0) are linear independent in T,)X. Then, from
the construction above, we can see that the maximal number of linear independent
Jacobi fields along ¢ which vanish also at t = t/, is equal to the maximal number of
linear independent vectors such that the linear map (deXPC(Q))t’é(Q) is zero, i.e. the

dimension of its kernel. OJ O

Let x be a point in an orbifold ). We say that x is a pole if there are no conjugate
points to it on any geodesic path starting at x (or actually on any geodesic path
containing x). Note that if = is a pole, there are no Jacobi fields along any geodesic
¢-path starting at x which vanish anywhere else than at x. In this case, by the
proposition above, we see that the exponential map at any Z with ¢(Z) = = has no

critical points, hence it is étale.

4.5 Orbifolds of non positive curvature

In the following proposition we will see that this is always the case if the orbifold has

non positive curvature.

Proposition 4.5.1. Let Q) be a Riemannian orbifold with non positive sectional cur-

vature. Then any point of Q) is a pole.

Proof. Let ¢ = (go,c1,¢1,---,Ck, gx) be an arbitrary geodesic ¥-path on X, over a
subdivision 0 =ty <ty < --- <ty =1,and J = (J1, Jo, ... Jx) a non-zero Jacobi filed
along it which vanishes at zero. Then, for each i =1, ..., k we have

D?J;

— () + RG(), Ji®)é(t) =0,

for any t € [t;—1,t;], and

D?J; ‘ .
< =5 (0, > + < R(G(1), L)), Ji > =0.

Hence
D2J; ‘ ‘
< =t (), Ji > = = < R(&(t), K(1)é(t), Ji > >0,
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for any ¢ € [t;—1,t;]. Therefore
d <DJZ- J>_<D2JZ-
d = dt 7T T dR
%, J; > is monotonically increasing on each [t;_1,¢;] and strictly
increasing if D‘] # 0 on [t;_1,t;].
Note that the condition (i) in the definition [..] together with the fact that ¢ is a

groupoid of local isometries imply that < 24(t;), Ji(t;) > = < DJZ —(t), Jica(ti) >,

J
>+l ==*>0

l.e. each function <

forany:=1,. k—l This defines a contlnuous function on the mterval 0, 1], which

we will denote by < J >. Moreover, this function is monotonically increasing on

R
[0,1] and strictly increasing if 22 0 on [0, 1].

Suppose now that ¢(0) has a conjugate points along c¢. Choose the first one.
Then, there exists a Jacobi field as above and ¢’ € (0, 1] such that J;(#') = 0 for some
i€ {1,2,...,k}, and so < [;‘ZZ, J; > vanishes at t’. Therefore < [C)h;], J > vanishes at
both 0 and ¢/, hence it has to vanish identically on [0, #']. This implies that %(O) =0
and since J;(0) = 0, we have that J = 0, which contradicts the fact that J is a non-

zero Jacobi field. Hence there are no conjugate points to ¢(0) along ¢, and since c is

arbitrary, ¢(0) is a pole and of course any point of () is a pole. O

In particular, on an orbifold with non positive curvature, the exponential map
Exp, : T,Q) — @ has no critical points and is an orbifold local diffeomorphism. In
what follows we will show that if the orbifold is also complete the exponential map is

an orbifold covering map. This will give a proof of Gromov’s developability theorem.

Proposition 4.5.2. Let Q = X/9 be a complete Riemannian orbifold with non
positive sectional curvature. Then the exponential map exp, : T, X — X has the path

lifting property. Moreover, it is a covering map.

Proof. Since the orbifold is complete, the exponential map exp, : 7, X — X is defined
for all the points x € X and is surjective. Since () has non positive curvature, it is
also a local diffeomorphism. This allows us to introduce a Riemannian metric on the
tangent space T, X such that exp, : T, X — X is a local isometry. Indeed, consider
u € T, X and put for any v,w € T,(T,X) 2 T, X

pu(0,0) 2= pexp, () (d(expy )u(v), d(exp, )u(w)),
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where pexp () denotes the inner product metric on the tangent space at exp,(u) to
X induced by the Riemannian metric on the connected component of X containing
exp,(u). Note that since the Riemannian metric is invariant, the definition is good in
the sense that it does not depend on a particular choice in the fiber above exp, (u).
Then p, defines an inner product in each tangent space T, (7,X) = T,X which
clearly varies smoothly with respect to u € T, X, i.e. defines a metric on T, X and
the exponential map is a local isometry. Note that, by Prop 4.4, this metric is also
complete, since the geodesics in T, X through the origin are straight lines.

We will show now that exp, has the path lifting property. Let ¢ = (go, c1, 91, - - -, Ck» Gk)
be an arbitrarily rectifiable ¥-path in X, over a subdivision 0 =ty <t; < --- <t =
1. Assume that ¢(0) = z € X and consider the origin 0 € 7, X. Then exp,(0) =
and since exp, is a local diffeomorphism at 0 we can lift ¢ in a small neighborhoodof
x. That is, there exists € > 0 such that we can define ¢ : [0,¢] — T, X with ¢ =0
and exp,(¢) = c|p,q. Denote by A C [0, 1] the set of values for which the ¢-path c
can be lifted to a path starting from 0 € 7, X. Then A is nonempty and since exp,
is a local diffeomorphism on all 7, X, A is open and connected in [0,1]. That is,
A =10,t"). If we show that ¢’ is also in A, then A would be also closed and will follow
that A = [0,1]. This means that the ¥-path ¢ can be lifted throughout the whole
interval [0, 1], i.e. exp, has the path lifting property.

To show that ' € A, let t™™ m = 1,... be an increasing sequence in A such
that lim ™ = ¢'. Since ¢ € (0,1], there is i € 1,2,...,k such that ¢, ; < ' < t;,
and without loss of generality we can assume that t,_; < t(™ < ' < ¢; for all m.
Note now that the set {¢(t™)} is contained in a compact subset K C T, X. Indeed,
otherwise, since T, X is complete the set {¢(t™™)} would be unbounded, and so the
distance between ¢(t™) and ¢(t;_;) could be made arbitrarily large. However this is
not possible since

