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Chapter 1

Introduction

The notion of orbifold was first introduced by Satake in [?] under the name of V -

manifold. Later it was rediscovered by Thurston in [T] as a tool for studying the

topology of 3-manifolds and it is then when the term of orbifold was coined. The

point of view of their definition was that the orbifold is a natural generalization of

that of manifold by allowing some mild singularities. They are locally modeled by

open sets in Rn modulo an action of some finite group of homeomorphisms or diffeo-

morphisms. Moreover the group is not fixed and can be changed as we pass from one

point of the orbifold to another. An isomorphism of coordinate neighborhoods cor-

responds to equivariant actions of the same group on Rn. A difference between their

definitions consists in that Satake required the group action to have a fixed point set

of codimension at least two while Thurston did not. Thurston’s definition of orbifold

allows group actions such as reflections through hyperplanes. If such a requirement is

made, the orbifold is often referred as a codimension two orbifold. However, both of

them used only faithful actions to define their orbifolds which corresponds to the so

called now reduced orbifolds. This intuitive restriction appears to be very unnatural

if for instance we want to study suborbifolds.

This perspective was basically motivated by the fact that orbifolds often arise as

quotient spaces of manifolds by proper actions of discrete groups. However, orbifolds

often occur in other branches of mathematics. For instance, in algebraic geometry,
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it was developed the concept of stack in order to deal with moduli problems. As it

happens orbifolds arise quite naturally from the very same moduli problems and didn’t

take long to realize that the theory of stacks provide another way of understanding

the category of orbifolds (and vice-versa). For example, the Deligne-Mumford moduli

stack Mg for genus g curves is in fact an orbifold. So a reason for the importance

of studying orbifolds is that many moduli spaces are better understand as orbifolds.

This also motivates the modern approach of studying orbifolds, where the underlying

idea is that an orbifold is best understood as a stack. As a manifold is completely

determined by an open cover and the corresponding gluing maps, in the same way

a stack will be completely determined by a groupoid representing it. There may be

more that one such groupoid, but we use the notion of Morita equivalence to deal

with this. In [?] the authors describe the procedure to go from an orbifold to a stack

in a such way that the category of orbifolds constructed in chapter 2 turns out to be

a full subcategory of the category of stacks; and also the procedure of going from a

stack to a groupoid, producing again an embedding of categories. However there is a

direct way of passing directly from an orbifold to a groupoid as we will see in chapter

3.

A motivation for the groupoid approach to the theory of orbifolds comes also from

the theory of foliations where the groupoids play a fundamental role as they provide

the main tool of studying the space of leaves, by means of the holonomy groupoid of

the foliation. We recommend the Mooerdijk, haefliger... for a detailed exposure of

this issue.

We will refer to this perspective as the traditional approach of the theory of

orbifolds.



Chapter 2

Orbifolds

2.1 Group actions

In this section we briefly recall some facts from the theory of group actions on a

topological or smooth manifold and we will mainly focus on the properly discontinuous

actions (see below and also Proposition 2.1.2). A useful special case of a discontinuous

action is the action of a finite group on a Hausdorff topological space and as we will see

in the next section this will play an important role in understanding local properties

of orbifolds. For a more detailed introduction to actions of discrete groups the reader

may consult [B] and also [T1].

We will begin with some formal definitions. Suppose Γ is a group and M is a

topological space or a smooth manifold.

Definition 2.1.1. An action of Γ on M is a map Γ ×M → M, (γ, x) 7→ γ.x such

that, for all x ∈M

(i) (γ · δ).x = γ.(δ.x) for all γ, δ ∈ Γ, and

(ii) 1.x = x, where 1 ∈ Γ is the identity element.

Thus the first rule says that the identity of the group acts as identity, and the

second rule says that two elements of Γ, acting successively, act as the product of two

elements.

3
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There are some standard notions associated with such an action. For a point

x ∈ M , the set Γ(x) = {γ.x| γ ∈ Γ} ⊆ M is called the orbit of x. We can introduce

a relation on M by x ∼ y if and only if x and y are on the same orbit. It is easy to

check that this is an equivalence relation. The space of equivalence classes of points

of M will be called the space of orbits and will be denoted M/Γ (we agree to denote

it like this even if the action here is considered from the right).

The elements of Γ which leave an element x fixed by their action form a subgroup

Γx = {γ ∈ Γ| γ.x = x} called the isotropy group at x. It is easy to see that if x

and y are on the same orbit, say y = γ.x, then their isotropy groups are conjugate,

Γy = γ.Γx.γ
−1, and in fact any conjugate subgroup to Γx occurs as an isotropy group

Γy to some element y ∈ Γ(x). If Γx = Γ, then x is said to be a fixed point of the

action. The set of fixed points of the action is often denoted MΓ. A subset N ⊂ M

is called Γ-invariant if it is fixed by the action of Γ, i.e. γ.N = N for every γ ∈ Γ (or

with the notation above if N ⊂ MΓ).

We say that Γ acts by homeomorphisms (diffeomorphisms) if there is a homo-

morphism ρ : Γ → Homeo(M) (Diffeo(M)), where Homeo(M) (Diffeo(M)) denotes

the group of homeomorphisms (diffeomorphisms) of M with the group law given by

composition of maps. In what follows we will consider this kind of actions.

Here are some basic properties of group actions:

(i) The action of Γ on M is called effective if no element of the group, besides the

identity element, fixes all the elements of the space, or equivalently if

⋂

x∈M

Γx = {1}.

In this case the representation ρ : Γ → Homeo(M)(Diffeo(M)) is faithful and

we can regard Γ as a group of homeomorphisms (diffeomorphisms).

(ii) The action of Γ on M is called free if no point of M is fixed by an element of

Γ other than the identity, or equivalently if the map

Γ×M → M ×M, (γ, x) 7→ (γ.x, x) is injective
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such that γ.x = x implies γ = 1 for any γ and any x.

(iii) The action of Γ on M is called discrete if Γ is a discrete subgroup of the group

of homeomorphisms (diffeomorphisms), with the compact-open topology.

(iv) The action of Γ on M is said to have discrete orbits if every x ∈ M has a

neighborhood U such that the set {γ ∈ Γ| γ.x ∈ U} is finite.