m) o (m)
@200 0) < L@ = [ (= [ e oS

ti_1 ti—1
t(m)
dci (m)
= |—|dt = LIL" (¢;)
/t;-l dt ti—1

and the length of ¢; is finite.
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The completeness of T, X and the fact that {¢(t™)} C K imply that there is
an accumulation point v € T, X of {¢(t™™)}. Let V be a neighborhood of v such
that exp,|y is a diffeomorphism onto an open neighborhood of exp,(v) € X;. Then
¢;(t') € exp, (V) and by continuity of ¢; there is a subinterval I C [t;_1,t;] containing
t" such that ¢;(I) C exp, (V). Since exp,|y is a diffeomorphism there is a lift of ¢;|;
through v, say ¢. But v € V is an accumulation point for {¢(t™)}, so there exists
an index m such that ¢(¢t™) € V. Since e,|y is bijective the lifts ¢ and @ coincide
on the interval [t;_1,t"™) N I. Hence ¢ is an extension of ¢ to I and so ¢ is defined
at ', i.e. t' € A. This completes the proof that exp, has the path lifting property.
Note that equivalent ¢-paths in X lift to the same path in T, X. In particular exp,
maps the terminal point of the lift ¢ to the terminal point of ¢. Since exp, is étale

and surjective, it is a covering map. 0

For z € X there is a well defined continuous action of ¢4 on T, X over exp, : T, X —
X defined in the following way. If v € T, X and g € ¢ such that w(g) = exp,(v), we
define v.g € T, X to be such that exp,(v.g) = a(g). It is well defined in the sense that
if y € X is a different choice in the fiber above exp,(v), i.e. there exists h € ¢ such
that y = e,(v), then a(hg) = a(g) and exp,(v.(hg)) = exp,(v.g). Denote (¢',T,X)

the groupoid associated to this action.

Lemma 4.5.3. The space of orbits of the groupoid (¢',T,X) is Hausdorff and the
natural projection ¢ : T,X — T,X/9' is étale and induces an equivalence from
(9, T,X) to the groupoid (T, X x 9,,T,X). In particular, the groupoid (¢',T,X) is
developable.

Proof. First note that if ¢ € 4 is not an element in the isotropy group ¥, and if
the w(g) = exp,(v) then exp,(v.g) and exp,(v) are not in the same fiber. In other
words if w(g) = y is the terminal point of a ¥-geodesic issuing at = and with velocity
vector v € T, X, then the ¢-geodesic issuing at x and with velocity vector v.g is not
equivalent with the previous one and so its terminal point cannot be in the same fiber
with y. More generally if g : B(a(g),€) — B(w(g), €) is a section of « as in lemma 4.2
and such that g(a(g)) = g, then By (a(g),€) N By(w(g),e) = @. This proves that the
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projection ¢’ : T, X — T,X is étale and that T, X /¥’ is Hausdorff. The map (v, g) —
¢ (v) gives an equivalence from (¢',T,X) to the groupoid (T, X x 4,,T,X). O

Theorem 4.5.4. Fvery connected complete Riemannian orbifold with non positive

curvature is developable.

Proof. Let Q = X/¥ be a such orbifold. Let 7 : ¢’ — ¢ be the map (v,g) — g.
By Proposition 4.5.2 (m,exp,) : (9',17,X) — (¢4,X) is a covering. By the lemma
above (¢',T,X) is developable, therefore (¢, X) is developable, i.e. the orbifold @ is
developable. O



Chapter 5
Loop spaces for orbifolds

We consider in this section a connected Riemannian orbifold @) = X /4. Recall that
Qx = U,ex Qe is the union of the sets €, of classes [c], of continuous ¥-loops based
at = and the space 1, , is the set of classes [c],, of continuous ¥-paths connecting x

to y.

Proposition 5.0.5. The set Qx of based & -loops, as well as the set ), ,, of equivalence

classes of 4-paths from x to y, has a natural structure of Banach manifold.

Proof. Let ¢ = (go,c1,91, - - -k, gr) be a closed ¥-path over the subdivision 0 = 5 <
t; < -+ <ty = 1 based at z (the source of gy and the target of g;). Let ¢*T'X be
the induced vector bundle over S* = R/Z (see ... a previous section). That is the
quotient of the disjoint union of the bundles ¢;T'X by the equivalence relation which
identifies the point (¢;,&;) € ¢f_,TX with the point (¢;,dg;(&;)) € T X for 1 <i <k
and (0, &) € ¢;TX with (1,d(g; g5 ") (&) € ¢;TX. The projection to the base space
c*TX — S' maps the equivalence class of (t,£) to t modulo 1. As in Remark 3.3 if
we consider another closed ¢-path ¢ based at x which is equivalent to ¢ then there
is a natural isomorphism between the vector bundles ¢*T'X and ¢*TX.

Consider now the vector space C°(S!,c*T'X) of continuous sections of ¢*TX.
Such a section is represented by a vector field v along ¢. That is a sequence v =
(v1,v9,...,U;), where each v; is a vector field along ¢; such that compatibility condi-

tions are satisfied at each of the points ¢; (see Definition 4.2 (i)). This vector space

83



84

can be viewed as the tangent space’ of the 'manifold’ Q2x at the point [c],. Note now
that the inner product on the fibers of T X given by the Riemannian metric on X
induces an inner product on each fiber in ¢*T'X. Using this inner product, we can
define the sup norm on C°(S!, ¢*T'X) to be

HUHOO = Elesupte[ti717ti} Ui|’

This norm makes C°(S!, ¢*T'X) into a Banach space.

To describe the natural atlas for 2x we will make use of the exponential map
restricted to ’short’ vector fields. Given a ¢-path ¢ based at x, choose ¢ > 0 such
that, for each t € [t;_1,1;], the exponential map exp,,( 1s defined on the ball of radius
€ in T, X and it is a diffeomorphism onto the geodesic ball B(c;(t;),€) (see *exp
map™). By a previous result each of the arrows g; : ¢;(t;) — ¢;41(¢;) extends uniquely
(see 2.1.5) to a section g; of a defined on the ball B(¢;(t;), €) for 0 < i < k respectively
B(z,¢€) for i = 0.

Let U¢ be the open ball centered at the zero section and of radius € in C°(S', ¢*T'X).
We define the exponential map exp¢ : U ¢ — US C Qx by mapping a section
v = (v1,...,vx) to the equivalence class of the based ¥-path ¢V = (g§, ¢}, g7, ..., ¢}, g7)
defined as follows: the paths c}(t) := exp,, vi(t) and the arrows g := gi(c}(t;))
c(t;) — ¥y (t) for 0 <@ < k, g7 = gr(ci(1)) and g¢§ := Go(w(gy)). Note that, as
expected, the ¥-path ¢ is not necessarily based at x, but at a point in B(z,€). It
is not hard to see that the construction above depends essentially on the equivalence
class of ¢. So, if we consider an equivalent ¥-path at x, say ¢’ then the representative
¢-path c’”,, the image of the section v’ by the map exp, : U’g — U¢ has the same
base point as ¢’ and they are equivalent. Above, v’ is considered to be the correspon-
dent of v via the natural isomorphism between the vector spaces C°(S', ¢*T'X) and
CO(St, *T X) induced by the vector bundles isomorphism between ¢*T'X and ¢*TX.