(v) The action of Γ on M is called discontinuous if every x ∈M has a neighborhood

U such that the set {γ ∈ Γ| γ.U ∩ U 6= ∅} is finite.

(vi) Assume now that M is locally compact. The action of Γ on M is called properly

discontinuous if for any compact sets K1,2 in M , the set {γ ∈ Γ| γ.K1∩K2 6= ∅}
is finite, or equivalently if the map

Γ×M →M ×M, (γ, x) 7→ (γ.x, x) is proper.

Recall that a map is proper if the preimages of compact sets are compact. Here

Γ is assumed endowed with the discrete topology. Recall also that a proper map

between locally compact Hausdorff spaces is closed.

Note that on a locally compact space any properly discontinuous action is discon-

tinuous and any discontinuous action has discrete orbits, but the converses are not

true in general.

The following characterization of properly discontinuously actions will be useful.

Proposition 2.1.2. The action of a group Γ on a locally compact space X is properly

discontinuous if and only if all of the following hold:

(i) the space of orbits M/Γ is Hausdorff with the quotient topology;

(ii) each x ∈M has finite isotropy group;

(iii) each x ∈ M has a Γx-invariant neighborhood U such that Γx = {γ ∈ Γ| γ.U ∩
U 6= ∅}.
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Proof. (⇒) (i) Let x and x′ be points in M with distinct orbits of Γ and let K be a

compact neighborhood of x. Since, by hypothesis, the set {γ ∈ Γ| γ.x′ ∈ K} is

finite we can find a neighborhood U of x which is disjoint from the orbit of x′.

Then
⋃
γ∈Γ γ.U is a Γ-invariant neighborhood of x which does not contain x′ (so

it does not intersect the orbit through x′). Similarly we can find a Γ-invariant

neighborhood of x′ which does not contain x, hence M/Γ is Hausdorff with the

quotient topology.

(ii) is immediate from the definition by considering K1 = K2 = {x}.

(iii) Let K1 = {x} and K2 be a compact neighborhood of x. Since the action

is properly discontinuous, the set {γ ∈ Γ| γ.x ∈ K2} is finite and contains Γx.

Thus we can find a compact neighborhood of x, say K ′
2 such that {γ ∈ Γ| γ.x ∈

K ′
2} = Γx. Consider now the set K =

⋃
γ∈Γx

γ.K ′
2 which is a compact and

Γx-invariant neighborhood of x. Applying the definition for K1 = K2 = K,

the set {γ ∈ Γ| γ.K ∩K 6= ∅} is finite and contains Γx. Then we can find a

neighborhood of x in K, say U ′, such that {γ ∈ Γ| γ.U ′ ∩U ′ 6= ∅} = Γx and by

taking U =
⋃
γ∈Γx

γ.U ′ we obtain the Γx-invariant satisfying (iii).

(⇐) By (i), for any x, x′ ∈ M such that x and x′ are not on the same orbit there

are neighborhoods U and U ′ such that γ.U ∩ U ′ = ∅ for any γ ∈ Γ. If x and

x′ are on the same orbit, then we can find neighborhoods of x and x′, say U

and U ′, such that the set {γ ∈ Γ| γ.U ∩ U ′ 6= ∅} is finite and in fact that it

has the cardinality equal to the order of the isotropy group of x (or x′). Indeed,

assume that x = δ.x′ for some δ 6∈ Γx, and consider U to be a neighborhood

of x as given by (iii) and U ′ to be δ.U . Then {γ ∈ Γ| γ.U ∩ U ′ 6= ∅} = {γ ∈
Γ| γ.U ∩ δ.U 6= ∅} = {γ ∈ Γ| U ∩ (γ−1 · δ).U 6= ∅} = δ.Γx which by (ii) is

finite. Thus, for any x, x′ ∈ M we can find neighborhoods U and U ′ such that

{γ| Γ.U ∩ U ′ 6= ∅} is at most finite. Let now K be any compact in M . Then

K×K is compact inM×M and so has a finite cover with sets of the form U×U ′

where {γ| Γ.U ∩ U ′ 6= ∅} is finite. Therefore the set {γ ∈ Γ| Γ.K ∩K 6= ∅} is

finite, i.e. the action is properly discontinuous.



7

Remark 2.1.3. In the above proposition, if the action is free and the space M is a

smooth manifold, then M/Γ is also a smooth manifold and the map M → M/Γ is a

covering.

Consider now a smooth manifold M and a group Γ acting by diffeomorphisms on

it. Note that the action of Γ on M induces an action on the tangent bundle TM

defined by γ.v := (dγ)x.v, for any γ ∈ Γ, v ∈ TxM , x ∈ M . It is well known that

if M is also connected and paracompact it admits a Riemannian metric. In the case

when the action of Γ on M is proper one can prove that there exists a Γ-invariant

Riemannian metric on M . We will include here the proof of this fact in the special

case when Γ is a finite subgroup of Diffeo(M).

Lemma 2.1.4. Let M be a connected paracompact differentiable manifold and Γ

be a finite subgroup of Diffeo(M) acting on M . Then there exists a Γ-invariant

Riemannian metric on M .

Proof. Choose a Riemannian metric g on M and define a new one by averaging g

over Γ:

ρx(v, w) =
1

|Γ|
∑

γ∈Γ

gγ.x(γ.v, γ.w)

for any v, w ∈ TxM and any x ∈ M . Then ρ is a Riemannian metric on M and it is

Γ-invariant.

Remark 2.1.5. In the general case this can be done by averaging over Γ with respect

to the restriction to Γ of a Haar measure µ defined on Diffeo(M) and using a Bruhat

function. That is, a smooth function β ∈ C∞(M,R) such that
∫

Γ

β(γ.x)dµ(γ) = 1

for all x ∈M . Moreover β can be chosen in a such way that Γ.K ∩ suppβ is compact

for all compact subsets K ⊂M .