Note that the set US consists precisely of the equivalence classes of continuous
based ¥-paths ¢ whose representative over the subdivision 0 =ty < t; < --- <t} = 1,
= (90,1, 91, - -+ C» 9x) 18 such that all ¢[(t) are images exp,, ) (vi(t)) for some vector
field v = (vg, v1, .. ., vg) along ¢ with the norm smaller than €, up to composition with

maps h; : [ti—1,t] — & with h(t) : c¢j(t) — exp,, (vi(t)). Note that by Remark 3.2

)
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(d) the maps h; are uniquely determined by exp,., ) (vi(t)) and hence by v since each
exp,,(.) 18 bijective. It is easy to see that the arrows g; defined in a similar way as
above are also uniquely determined by v. Hence each map exp is a bijection.

At each point [c], of Qx for a small enough € > 0 we define the chart (US, (exp) ™).
It is easy to see that the images U for various ¢ and e form then a basis for the
topology on 2x and that the change of charts are differentiable. Therefore 2y is a
Banach manifold. Recall that the topology of the based loop space Qx is given by

the metric
doo([cls, [¢]2) = By sup  d(ei(t), (1)),

te[ti—1,t:]
where both ¢ and ¢ are representatives over the same subdivision 0 =t < t; < --- <
ty = 1 and d(-, ) is the metric derived from the Riemannian metric on X. Note that
Q% is a finite dimensional submanifold of Q.
The Banach manifold structure on €, , is defined similarly. For a ¥-path ¢ =
(go,¢1, - -, Cky gr), the tangent space at [c],, is isomorphic to the space of vector

fields v = (vy,...,v;) along ¢ which vanish at 0 and 1. O O

As we have already seen in a previous section, the groupoid ¢ acts naturally on
the right on the set Qx of based ¥-loops with respect to the projection p: Qx — X
associating to a ¥-loop based at x the point x. The action of 4 on 2x with respect
to the projection assigning to a based ¥-loop its base point is continuous. We defined

the quotient of 2y by this action to be the ”space” of free loops |A(¥)| = |AQ| on Q.

Proposition 5.0.6. The space |AQ| of free G-loops has a natural orbifold structure
noted AQ. The subspace |A°Q| of free loops of length zero is a "suborbifold” A°Q of

AQ.

Proof. The natural orbifold structure is given by the groupoid structure associated
to the action of & on the Qx with respect to the projection p : Qx — X. The
groupoid of germs of changes of chart is the groupoid ¢ := ¢ x x Qx, the subspace
of 4 x Qx consisting of pairs (g, [c|,) with a(g) = z. The source (resp. target)
projection maps (g, [c].) to [c], (resp. [c]..g). The composition (¢', [¢']./)(g, [c]z) is
defined if [¢'],s = [c],.g and is equal to (g¢’, [c].).
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The suborbifold structure on A°Q is obtained by replacing Qx by Q5% and ¢ x x Qx

The orbifold A°Q is called in the mathematical literature the inertia orbifold of
(), and it is, according Chen and Ruan the classical geometrical manifestation on the
twisted sectors of the orbifold string theory (see Chen and Ruan and also Lupercio..).
As in the section 3.6, we can associate a classifying space to orbifold AQ (resp.
A°Q). Tt turns out a that the functor B ”commutes” with the construction of loop

spaces, in the sense that there is a homotopy equivalence
BAQ ~ ABQ,

where BA(Q) denotes the classifying space of AQ) and ABQ denotes the loop space of
the classifying space of Q).

We consider as before a classifying space B(@), base space of a universal principal
¢-bundle FY — BY = BQ. Let EY x x Qx be the subspace of E¥ x {2x consisting
of pairs (e, |c|,) such that grg(e) = z. We note EY xg Qx its quotient by the

equivalence relation identifying (e.g, [c].) to (e, g.[c]z).

Proposition 5.0.7. (prop. 3.2.1 [GH|) E¥Y xx Qx — EY x4 Qx is a principal
universal (4 x x Qx)-bundle. The base space EY X4 Qx will be noted BAQ.
Similarly EY xx Q% — E9 x4 Q% is a principal universal (4 x x Q% )-bundle.
Its base space EG x4 Q% is noted BA°Q.
The natural projection BAQ — BQ (i.e. EY x4 Qx — E9 /9 = BY = BQ) is

a Serre fibration with fibers isomorphic to .

Theorem 5.0.8. (Theorem 3.2.2 [GH]) ABQ is the base space of a universal (4 x x
Qx)-bundle. This bundle is the pull back of EY X x Qx by a map ¢ : ABQ — BAQ
which is a weak homotopy equivalence and commutes with the projections to BQ).
Therefore ABQ is a classifying space for the orbifold AQ.

For points z € BQ and x € X projecting to the same point of |Q|, the map ¢
induces a weak homotopy equivalence from the space 2, BQ of loops on BQ) based at
z to Q.
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Remark 5.0.9. Composing ¢ : ABQ — BAQ with the natural projection BAQ —
|AQ|, we get an O(2)-equivariant map

ABQ — [AQ).

Remark 5.0.10. One can show that, for a space K, there is a canonical correspon-
dance associating to a principal ¢-bundle E over K x S' a principal & — bundle over
K, where 4 = ¢ x x Qx, inducing a bijection on isomorphisms classes. The universal
&-bundle over ABQ corresponds to the principal ¥-bundle over ABQ x S which is
the pull back of E¥ by the evaluation map ABQ x S' — BQ sending (I,t) to [(¢).

5.1 The Riemannian orbifold A'Q) of free ¥-loops

of class H*!

We consider as above a Riemannian orbifold @ = ¢\ X. Note that on these spaces
of continuous paths we cannot define neither the length nor the energy of a path.
Therefore, in differential geometry one considers the subspaces of picewise differen-
tiable ¢-paths (i.e. each ¢; is picewise differentiable). Their infinitesimal approxi-
mation at a picewise differentiable ¢¥-path c is given by the vector space of picewise
differentiable vector fields along ¢, denoted C"*(c*TX) = C"*°(S!, ¢*T X).

As we just have seen, the space {2y, as well as the space €, ,, caries a natu-
ral structure of a Banach manifold given by the Banach structure of of the space
Cc*TX) = C°SY, ¢*TX) with the norm || - ||o. This space can be seen as the
completion of C"*(¢*T'X) with respect to the sup norm.

We will consider a different norm on C"*(¢*T'X) denoted || - ||1, derived from the

following scalar product
<v,w >1=<v,w >g+ < Vo, Vw >,

where v and w are picewise differentiable vector fields along a 4-path ¢ = (go, ¢1, 91, - - -, C» G)

and Vo denotes the covariant derivative with respect to the induced connection on
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c*T'X. The scalar product < -, >¢ is given by

t;
< v, w >p= Ele/ < ;(t), w;(t) > dt.
0

i1
Here < -,- > denotes the inner product on fiber of ¢*T'X above ¢, induced by the
Riemannian metric on X. The completion of C"*(¢*T'X) with respect to the norm
|| - || will be denoted H'(¢*T'X), the vector space of H' sections of ¢*T'X. By a
classical result of Lebesgue, a continuous section v = (vy, vy, ... v;) is a H' section if
each v; is absolutely continuous and its covariant derivative Vv; is square integrable.

HY(c*T'X) with the scalar product < -,- > is a separable Hilbert space.

Definition 5.1.1. A ¥-path ¢ = (go,¢1,91,---,Ck, gr) over a subdivision 0 = ty <
t1 < --- <t =11s of class H' if each c; is absolutely continuous and the velocity

functions t — |¢;(t)| are square integrable.

Note that any equivalent ¢-path to ¢ will satisfy these conditions. We denote
0, , (respectively €2, the set of equivalence classes of &-paths of class H' from z to
y (respectively ¢-loops based at ). Let 0y = (J, oy 2, and [A'Q| be the set of free
4-loops on @ represented by closed ¥-path of class H'. The energy function E is
defined on all those spaces.

As in the case of continuous ¥-paths one can prove the following.

Proposition 5.1.2. The set Q' as well as the set (), has a natural structure of

Riemannian Hilbert manifold.

The tangent space at ¥y at [c], is canonically isometric to the space H'(¢*TX)
of H' sections of the bundle ¢*T'X. The inner product < -,- >; defined above is
independent of the choice of ¢ in its equivalence class. Similarly the tangent space
to €, , at [c]., can be identified with the Hilbert space of H'-sections of the bundle
c¢*T'X over [0,1] which vanish at 0 and 1 with the inner product < -,- >.

The natural action of ¢ on Qx restricts to an action by isometries on y. There-
fore on the quotient space |[A'(Q)| we get a structure of Riemannian Hilbert orbifold

noted A'Q. It is complete if @) is complete. Like before we have a continuous action
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of the group of diffeomorphisms of S' on |A’Q|, and by restriction an action of O(2)
by isometries. (The inertia orbifold is invariant by this action.) The groupoid of
change of charts is G =G x x . As in previous section one proves that the space
BA'Q := E9 x4 Qs is a classifying space for A'Q.

Proposition 5.1.3. The natural inclusions

x7y

Oy — Qx, Q,,—Q

are continuous and are homotopy equivalences. In particular, if Q) is connected, 'y
has the same weak homotopy type as the space of loops on BQ) based at a fixed point.
The induced inclusion
BA'Q — BAQ

1s a homotopy equivalence.

Proof. The topologies on 2x and 'y can be described as the those induced by the
corresponding distances given by the Riemannian metric. If [c] and [¢/] are points
in Qy then the distance d([c], [¢]) is the infimum of the length L. (F) of curves
F:]0,1) = Qx from [¢] = F(0) to [¢] = F(1). Here the length is defined by

LdF
L. (F)= -
oo (F) /0 ||ds||oods,

where || - || is the sup norm on CY(F(s)*TX). If [c] and [¢] are in Q, then the

distance induced by the Riemannian metric d([c], []) is the infimum of the length

L dF
L(F) = -
1(F) /0 IIdslllds

of curves F': [0,1] — €y, where the || -]||; is the norm derived from the inner product
<+, ->;on H(F(s)*TX). Note that if v = (vy,vg,...,v;) is a H' vector field along
a 9-loop of class H', then ||v]|s < V2||v||1. Indeed, if we choose tf € [t;_1,t;] such
vi()]] = [lvi(£7)]], then

that SUP¢e(t;_q t4]
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(sup Ihu@)H)2==|hu@)H24—J{i é%|ha(a)H2da

te[ti,hti]

t;
< ||vz-(t)||2+2/ |[vi(o)]| [[Vvi(o)||do
ti—1

t; t; t;
S/ ||vz~(0)||2da+/ ||Ui(g)||2d0+/ IVi(o)|[*do
ti—1 ti—1 ti—1

sz[iﬂmwm%4Wwwm%w,

i—1

and the inequality follows. This implies in particular that if F' : [0,1] — QY then
Loo(F) < V2L, (F). Therefore, for [c],[c'] € Qy we have

doo([d], []) = inf{Loc(F) | F :[0,1] = Qx} < inf{Loo(F) | F:[0,1] — Qy}
< inf{V2L,(F) | F:[0,1] = Q%} = v2di([c], [¢]),

i.e. the inclusion 'y — Qx is continuous.

The map (s, c) = r4(c) is continuous as function of two variables. Note that this
inclusion also compact. If the orbifold @) is compact, then this is true for y — Qx.
In particular €, is a closed submanifold of Q. If the orbifold @ is complete then
the space €2, , with the distance induced by the Riemannian metric is also complete.
The same is true for QY if @) is compact. (see Klingemberg, Theorem 2.7)

We will show now that the above inclusions are homotopy equivalences by follow-
ing the argument of Milnor used in [.M.Th.]. Denote by P the spaces {2x or €, , and
by P’ the spaces 'y or .