Let γ ∈ Γ and denote Σγ = {x ∈ M | γ.x = x} the subset of M which is fixed by

γ and

ΣΓ = {x ∈M | Γx 6= 1} =
⋃

γ∈Γ,γ 6=1

Σγ .
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We say that a subset S of M is Γ-stable if it is connected and if for any γ ∈ Γ we

have either γ.S = S or γ.S ∩ S = ∅. The isotropy group of the Γ-stable set S

is ΓS = {γ ∈ Γ| γ.S = S}. Note that the Γ-stable subsets of M are exactly the

connected components of Γ-invariant subsets of M and the following holds.

Proposition 2.1.6. If Γ is finite, for any x ∈ M there exists an arbitrarily small

open Γ-stable neighborhood S of x such that Γx = ΓS (compare with (iii) in previous

proposition). Hence, the open Γ-stable subsets of M form a basis for the topology of

M .

Proposition 2.1.7. Let M be a connected, paracompact smooth manifold and Γ a

finite subgroup of Diffeo(M). Then ΣΓ is a closed set with empty interior. Moreover,

the homomorphism dx : Γx → Aut(TxM) is injective for every x ∈M .

Proof. The set

ΣΓ =
⋃

γ∈Γ,γ 6=1

Σγ = {x ∈M | ∃γ ∈ Γ, γ 6= 1 such that γ.x = x}

is obviously closed. It is the finite union of the sets of fixed points of a diffeomorphism,

which are closed. An alternative way of seeing this is the following. Consider a

sequence of points (xn) in ΣΓ which converges to a point x in M (we will prove that

x ∈ ΣΓ). Since each xn is in ΣΓ we can form a sequence of elements of Γ, γn such

that γn.xn = xn and γn 6= 1 for any n. But Γ is finite, so γn contains at least a

constant subsequence which we will denote again γn and assume γn = γ 6= 1 for any

n. The corresponding subsequence of xn converges to x and moreover the sequence

γn.xn = γ.xn converges to γ.x. But γn.xn = xn for any n so γn.xn converges to x

also. Since the quotient space is Hausdorff we have that γ.x = x and since γ 6= 1 we

conclude that x ∈ ΣΓ.

Let’s prove now that it has empty interior. Consider the Γ-invariant Riemannian

metric on M given by the above lemma, and consider the exponential map associated

with this metric. Then, for each x ∈M there are ε > 0 and open neighborhood of x,

U such that

expx : B(0, ε)→ U
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is a diffeomorphism from the ε-ball centered at the origin in the tangent space TxM

to U . Since the metric is Γ-invariant, the action of the isotropy group Γx on the

tangent space at x is orthogonal, i.e. (dγ)x is an orthogonal transformation of TxM ,

and

expx ◦ (dγ)x = γ ◦ expx,

for any γ ∈ Γx. In particular, if (dγ)x = id then the restriction γ|U = id. Since M is

connected this implies γ = 1. To see this, consider the set

A = {y ∈M | γ.y = y and (dγ)y = id}.

Then, A 6= ∅ (since x ∈ A) and it is obviously closed. It is also open. If we assume

that y ∈ A then the condition γ.y = y implies that γ ∈ Γy and the condition that

(dγ)y = id implies that the restriction of γ to an open neighborhood of y is 1. Hence

the whole neighborhood of y is contained in A, i.e. A is open. The connectedness of

M implies A = M and so, γ = 1 on M .

This proves that dx : Γx → Aut(TxM) is injective, which in particular implies

that Σγ has empty interior, for any γ 6= 1. Indeed, let x ∈ Σγ and assume that there

exists an open neighborhood U of x in Σγ . Then the restriction γ|U = 1 and as we

have seen this implies γ = 1 on M . Since Γ is finite, ΣΓ has empty interior also and

the proof is complete.

Remark 2.1.8. The above proposition implies that the only diffeomorphism of finite

order on a connected manifold which fixes an open set is the identity.

Proposition 2.1.9. Let M be a connected, paracompact smooth manifold, Γ a finite

subgroup of Diffeo(M) and let ϕ denote the natural projection M → M/Γ. Let V be

a nonempty, open, connected subset of M and f : V → M a diffeomorphism onto its

image such that ϕ ◦ f = ϕ|V . Then there exists a unique γ ∈ Γ such that f = γ|V .

Proof. Consider on M a Γ-invariant Riemannian metric given by Lemma 2.1.4. By

the previous result, the set M0 = M \ΣΓ is open and dense in M . For any x ∈ V ∩M0,

the condition ϕ◦f = ϕ|V implies that there is a unique γ ∈ Γ such that f(x) = γ.x and

on a sufficiently small connected neighborhood of x in V ∩M0 we have (df)x = (dγ)x.
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Since the metric is Γ-invariant (dγ)x , this means that (df)x preserves the metric at

x. So, the restriction of f to V ∩M0 is a Riemannian isometry. Since V ∩M0 is dense

in V , by continuity f is a Riemannian isometry on V and f = γ on a neighborhood

of x in V . But V is connected, therefore the two isometries f and γ|V are equal.

Remark 2.1.10. The last two results are still true in the case where M is assumed

to be a connected topological manifold and Γ a finite subgroup of Homeo(M). This

fact is a consequence of a result of Newman (see [?]) which states that a nontriv-

ial homeomorphism of a manifold which fixes an open set cannot have finite order

(compare with Remark 2.1.8).

2.2 Traditional approach to orbifolds

In the following sections we present the definitions and the basic properties of orbifolds

in a traditional approach. The point of view of this chapter is that an orbifold

structure generalizes the manifold topological (differentiable) structure. For more

information the reader is referred to the original work of Satake in [Sa1] and also

to that of Thurston in [T]. Other introductions for the classical theory of orbifolds

include chapter 6 in [K] and section 2.4 in [MM]. A different formulation of most of

the concepts presented here as well as a great deal of information on the differential

geometry of orbifolds can be found in the appendix of [CR]. A detailed presentation

of the geometric structure of 2-dimensional orbifolds is provided in [Sc].

Definition 2.2.1. A topological (differentiable) n-dimensional orbifold Q consists of

a Hausdorff space denoted |Q| and called the underlying space of Q, together with an

additional structure given by the following

(i) a countable basis of open sets {Ui}i∈I which is closed under finite intersections

and such that |Q| =
⋃
i∈I Ui;

(ii) to each Ui is associated a finite group Γi, an action of Γi on some open subset

Ũi of Rn by homeomorphisms (diffeomorphisms) and a homeomorphism ϕi :

Ũi/Γi → Ui;



11

(iii) whenever Ui ⊆ Uj, there is a monomorphism

λij : Γi → Γj

defined only up to conjugation with elements of Γj and such that λij induces

an isomorphism between {γ ∈ Γi| γ.Ũi = Ũi} and {γ ∈ Γj| γ.Ũj = Ũj}, and a

λij-equivariant (smooth) embedding

ϕ̃ij : Ũi → Ũj

(i.e., for any γ ∈ Γi, ϕ̃ij(γ.x̃) = λij(γ).ϕ̃ij(x̃) for all x̃ ∈ Ũi) defined up to

composition with elements of Γj such that the following diagram commutes

Note that the actions of the Γi’s on Ũi’s can be always assumed to be effective.

Indeed, the set of elements in the group which act trivially form a normal subgroup

and the action of the quotient is effective with the same space of orbits. Then each

Γi can be regarded as a finite subgroup of Homeo(Ũi) in the topological case and

respectively of Diffeo(Ũi) in the differentiable case.

The triple (Ui, Ũi/Γi, ϕi) as in (ii) is called an orbifold coordinate chart over Ui or

uniformizing system of Ui and the pair (λij, ϕ̃ij) : (Ui, Ũi/Γi, ϕi)→ (Uj, Ũj/Γj, ϕj) as

in (iii) an injection between charts.

Remark 2.2.2. It easy to see that the composition of two injections is again an

injection. The well definition of the maps ϕ̃ij up to compositions with elements of
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the group Γj is a consequence of Proposition 2.1.9 in the smooth case and of Remark

2.1.10 in the topological case. Hence if (λij, ϕ̃ij) and (λ′ij , ϕ̃
′
ij) denote two injections

between the same orbifold charts, then there is a unique γ ∈ Γj such that ϕ̃′
ij = γ.ϕ̃ij

and in this case λ′ij = γ · λij · γ−1. In particular if i = j, ϕ̃ii is an element γi ∈ Γi

and then λii is just conjugation with γi. In general it is not true that whenever

Ui ⊂ Uj ⊂ Uk we have ϕ̃jk ◦ ϕ̃ij = ϕ̃ik, but there exists an element γ ∈ Γk such that

ϕ̃jk ◦ ϕ̃ij = γ.ϕ̃ik and λjk ◦ λij = γ · λik · γ−1.

As in the manifold case, the covering {Ui}i is not an intrinsic part of the orbifold

structure. Two coverings will give the same orbifold structure if they can be consis-

tently combined to give a covering which still satisfies the properties (ii) and (iii).

By an orbifold one should understand the orbifold with the structure given by a such

maximal cover.

We begin with the simplest examples of orbifolds, more interesting examples are

given in 2.6.5.

Proposition 2.2.3. Let Γ be a group acting properly discontinuously on a manifold

M . Then the quotient space M/Γ has a natural orbifold structure.

Proof. We have seen already, in Proposition 2.1.2 (i), that under these assumptions

the quotient space M/Γ is Hausdorff. We will construct an orbifold atlas for M/Γ,

U satisfying the conditions (i)-(iii) in definition.

Let π : M → M/Γ denote the quotient map and let x ∈ M/Γ. Choose x̃ ∈ M
such that π(x̃) = x and let Γex = {γ ∈ Γ| γ.x̃ = x̃} denote the isotropy group of x̃. By

Proposition 2.1.2 (iii), there exists an open connected neighborhood of x̃, Ũex which

is invariant to Γex and disjoint from its translates by elements of Γ not in Γex. Then

the restriction

π|eUex
: Ũex → Ux := Ũex/Γex

is a homeomorphism. Let Ũ be a maximal atlas on M . By eventually shrinking Ũex,

we can assume that Ũex ∈ Ũ and so there is a homeomorphism ϕ : Ũex → ϕ(Ũex) ⊂ Rn.

Then the composition

ϕx := (ϕ/Γex)
−1 ◦ π|eUex

: ϕ(Ũex)/Γex → Ux
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is again a homeomorphism.

Hence {Ux| x ∈M/Γ} form an open cover for M/Γ and each Ux has an uniformiz-

ing system by (Ux, ϕ(Ũex)/Γex, ϕx). In order to get a suitable cover of M/Γ we should

augment the above cover by adjoining finite intersections. Let now x1, x2, . . . xk ∈
M/Γ such that the corresponding sets Ux1, Ux2 , · · · Uxk

as above satisfy Ux1 ∩ Ux2 ∩
· · · ∩ Uxk

6= ∅. Then, since Γ acts by permutations on the set of connected compo-

nents of π−1(Ux1 ∩ Ux2 ∩ · · · ∩ Uxk
), there exist γ1, γ2, . . . γk ∈ Γ such that γ1.Ũex1 ∩

γ2.Ũex2 ∩ · · · ∩ γk.Ũexk
6= ∅, where as above Ũexi

denote neighborhoods of x̃i ∈ π−1(xi)

invariant by Γexi
. Then this intersection may be taken to be

˜Ux1 ∩ · · · ∩ Uxk

which is obviously invariant to the action of the finite subgroup

γ1 · Γex1 · γ−1
1 ∩ · · · ∩ γk · Γexk

· γ−1
k .

In this way we obtain a cover U of M/Γ which satisfies (i) and (ii) of definition 2.2.1.

We will show that the condition (iii) in the definition is also satisfied. Consider

U and U ′ in U such that U ′ ⊂ U and let x ∈ U ′ and x̃ ∈ M such that π(x̃) = x.

For x and U , consider Ũex and Γex as above and choose Ũ ′
ex (note that it should be the

neighborhood for the same lift of x, x̃). In order to prove that there is an embedding

between the two charts, it suffices to prove that Ũ ′
ex ⊂ Ũex. To see this, assume it is not

true and choose ỹ ∈ Ũ ′
ex r Ũex. Then there should exist γ ∈ Γex such that γ.ỹ ∈ Ũ ′ ∩ Ũ ,

since π(ỹ) = y ∈ U ′ ⊂ U . But both Ũ ′
ex and Ũex are Γex-invariant and hence so is

Ũ ′
ex ∩ Ũex. This means that ỹ ∈ Ũ ′

ex ∩ Ũex which contradicts the fact that ỹ ∈ Ũ ′
ex r Ũex,

i.e. proves Ũ ′
ex ⊂ Ũex.