For a positive integer k, let Py (resp.P}) be the subspace of P (respectively P’)
formed by the equivalence classes represented by ¥-paths ¢ = (go, €1, 91, - - -, Cok, Gor)
defined over the subdivision 0 = t; < .-+ < to = 1, where t; = i/2% and such
each ¢;(t;_1) is the center of a convex geodesic ball containing the image of ¢;. Then
to each such representative ¢-path ¢ we can associate uniquely the ¥-path ¢ =
(9o, C1, g1, - - -, Cok, gor ), Where ¢; is the (unique) geodesic segment joining c¢;(t;_1) to
¢;(t;). Note that as in the manifold case the ¥-path ¢ is a "broken ¥-geodesic” with
a braking point at each t;, i = 1,...,2*. Denote by B the set of all such broken



91

¢-geodesics. We will show that By is a deformation retract of Py, (respectively of P).
Indeed, denote by r : P, — By the map ¢ +— ¢ (i.e. each r(c); = ¢;) and define for
s € [0,1] the family r; : P, — Py as follows. For t;_; < s <t let

rs(c); =r(c);, for 1<j <1

re(c); q= minimal geodesic from ¢;(¢;_1) to ¢;(s),

‘tz 1,8

<

(¢)
(©)i;
s(C)ilfs .1, = Cils,ts) and
(¢)

rs(c); = ¢;, for i<j <2k

Then ry = idp, and r1 = r. The continuity of the minimal geodesic with respect to
its end points implies the continuity of r(s,c¢) = rs(c) as function of two variables.
This proves that By is a deformation retract of P, and that the inclusion B, —
Py, is a homotopy equivalence. In a similar way the set P, retracts to the space
of broken geodesics and that B, — P/ is a homotopy equivalence. This gives a
continuous deformation of i, P P/ — P, and implies that this inclusion is a homotopy
equivalence.

We will prove now that P(respectively P’) is the homotopy limit of the subspaces
Py (respectively Pj). That is, the projection map p : Px — P is a homotopy equiv-
alence, where Py is the infinite union Py x [0,1]U Py x [1,2] U - - -, topologiezed as a
subset of P x R (see Milnor, Appendix).

First, following Milnor, we will define a continuous function A : P — (0,1/2"]
such that for any ¢, € [, 5] with [t — ¢/| < 2871 A(c;) we have that ¢;(t) and ¢;(t)
can be joined by a unique minimal geodesic which varies differentiably with the end
points.

Let f: X — [0,00) be a continuous function such that f~!([0,a]) is compact for
every a € [0,00). Let €;(a) < oo be the largest number such that any two points with
distance smaller than €;(a) can be joined by a unique minimal geodesic which varies
differentiably with the end points. Since ¢ is positive, monotone decreasing function,
we can choose € : [0,00) — R such that €, is continuous and 0 < €3(a) < € (a). Now
define e : P — R by €(e;) = 62<maxt€[0 1] (f(cl(t)))> Thus € is continuous, and any

two points of ¢;([%5+, 5]) of distance < €(c;) are joined by a unique minimal geodesic.
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Define a continuous function
F:Px[0,1] - R

by
F(ci, s) = (s — De(c+1) + max d(c(t), c(t)).

jt—t/[<s
Then F, considered as a function of s, is strictly monotone, and F(c;,0) < 0 <
F(c;,1). Hence for each ¢ € P there is a unique s € (0,1/2%] with F(c;,s) = 0.
Define A(¢;) = s/2. Since F' is continuous, the function A : P — (0, 1] is continuous.
If [t — ¢'| < s =281 A(q) then d(ci(t),ci(t) < (1 — s)e(e;) < e(e;) hence ¢(t) and
¢;(t') are joined by a unique minimal geodesic.

Now define a continuous function h : P — P, as follows. For a ¢-path ¢ =
(g0, 1,91, - -+, Ck,g1) we can find an integer k and a subdivision 0 =ty < t; < --- <
tor = lwith t; = i/2% and a @-path path over it equivalent to the initial one. Let h(c)
be the unique ¥-path such that (i) h(c); coincides with ¢; for ¢t = (i — 1)/2%, ((i —
1)+ Ale)) /2%, ((i—1)+2A(c)) /2%, ... ((i — 1) +m;A(c;)) /2%, i/2%, where k is
the largest integer in 1/A(¢;); and

(ii) h(c); is a geodesic in each intermediate interval.

One can deform continuously such a 4-path ¢ to the ¥-path h(c). Passing to
equivalence classes, this gives a continuous deformation. As the spaces P and P’ are
the increasing union of the open subspaces P, and P}, for k = 1,2, ..., it follows that
i is a homotopy equivalence. (see [Mi])

The last assertion follows from the fact that the above deformation commutes
with the projection to X and with the action of ¢.

O

5.2 The energy function

The energy function E is well defined on €2, and Q. As it is invariant by the action

of ¢, it gives a well defined function on |A’Q)| still noted E.
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E is a differentiable function on 'y or €, . The gradient grad E of E at [c], is

given by the formula:

grad E(v) =< &, V0 = Y / _ti ORI O

where v = (vy,...,v;) € H'(¢*TX) and where < -, - > denotes the inner product in
the fiber above ¢ in ¢*T'X induced by the Riemannian metric on X (see Theorem 1.20
[K1]).

Now we can characterize the critical points of £ in Q' and €2 ,

Proposition 5.2.1. The critical points [c|,, of E on ., are the geodesics ¢ -paths

Ty
from x to y and the critical points [c], of E on QY are either points in Q% (i.e. based

& -loops of length zero) or closed 4-geodesics at x.

Proof. By partial integration and using that the action of ¢ is by isometries we get

k 4
grad E(v Z( / (Ve )vi(t))dt+<c',-(ti),vi(ti)>—(c’i(t,-_l),v,-(ti_l))>

k

(Z ch ), vi(t))) + (1), vr(1)) = (€1(0), v1(0))

—<V0}v>o + (¢ (1), vk (1)) = (¢1(0), v2(0))

Thus, if ¢ represents a ¥-geodesic from x to y, then Vé = 0 (i.e. Vé = 0 for
all 7) and since v € H'(c*TX) we have that v(0) = v(1) = 0, which implies that
gradE(v) = 0 for any v, i.e. [¢|,, is a critical point. Conversely, if we assume that
at [c],, we have gradE(v) = —(V¢é,v) = 0 for all v € H'(¢*T'X), then Vé =0 ie. ¢
represents a ¢-geodesic from x to y.

In the case of @y , if [c], € Q% then it is obvious a critical point for E. If [¢], is a
closed ¥-geodesic then Vé = 0 and ¢1(0) = d(gogx)¢r(1). Then the conclusion follows
again from the compatibility conditions for v € H(¢*TX), v1(0) = d(gogr)vi(1)
together with the fact that the action is by isometries. Conversely, if gradE(v) =
(¢, V) =0 for any v € H'(c¢*T'X), determine H' vector fields u, v’ along ¢ by
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Vu' =0, u'(1) = u(l)
and consider w = u — tu'. Then w(0) = w(1) =0 and Vw = ¢ — u/. But,
0 =gradE(w) = (¢, Vw)o = (¢, ¢ — u')o

and
! / / ' d / / /
(e =g = o Vo = Y- [ St = (! (0),w(1)) = (/(0),w(0)) = 0
i=1 Y ti-1
imply that ||¢ — u/|[p =0, i.e. ¢ =" and so Vé= Vu' = 0.