Note that the orbifold structure on M/Γ is natural in the sense that it depends

only on the action of the group Γ and not on the choice of the atlas Ũ on M . It is

called the orbifold quotient of M by the properly discontinuous action of Γ.

Definition 2.2.4. An orbifold is called good if it arises as the global quotient by

a discrete group acting properly discontinuously on a manifold. If the group can be

chosen to be finite, then the orbifold is called very good.
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Remark 2.2.5. Sometimes, we refer to good orbifolds as being developable. In fact,

another approach is to define orbifolds using charts for open sets Ui of the form

(Xi,Γi), where each Xi is a manifold and Γi is a discrete group acting properly

discontinuously on Xi with Xi/Γi homeomorphic to Ui. From this point of view, an

orbifold Q is good (or developable) if it admits such an atlas with a single chart. As

in [GH], we call the pair (Xi, qi) a uniformizing chart of Ui, where qi : Xi → Ui is

a continuous map which induces a homeomorphism from Xi/Γi onto Ui. Then the

compatibility condition (iii) in Definition 2.2.1 becomes: for all xi ∈ Xi and xj ∈ Xj

such that qi(xi) = qj(xj), there is a homeomorphism(diffeomorphism) h from an open

connected neighborhood W of xi to a neighborhood of xj , such that qj ◦ h = qi|W .

This time, we will call h a change of charts, and as we already saw it is defined up to

composition with elements of Γj and in particular, if i = j then h is the restriction

of an element of Γi.

Similarly, we define orbifolds with boundary by taking as uniformizing systems

open sets in the upper half plane

Rn
≥0 = {(x1, x2, . . . xn)| xn ≥ 0}

(or equivalently connected manifolds with boundary). The boundary of such an orb-

ifold consists of points x ∈ |Q| that correspond to Rn
0 = {(x1, x2, . . . , xn)| xn = 0} (or

to the boundary of Ũi). As in the manifold case, the boundary of an orbifold is an

orbifold without boundary. A compact orbifold without boundary is called closed.

2.3 The singular set

Let Q be an orbifold and let x ∈ Q. Within an orbifold chart (Ui, Ũi/Γi, ϕi) we

can associate to x a group Γ
(i)
x well defined up to isomorphism in the following way.

Consider x̃, x̃′ ∈ Ũi such that ϕi(x̃) = ϕi(x̃
′) = x. Then their isotropy groups Γ

(i)
ex and

Γ
(i)
ex′ are conjugate to each other, since x̃ and x̃′ are on the same orbit. Denote this

subgroup by Γ
(i)
x and since it is independent of the choice of the lifts of x we will refer

to it as the isotropy group of x in Ui.
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Consider now (Ui, Ũi/Γi, ϕi) and (Uj, Ũj/Γj, ϕj) two orbifold charts containing x

assume that Ui ⊂ Uj . Let (λij, ϕ̃ij) denote the injection between them. Note that

if x has non-trivial isotropy in Ui (i.e. Γ
(i)
x 6= 1) then it has non-trivial isotropy in

Uj . Indeed, since the embedding ϕ̃ij is λij-equivariant, Γ
(j)
x contains the subgroup

λij(Γ
(i)
x ) which is not trivial since λij is injective (the inclusion above is considered

up to isomorphism, i.e. at least one of the isomorphic subgroups defining Γ
(j)
x should

contain λij(Γ
(i)
x ), and this is fine since both Γ

(j)
x and λij are defined up to conjugation

with elements of Γj).

Define the isotropy group at x, Γx to be the smallest isotropy group of x corre-

sponding to an orbifold chart containing x, i.e.

Γx =
⋂

i∈I

Γ(i)
x .

It is obvious that Γx is always finite. (Equivalently the isotropy group at x can be

defined as the germ of the action of Γ
(i)
x at x.)

A point x ∈ Q is called a singular point if it has non-trivial isotropy i.e. Γx 6= {1}
and it is called a regular point otherwise. Define the singular set of an orbifold to be

ΣQ := {x ∈ Q | Γx 6= {1}}.

Then we say that an orbifold is a manifold if the singular set is empty. The following

result concerning the singular set of an orbifold holds:

Proposition 2.3.1. The singular set of an orbifold is closed and nowhere dense.

Proof. Let (U, Ũ/Γ, ϕ) be any orbifold chart that has nonempty intersection with the

singular set. Then

ΣQ ∩ U = {x ∈ U | Γx 6= 1}
= {x ∈ U | ∃γ ∈ Γ, γ 6= 1 such that γ.x̃ = x̃ for some x̃ ∈ ϕ−1(x)}
=
⋃

ex∈eU

{ϕ(x̃)| ∃γ ∈ Γ, γ 6= 1 such that γ.x̃ = x̃}

= ϕ(
⋃

ex∈eU

{x̃| ∃γ ∈ Γ, γ 6= 1 such that γ.x̃ = x̃})

= ϕ(ΣΓ)
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Since ΣΓ is closed and with empty interior (see Proposition 2.1.7 and Remark

2.1.10) and ϕ is a homeomorphism ΣΓ ∩ U is closed and has empty interior. Hence

ΣQ is closed and since |Q| is locally compact and Hausdorff, ΣQ =
⋃
i ΣQ ∩ Ui has

empty interior.

Note that in general the singular set is not a manifold and it may have several

connected components of different dimension. From the definition we can see that

any orbifold is locally compact. If we assume that in any uniformizing system the

elements of the group have the fixed point set of codimension at least two (i.e. the

singular set has the codimension at least two) then the orbifold is also locally path

connected. In this case an orbifold is connected if and only if it is path connected.

2.4 Maps between orbifolds

Consider two orbifolds Q and Q′ and a continuous map f : |Q| → |Q′| between their

underlying spaces.

Let x ∈ |Q| and y = f(x) ∈ |Q′| and let V be an open neighborhood of y and U an

open neighborhood of x such that f(U) ⊂ V . Let (V, Ṽ /Γ∗, ϕ∗) be an uniformizing

system over V and (U, Ũ/Γ, ϕ) an uniformizing system over U . Corresponding to

these uniformizing systems, a continuous (resp. smooth) lifting of f |U : U → V is a

continuous (resp. smooth) map

f̃ : Ũ → Ṽ

such that ϕ∗ ◦ f̃ = f ◦ ϕ and for any γ ∈ Γ there exists γ∗ ∈ Γ∗ satisfying γ∗.f̃(x̃) =

f̃(γ.x̃) for any x̃ ∈ Ũ .
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For a different choice of uniformizing systems (V, Ṽ ′/Γ∗′ , ϕ∗′) over V , respectively

(U, Ũ ′/Γ′, ϕ′) over U , we say that the lifting f̃ ′ : Ũ ′ → Ṽ ′ is isomorphic to f̃ is there

are bijections

(λ, ϕ̃) : (U, Ũ/Γ, ϕ)→ (U, Ũ ′/Γ′, ϕ′)

respectively

(λ∗, ϕ̃∗) : (V, Ṽ /Γ∗, ϕ∗)→ (V, Ṽ ′/Γ∗′ , ϕ∗′)

such that λ∗ ◦ f̃ = f̃ ′ ◦ λ.

Let now x0 ∈ U and let (U0, Ũ0/Γ0, ϕ0) be a uniformizing system over an open

neighborhood U0 ⊂ u of x0 and (V0, Ṽ0/Γ
∗
0, ϕ

∗
0) a uniformizing system over a neigh-

borhood V0 ⊂ V of f(x0) such that f(U0) ⊂ V0. The lifting f̃ will induce a lifting

f̃0 : Ũ0 → Ṽ0

of f |U0 : U0 → V0 in the following way. For any injection

(λ0, ϕ̃0) : (U0, Ũ0/Γ0, ϕ0)→ (U, Ũ/Γ, ϕ),

consider the map f̃ ◦ λ0 : Ũ0 → Ṽ and note that (ϕ∗ ◦ f̃ ◦ λ0)(Ũ0) ⊂ V0 which implies

(f̃ ◦ λ0)(Ũ0) ⊂ (ϕ∗)−1(V0). Therefore there is an injection

(λ∗0, ϕ̃
∗
0) : (V0, Ṽ0/Γ

∗
0, ϕ

∗
0)→ (V, Ṽ /Γ∗, ϕ∗)

such that (f̃ ◦ λ0)(Ũ0) ⊂ λ∗0(Ṽ0). Define now

f̃0 = (λ∗0)
−1 ◦ f̃ ◦ λ0

which is the induced lifting of f |U0 : U0 → V0. Note that different choices of injections

(λ0, ϕ̃0) give isomorphic liftings. We say that two liftings are equivalent at a point x

if they induce isomorphic liftings on a smaller neighborhood of x.

A continuous (resp. smooth) lifting of f : |Q| → |Q′| is the following: given any

point y ∈ |Q′| and any uniformizing chart (V, Ṽ /Γ∗, ϕ∗) at y there exists a unifomizing

chart (U, Ũ/Γ, ϕ) at x ∈ f−1(y) and a continuous (resp. smooth) lifting f̃x : Ũ → Ṽ

of f |U : U → V such that for any x′ ∈ U and any uniformizing chart (U ′, Ũ ′/Γ′, ϕ′)
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at x′ and such that U ′ ⊂ U , the lifting f̃x′ : Ũ ′ → Ṽ of f |U ′ : U ′ → V is isomorphic

with the induced one on Ũ ′ from f̃x. We say that two liftings of f : |Q| → |Q′| are

equivalent if their local liftings are equivalent at each point in |Q|.

Definition 2.4.1. A continuous (resp. smooth) orbifold-map between orbifolds Q→
Q′ is an equivalence class of continuous (resp. smooth) liftings of a continuous map

between their underlying spaces |Q| → |Q′|.

We will denote by f̃ : Q→ Q′ an orbifold-map whose underlying continuous map

is f : |Q| → |Q′|. Note that two different (which are not isomorphic) orbifold-maps

might have the same underlying continuous map (for an example see [CR] Example

4.1.6b in the Appendix)

We will define now a particular kind of orbifold-maps called good maps (see [CR]

Definition 4.4.1). The advantage of using these maps is that we can define the pull-

back bundles, fact which cannot be done by using general orbifold-maps. Also these

good maps match the definition of a morphism in the category of groupoids (see

section ?? and also ??).

Let f̃ : Q→ Q′ be an orbifold-map with underlying continuous function f : |q| →
|Q′|. Suppose that there is an atlas U for Q and a collection of open subsets U ′ of

Q′ such that there is a one-to-oen correspondence between the elements of U and

U ′, say U ↔ U ′, with f(U) ⊂ U ′ and U1 ⊂ U2 implies U ′
1 ⊂ U ′

2. Moreover, there is a

collection of liftings of f such that f̃UU ′ : Ũ → Ũ ′ satisfies that for each injection

(λ, ϕ̃) : (U1, Ũ1/Γ1, ϕ1)→ (U2, Ũ2/Γ2, ϕ2)

there is another injection associated to it

(
(ν(λ), ν(ϕ̃)

)
: (U ′

1, Ũ
′
1/Γ

′
1, ϕ

′
1)→ (U ′

2, Ũ
′
2/Γ

′
2, ϕ

′
2)

such that

f̃U1U
′

1
◦ λ = ν(λ) ◦ f̃U2U

′

2
,

and for any composition of injections λ′ ◦ λ we have ν(λ′ ◦ λ) = ν(λ′) ◦ ν(λ). The

collection of liftings {f̃UU ′, ν} defines a lifting of f . If this lifting is in the same
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equivalence class as f̃ , then the collection {f̃UU ′, ν} is called a compatible system of

f̃ .

Definition 2.4.2. An orbifold-map is called good if it admits a compatible system.