O

In order to be able to extend the classical theory of functions and their critical
points on an Euclidian manifold to a Hilbert manifold, we will make use of the so-
called Palais-Smale condition (C). This condition is a substitute for the failure of a

proper Hilbert manifold to be locally compact.

Condition 5.2.2. (The Palais-Smale condition) Let ¢,, be a sequence of closed 4 -
paths (resp. of 9-paths from x to y) such that

(i) the sequence E(c,,) is bounded,
(ii) the sequence |grad E(cy,)| tends to zero;

then the sequence [cy,] (resp. [Cmlsy) has accumulations points and any converging

subsequence converges to a geodesic.

For a compact orbifold (resp. a complete orbifold) the Palais-Smale condition (C)
holds for the function £ on [A'Q| (resp. on 2, ) (see Theorem 2.9 [K1]). This implies
that, for a > 0, the set of critical points of E in the subspaces E~!([0,a]) of |[A'Q| or
€, is compact.

Note that on €2, , the smallest value for E is d(x,y)?/2. Hence, for a < d(z,y)?/2
the set E~1([0,a]) is empty. On Q% the smallest value of E is zero and it is attained

/0
on .
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The vector field —grad E generates a local flow ¢; on Q' (respectively on € ).
As it is known from the theory of differential equations, for every [¢|, € @ (resp.
[lzy € €2, ,) there exists a maximal interval J = J([c]) containing 0 € R on which
¢, t € J, is defined. If grad® = 0 then ¢; = ¢ for all t € R, i.e. in this case J = R.
It can be proved that the local flow on 'y is defined for all ¢ > 0 when @) is compact
(resp. on €, , if @ is complete) (see Theorem 2.15 Klingenberg). Here we essentially
use the fact that E(p;) is bounded from below by 0. If E(¢;) is also bounded from
above then the same argument will show that ¢, is defined also for ¢ < 0.

On Yy, ¢ commutes with the action of 4 and gives a local flow on |A'Q|. If @ is
compact, the local flow ¢y is ?/—Complete in the following sense, where G =G x x Q%
is the groupoid of germs of change of charts of the orbifold A’Q. Given T € QY and
7 > 0, one can find a ?/—path ¢ = (99,1,G1- - -+ Ck, Jj,) over a subdivision 0 = t5 <
t; <--- <ty =7 of the interval [0, 7] such that @W(go) = T and ¢;(t) = i—,_, (Ci(ti-1))
fori=1,..., k. The image of this path in |A'Q)| is the ¢, trajectory of the projection
of T for t € [0,7]. When 7 remains in a small neighbourhood, such a & -path exists
over the same subdivision and varies continuously.

Given another such ?/—path @ = (95,%,7),---,Cp Gp) issuing from T’ defined
over the same subdivision of the interval [0, 7] and an element § € &' with source
7 and target @, then there are unique continuous maps h; : [t;_1,t;] — 4 such
that a(hq(t)) = @(t), w(hi(t)) = €(t), 9o (0) = gg and hi(t:)g; = Gihisa(t:) for
t=1,...,k— 1. This implies easily the following

Lemma 5.2.3. Given a morphism from K to &) and 7 > 0, there is a unique
homotopy fi of f parametrized by t € [0, 7] whose projection to |N'Q| is the flow ¢,
applied to the projection of f.

Let P be either [A'Q| or €2, . In the first case we assume that |)| compact and in
the second case that |@| is complete. Up to the end of this section, we assume that
(@ is compact (resp. complete) if P = |A'Q)| (resp. P =, ,). For a number a € R,

we denote P? the set of point of P for which the value of the energy function is < a.
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Definition 5.2.4. A p-family is a collection # of non-empty subsets F' of P such
that

(i) E is bounded on each F' and
(i1) F is closed under the flow ¢y, i.e. F € F, then ¢i(F) € F for allt > 0.

Let a € R and chose sufficiently small € > 0 such that E has no critical values in
(a,a+ €]. A p-family of P mod P* is a p-family .F such that

(i) F € F implies that F ¢ P*e.

The value

az = inf sup B
FeF
is called the critical value of the p-family % of P mod P®.

Note that if a < 0 a ¢-family is always a ¢-family of P mod P®. The importance
of the concept of a p-family lies in the fact that its critical value is a critical value for

E as it can be seen in the following theorem (see Theorem 2.18 Klingenberg).

Theorem 5.2.5. The critical value az of a p-family F of P mod P® is always > a

and there is a critical point of E with value ag.

We will first prove two lemmas. The first one is an immediate consequence of

condition (C).

Lemma 5.2.6. Let a > 0 and denote by Cr® the set of critical points of E in
E=([0,a]). Let U be an open neighborhood of U in P. Then there exist e = ¢(Cr®) > 0
and § = 6(€) > 0 such that [c] € (P*™ — P*~¢) N CU implies |gradE| > 4.

Proof. Assume this is not the case. Then this would mean that there exists a sequence
(¢ in CU with lim |gradE(c,, )| = 0 and lim E(c¢,,) = a. Then the Palais-Smale con-
dition gives us the existence of a limit point in C'r® of this sequence, which contradicts
the choice of [¢,,]. O O

Lemma 5.2.7. Let a be a noncritical value of E. Then a > 0 and there exist € > 0
and t* > 0 such that p,(P*™¢) C P**.
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Proof. From the previous lemma we have, for U = &, the existence of ¢ > 0 and § > 0
such that |gradE([c])| > 0 for [c] satisfying a —e < E(c) < a+e If E(c) < a —,
then also E(p;(c)) < a — ¢, for all ¢ > 0. Let t* = 2¢/6* and consider [¢] such that
a—e< E(c) <a+e Assume now that E(pi(c)) > a — e for 0 <t <t*. Then
t* d t*
Bleil) = BQ)+ | G E(@de)dt = Ble)— [ lgradB(ea()
0 0
<a+e—0t"'=a—c¢

which is a contradiction.[] O

Proof. (Proof of Theorem) The definition of az implies that for every € > 0 there
exists I' € . such that sup | < az + €. Hence az > a. Suppose az is not a
critical value for E. Then by Lemma [..] there exists ¢ > 0 and ¢* > 0 such that
@s(P7te0) C P*7 = for all t > t*. In particular this would imply sup Ejr < az — €

with F' as above, which is not possible. Hence a# is a critical value for E. [J O

Applying this theorem to the ¢-family formed by the points of a connected com-

ponent of P and for a < 0, we get the following corollary.