The real line R as a smooth manifold is trivially an orbifold. The smooth orbifold-

maps f : Q→ R are called smooth functions on the orbifold Q. Note that an orbifold

function is smooth if and only if the map f ◦ ϕ is smooth for any orbifold chart

(U, Ũ/Γ, ϕ) in an orbifold atlas of Q. A (smooth) map from R (or an interval I) into

an orbifold Q is called a (smooth) path in Q.

Similarly we can define immersions and submersions between orbifolds as dif-

ferentiable maps between orbifolds that locally lift to immersions and submersions,

respectively.

A suborbifold Q′ ⊂ Q is an orbifold Q′ together with an orbifold embedding

i : Q′ →֒ Q.

2.5 The tangent space to an orbifold

Suppose now that Q = M/Γ is a good orbifold. As we have seen in the previous

section, we can extend the action of Γ on M to an action on TM by setting γ.(x̃, v) :=

(γ.x̃, d(γ)exv), for all γ ∈ Γ and (x̃, v) ∈ TM . The quotient of TM by this action is

the tangent bundle TQ of the orbifold Q. As in Proposition 2.2.3 it inherits a natural

orbifold structure. For x ∈ Q, let x̃ ∈ M denote one of its lifts. By taking the

differentials (dγ)ex of the elements γ in the isotropy group Γx, we obtain a new group

which acts on TexM . Since the group is independent of the choice of the lift, we will

denote it by Γx∗. Hence the fiber in TQ above x ∈ Q is TexQ/Γx∗ and is denoted

TxQ. Because TxQ will not be a vector space at the singular points, we will call it

the tangent cone to Q at x.

Since any orbifold is locally good, the construction above gives a local way to

work with tangent cones to orbifolds. So, if we consider an orbifold atlas (Xi, qi)i∈I

(see Remark 2.2.5) for the orbifold structure on Q, by making a quotient space of
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the tangent bundle TXi over Xi by Γi as above, we obtain a 2n-dimensional orbifold

Qi. We can easily patch the orbifolds Qi together to obtain a 2n-dimensional orbifold

TQ with a projection map p : TQ → Q such that the inverse image of a point in

the orbifold is a vector space modulo a finite group action (the tangent cone). A full

description of the tangent bundle, as well as general bundles over orbifolds will be

given in the next chapter.

2.6 Riemannian orbifolds

Let Q be a differentiable orbifold and let U = {(Ui, Ũi/Γi, ϕi)}i∈I be the maximal

orbifold atlas on Q.

Definition 2.6.1. A Riemannian metric on the orbifold Q is a collection ρ = (ρi),

where ρi is a Riemannian metric on Ũi such that any embedding ϕ̃ij coming from an

injection between orbifold charts (Ui,j, Ũi,j/Γi,j, ϕi,j) is an isometry as a map between

(Ũi, ρi) to (Ũj, ρj). An orbifold with such a Riemannian metric is called Riemannian

orbifold.

Remark 2.6.2. Note that in particular the Riemannian metrics ρi on Ũi are Γi-

invariant, so locally Riemannian orbifolds look like the quotient of a Riemannian

manifold by a finite group of isometries. By a suitable choice of coordinate charts it

can be assumed that the local group actions are by finite subgroups of O(n) for a gen-

eral n-dimensional Riemannian orbifold, and finite subgroups of SO(n) for orientable

Riemannian orbifolds. As for manifolds, the following proposition holds.

Proposition 2.6.3. Any differentiable orbifold admits a Riemannian metric.

Proof. Let Q be an orbifold and let {(Ui, Ũi/Γi, ϕi)}i∈I denote an orbifold atlas on it.

Since |Q| is paracompact we may assume that the cover (Ui)i∈I is locally finite. Then

there is a smooth partition of unity fi : Ui → R subordinate to it. Indeed, we can

choose on each Ũi a Γi-invariant, non-negative smooth function h̃i : Ũi → R such that

hi = g̃i ◦ϕi can be extended over |Q| by zeroes and such that {supp(hi) ⊂ Ui : i ∈ I}
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still covers |Q|. Denote h(x) = Σi∈Ihi(x) 6= 0 for all x ∈ Q and consider fi := hi/h.

Then {fi : i ∈ I} is a smooth partition of unity subordinate to the cover Ui.

Consider now an arbitrary Riemannian metric gi on each Ũi. By Lemma 2.1.4

(see also Remark 2.1.5) there exists a Γi-invariant Riemannian metric αi on each Ũi

obtained from gi by averaging over Γi. For any i ∈ I, define a new Riemannian metric

ρi on Ũi as follows:

(ρi)ex(v, w) := Σj∈Ifj(ϕi(x̃))(αj)eϕij(ex)(d(ϕ̃ij)ex(v), d(ϕ̃ij)ex(w))

for any x̃ ∈ Ũi and any v, w ∈ TexŨi and where ϕ̃ij is an embedding coming from an

injection between (Ui, Ũi/Γi, ϕi) and any (Uj , Ũj/Γj , ϕj), j ∈ I. Then, Lemma 2.1.4

together with the second part of the Remark 6 guarantee that the Riemannian metric

defined in this way is well defined, i.e. it is independent of the choice of the embedding

between the uniformizing charts. It is also easy to check that each embedding is an

isometry, hence the collection ρ = (ρi) is defines a Riemannian metric in the sense of

the definition above.

Similar to the definition of the Riemannian metric on an orbifold, we can move

on and define general tensor fields. So, in an uniformizing system (Ui, Ũi/Γi, ϕ)i), for

any tensor field ω̃i on Ũi by pre-composing with an element γ ∈ Γi we obtain a new

tensor field ω̃i
γ on Ũi. Then, by averaging, we obtain a Γi-invariant tensor field on

Ũi,

ω̃i
Γi :=

1

|Γi|
Σγ∈Γi

ω̃i
γ.

Such a Γi invariant tensor field on Ũi gives a tensor field ω on Ui.

Definition 2.6.4. A smooth tensor field on an orbifold is one that lifts to smooth

tensor fields of the same type in all uniformizing systems.

Using the Riemannian metrics on the local uniformizing systems we can define

the objects familiar from the Riemannian geometry of manifolds.