Corollary 5.2.8. The energy function E restricted to a connected component of P

assumes its infimum in some point, and such a point is a critical point of E.

5.2.1 The second order neighborhood of a critical point

We study the second order neighborhood of a critical point ¢ of E, i.e. the Hessian
D?E(c). Consider a ¥-path ¢ = (go,c1,. .., Cx, gx) over the subdivision 0 =ty < t; <
-+ <ty = 1, representing a closed geodesic of positive length based at x or a geodesic
from x to y. Let v = (vy,...,v) and w = (wy,...,wy) are vector fields along c,
identified to elements of the tangent space Tj,,x or Tjg, €, The Hessian of the

energy function at the critical point [c], € Q' of [c]., in €2 , is given by the following

expression.

D’E(e)(v.w) = Y /t C(Vui(t), Vuws(#))dt + (R(x(8), vi(8))és(t), wilt)) )t
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where R is the curvature tensor of the Riemannian metric on X. This is a symmetric
and bilinear function of v and w.
The tangent space T at [c], (or at [c],,) splits as an orthogonal direct sum of the

negative, the null and the positive space of the corresponding selfadjoint operator:
T.=T  oT T,

By an argument similar to that used in the construction of P/ in the proof of Prop
[...] we can choose a representative of ¢ defined over a sufficiently fine subdivision of
the unit interval such that each ¢; is contained in an open set with the property that
any of its two points can be connected by unique minimal geodesic which depends
differentiably of the two points. Then we can define the finite dimensional space
T.(to, t1,...,tx) C T, of broken Jacobi fields along ¢, i.e. consisting of vector fields
v = (v1,09,...,u;) such that each v; is a Jacobi field along ¢;. As in the manifold

case one can prove that the tangent space T, splits as the direct sum
T. = Tc(t0>t1> s atk) D Tla

where T" denotes the vector space consisting of the vector fields along ¢ which vanish
simultaneously at the braking points 0 = ¢ty < t; < ... < t, = 1. Moreover, the
two subspaces are mutually perpendicular with respect to the inner product D*E(c)
and the Hessian restricted to 7" is positive definite (see Lemma 15.3 Milnor [...]). An
immediate consequence of this fact is that the negative space 7., (as well as the null
space T?) is always a finite dimensional vector space. The dimension of the negative
space is called the index of ¢. As in the manifold case one can prove that T consists
precisely of the Jacobi vector fields along ¢ (this is an alternative way to see that the

null space is always finite dimensional). In the case of 2/ its dimension is called

x,y’
the nullity of ¢ and as we have seen it never exceeds n — 1. In the case of 0y, the
nullity is defined to be dimT? — 1 since in this case ¢ = (¢1, ¢a, . . ., ¢x) belongs to T7.

We say that the Hessian of the energy function is degenerate if the nullity is positive.
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5.2.2 Finite dimensional approximation

As above, for a real number a > 0, we denote by P (resp. P<%) the subspaces
of P = Yy and (2, where the energy function is < a ( resp. < a). In the first
case we assume |@| to be compact, and complete in the second case. Similar to
the manifold case we will investigate the topology of P? by constructing a finite
dimensional approximation to it.

Let £ > 0 be an integer and 0 =ty < t; <ty < ... <ty =1 be the subdivision of
the unit interval with ¢; =i/ 2% Consider the subspaces Py, . of P formed by elements
represented by ¥-paths of class H', ¢ = (go,¢1, 91, - - -, Ck, gx) defined over the above
subdivision and such that each ¢;(¢;_1) is the center of a convex open geodesic ball
of radius € containing the image of ¢;. Note that a similar subspace was used in the

proof of Proposition 5.9. We have the following lemma concerning the space Pj.

Lemma 5.2.9. There exists € > 0 and a sufficiently large integer k such that every

element of P* can be represented by an element of P ..

Proof. 1f the orbifold is compact then there exists € > 0 such that every point is the
center of a convex geodesic ball of radius e. In particular, if 2 € X, the exponential
map is defined on the e-ball centered at the origin in 7, X and maps this ball diffeo-
morphically onto the ball B(z,€) centered at z and of radius e. Moreover, note that
using the compactness of || there exists an integer kg > 0 such that every ¥-path
has a representative over the subdivision 0 =ty < t; < ... <ty = 1 with t; = i/2%.

Let now [c] € P®. From the inequality L? < 2E we have that L(c) < v/2a. Choose
k such that 2% > min{2% 2a/e*}. If ¢ = (go,c1, 01, --,Cr, gr) iS a representative of
] over the uniform subdivision with norm 1/2* then for each i we have

(Lt (e))” = 2(t; = tima) By 1 (ci) < Q%E(C) < % <eé.
But L(¢;) < € means that ¢; is contained in the convex geodesic ball centered at
¢;(ti—1) and of radius €, i.e. ¢ = (go,¢1,91,---,Ck, gx) is an element of P .
The above construction works also in the case when the orbifold is complete as

follows. Let S denote the closed ball

{zelQl| d(z.7) < V2a},
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where T = ¢(z) and d(-,-) denotes the metric on the base space induced by the
Riemannian metric on (). Since |@| is complete, S is a compact set. Again the
inequality L? < 2F implies that the projection of any element of P® lies entirely in
this set. Then an € and a ky as above can be defined for all the ¢-paths with energy
<a. O O

Consider now the subspace Bj C P® consisting of broken ¢-geodesics of energy
smaller than a. This is a finite dimensional manifold. The tangent space T.Bj to
B{ at a broken geodesic ¢ = (go, 1,91, -- -, Ck, gr) can be identified with the space
Te(to, t1, ..., 1) of broken Jacobi fields along ¢. The following result shows that the
finite dimensional manifold Bj} provides a faithful model for the infinite dimensional
space P®.

Proposition 5.2.10. (Finite dimensional approximations)(Proposition 4.1.5. [GH])

(i) The space B{ is a deformation retract of the space P*. The restriction of the
energy function to P<® and to By® have the same critical points, and at such

points the nullity and the index are the same.

(i1) The suborbifold N'Q* = G\Q' retracts by deformation onto the finite dimen-
sional suborbifold AQ* (k) := G\Q'% (k). The inclusion

BAQ*(k) = B9 x4 Q% (k) — BNQ® = EY x4 Q’;,y
1s a homotopy equivalence.

Proof. (i)The proof of the first part follows the argument used in the proof of Prop.
5.9. For the second part note that every ¢-geodesic is also a broken ¢-geodesic. Thus
every critical point of E on P<® will be in B;;®. Conversely, if ¢ is a critical point for
the energy function restricted to the space B¢, then (see the proof of 5.4) it has to
be an unbroken ¢-geodesic. The fact that the index (resp. nullity) of D*E|p<a(c) is
equal to the index (resp. nullity) of D2E| Bk<a(c) is a consequence of the fact that the
index (resp. the nullity) localizes in the (finite dimensional) space T¢(to, t1, ..., ;) of
broken Jacobi fields along c.

(ii) The last claim follows from the observation that the deformation commutes with
the action of ¢. O
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5.3 Existence of at least one closed geodesic with

positive length

Theorem 5.3.1. On every compact connected Riemannian orbifold which is bad there

exists at least one closed geodesic with positive length.

Proof. Let Q = X/¥ be a such orbifold. There is a point x € X and a nontrivial
element ¢ in its isotropy group ¥, such that the closed loop based at x represented

by the pair (¢, g), where ¢ : [0.1] — X is the trivial map to x, is homotopically trivial

(*** f>|<>x<>|<)

give a proo . The homotopy gives us a continuous path in |A’Q| joining the
point 2z € |A°Q)| represented by (c,g) to the point 2z’ € |A°Q| represented by the
constant loop. Those points are in different components of [A°Q| by [..7] and these
components are compact [..7]. By [Prop...?] the sets of points |[A“Q| of |A'Q| for
which the energy function is smaller than e for various ¢ > 0 form a fundamental
system of neighbourhoods of |A’°Q|. Therefore the family of paths in |A’Q| joining z

to 2 is a ¢-family mod |[A°Q| and we can apply Theorem 5.8. O]

Theorem 5.3.2. Let QQ = M/T be a good compact connected Riemannian orbifold
(i.e. M is a connected Riemannian manifold and I is a discrete group acting on
M by isometries and such that the quotient space is compact). There is at least one

closed geodesic on Q) wit positive length in the following cases:

(i) T is finite (i.e. the orbifold is very good) or it contains an element of infinite

order;

(ii) M is simply connected and any of the higher homotopy groups m;(M), i > 1 is

notriwvial or M is a nontrivial K(m,1).

Proof. (i) If the group I' is finite then M is compact and the classical result of Fet
implies that there exists at least one closed geodesic on M with positive length. Its
projection gives a closed geodesic on () with positive length.

In the second case, the element of infinite order in I' gives an element of infinite
order in m¢"*(Q). The energy function restricted to the component of |A’Q| corre-

sponding to this element attains its minimum at some point which is critical for £
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(by Corollary 5.11). This point is a closed geodesic. Since it represents an element of
infinite order, it has positive length.

(ii) Suppose that there is ¢ > 1 such that m;(M) is the first not trivial homotopy
group. Then the standard loop fibration shows that m;_1(ZM)~m;(M), where LM
denotes the space of loops on M. By Hurewicz Theorem H;(ZM) ~ m;(LM) for
the for the first nontrivial ;. Hence H;_ (£ M) ~ m;(M) is nontrivial. Applying the
Fundamental Theorem of Morse Theory for the loop space and energy function, we
obtain the existence of an index ¢ — 1 > 0 critical point. This is a closed geodesic on
M of positive length, since the index is positive. The projection of this geodesic will
give us a geodesic of positive length on Q) = M/T".

Consider now the case when all the higher homotopy groups m;(M), i > 1 are
trivial. We will see that in this case 7 (M) contains no element of finite order.
Denote by M the universal cover of M. Then M is a complete manifold (see [..?] and
WZ(M ) =0 for all 1 > 0. By a result of Witehead M is contractible and then the
cohomology group H*(M) can be identified with the cohomology group H*(m(M)) of
the group m1(M). Assume now that 7 (M) contains a nontrivial finite cyclic subgroup
G. Then for a suitable covering space M of M we have 7T1(]/\Z ) = G and as above
H*G) = Hk(]\/i) = 0 for £ > n. But since the cohomology groups of a finite cyclic
group are nontrivial in arbitrarily high dimensions, this gives a contradiction. Hence,
71 (M) contains no element of finite order. This implies that 7{"*(Q) contains an

element of infinite order and again we can proceed as in the second part of (i). O

Corollary 5.3.3. On every compact connected 2-dimensional Riemannian orbifold

there exists at least one closed geodesic with positive length.

Remark 5.3.4. For the existence of a closed geodesic of positive length on compact
orbifolds, the only case left open by the preceding theorem would be the following
one. Let I' be an infinite group all of whose elements are of finite order acting properly
on a Riemannian manifold M by isometries with compact quotient Q = I'\ M; does
there exists a non constant geodesic ¢ : [0,1] — M and an element v € I" such that
the differential of v maps ¢(0) to ¢(1). Note that such a group I'" would be finitely

presented, and no examples of such groups are known yet.
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5.3.1 Developability of orbifolds with non positive curvature

Let @ = X/¥ be a connected Riemannian orbifold with non positive curvature. Con-
sider @ its universal orbifold covering. Then @ is a complete Riemannian orbifold
of non positive curvature. Let (fg, X ) be the étale groupoid associated to the pseu-
dogroup of change of charts of @ Note that this groupoid is Morita equivalent to the
universal covering groupoid of (¢, X). Since Q is simply connected, €, ,, is connected
for every x,y € X. Since @ has non positive curvature, every ¢-geodesic from x to
y has index 0 (there are no conjugate points along it). Thus, WZ(Q;y@) are trivial
for all # > 1. This implies that all the orbifold homotopy groups are trivial, i.e. @ is
contractible. It follows that there is precisely one fg-geodesic from x to y.

Let Tm@ denote the tangent cone to @ at x and let (E%E x T, X ,Tx)z ) denote
the groupoid associated to the action of 4 on T,X. Since up to equivalence of G-
geodesics there is exactly one g—geodesic between any two points in the orbifold @,
the exponential map exp, : T, x@ — @ induces an equivalence (Morita) between the
groupoids (E%E T, X, T, X ) and (E?, @) Since (E?, X ) is simply connected, the isotropy
group ¥, is trivial. Thus, @ is a manifold, i.e. @) is developable.

Note that in the above argument we used essentially the completeness of () for
the domain of the exponential map and also for the onto part and the fact that the
orbifold has non positive curvature for the uniqueness of the geodesic connecting any
two points (i.e. for the one-to-one part). The same argument works in that case when

@ is a complete Riemannian orbifold which has a pole.
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