Example 2.6.5. (1) (The cone) Let M = R2 and let Γ = Zn acting by rotations

on it. The quotient space is topologically R2 but metrically is a cone with cone
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angle 2π/n. It is a Riemannian manifold except at the cone point where the

metric has a singularity. In this case, the singular locus consists of a single

point (the cone point) and the isotropy group at any point is trivial except the

singular point where it is Zn.

(2) (The Zn-football) Let M = S2 ⊂ R3 and Γ = Zn acting by rotations around the

z-axis by an angle of 2π/n. The quotient space is topologically S2 but metrically

there are two singular points: the north and the south pole (the points N and

S in figure 2.1).

(3) (The pillow case) Let M = T2 and Γ = Z2 acting by rotations around one of

its axis. Then the quotient space is an orbifold whose underlying space is S2

and has four singular points with nontrivial isotropy Z2. The sphere inherits a

Riemannian metric of curvature 0 in the complement of the singular locus, and

has curvature π at each of the four points.

(4) Let M = R3 and Γ = Z2 acting by the antipodal map x 7→ −x. Since topo-

logically R3/Z2 is a cone over RP2, the underlying space of this orbifold is not

(topologically) a manifold.

(5) (The Zn-teardrop) The underlying space is S2 and the singular locus is a single

point with isotropy group Zn, n > 1.

(6) (The Zp − Zq-football) The underlying space is again S2 and the singular locus

is a pair of cone points (N and S in figure 2.4) with isotropy Zp, respectively

Zq (p 6= q).

Note that except the last two examples, the orbifolds considered above are good

(actually they are very good). For a proof of the non-developability of the orbifolds

in (5) respectively in (6) see (the fundamental group and Euler number...
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Figure 2.1: The Zn-football is covered by S2 and its fundamental group is Zn. The
tangent cone at N is the cone R2/Zn of angle 2π/n.
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Figure 2.2: The pillowcase is covered by T2.

Figure 2.3: The Zn-teardrop is not developable. The orbifold atlas consists of two
open sets U1 and U2 uniformized by V1 = D2 and V2 = D2/Zn respectively.
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2.7 Universal coverings and the fundamental group

of orbifolds

We begin by briefly recalling the notion of coverings of topological spaces. A projec-

tion π : X̃ → X is a covering map if every x ∈ X has a neighborhood U such that

π−1(U) is a disjoint union of sets Vi for each of which the restriction π|Vi
: Vi → U is

a homeomorphism.

Orbifold covering spaces are defined similarly. A projection p : Q′ → Q between

orbifolds is called a covering map if it satisfies the condition that, for each x ∈ Q,

there exists a neighborhood U uniformized by (Ũ ,Γ) such that for each connected

component Ui of p′−1(U) in Q′, the uniformizing systems of Ui is (Ũ ,Γi) for some

subgroup Γi ≤ Γ. Note that the underlying space |Q′| is not generally a covering

space of |Q|. The universal covering of a connected orbifold Q is a connected covering

orbifold p : Q̃→ Q such that for any connected covering orbifold p′ : Q′ → Q, Q̃ is a

covering orbifold of Q′ with a projection pr : Q̃ → Q′ factoring p : Q̃ → Q through

p′ : Q′ → Q.

Q̃ Q′

Q

-pr

?
p

�
�

��	 p′

Thurston proved existence of universal orbifold covers (see Proposition 13.2.4 in

[T]) and used them to define the orbifold fundamental group in terms of deck transfor-

mations. We will present the details of this theory for the special case of 2-dimensional

orbifolds, but before that we discuss the case of a global quotient Q = M/Γ. The

quotient M → M/Γ can be regarded as an orbifold covering with Γ as the group of

deck transformations. Similarly, any subgroup Γ′ induces an intermediate orbifold

covering M/Γ′ →M/Γ. On the other hand, any manifold covering M̃ →M gives an

orbifold covering by composing with the quotient map M →M/Γ. In particular, the

universal covering gives rise to a universal orbifold covering of Q, and the orbifold
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fundamental group belongs in a short exact sequence

1→ π1M → πorb1 Q→ Γ→ 1.

For the remainder of this section, we take Q to be a 2-dimensional orbifold. For

the purpose of proving the existence of universal covers, we can assume that Q has no

boundary, for if it did, by doubling Q along its boundary, we get an orbifold without

boundary that double covers Q and has the same universal cover as Q.

The singular locus of Q consists of cone points and corner reflectors, which are

singularities modeled by R2/Dn for the dihedral group of order 2n. We can further

assume Q does not contain any corner reflectors, for if it did, then by doubling Q

along the reflector lines, we obtain an orbifold that covers Q with two cone points for

each cone point in Q and one cone point for each corner reflector.

Denote by Σ the singular locus ofQ and suppose p : Q̂→ Q is an orbifold covering.

Note that Q̂−p−1(Σ) is a manifold cover for the regular set Q\Σ. Let now xi ∈ Σ be

a singular point with cone angle 2π/ni. That is, a neighborhood of xi is uniformized

by (R2,Zni
) with xi corresponding to the cone point in R2/Zni

. Any point in Q̂ above

xi will have cone angle 2π/mi, where mi|ni. Denote by X the manifold obtained from

Q by removing the interior of small cones centered at the singular points and denote

by X̂ = p−1(X) ⊂ Q̂. Hence the regular set Q \ Σ is just X with pointed discs

attached to the ∂X. The covering p| bX : X̂ → X induced by the orbifold covering

Q̂ → Q has the property that a circle Ci of ∂X bounding a cone of angle 2π/ni has

the pre-image consisting of circles which projects with degree which divides ni. Thus

π1(X̂) contains all conjugates of αni

i , where αi ∈ π1(X) which represents the circle

Ci. Define G to be the quotient of π1(X) by adding the relations αni

i = 1 and let H

be the kernel of the natural homomorphism π1(X)→ G. Clearly H is a subgroup of

π1(X̂). It follows that the covering X̃ of X determined by H is universal among the

covers of X which extend to a cover for Q. By adding to X̃ the appropriate cones

along ∂X̃ , we obtain an orbifold Q̃, which is the universal orbifold covering of Q. As

Q is the quotient of Q̃ by the action of a group, in this case the group being G, we

call G the fundamental group of Q.



27

Inspired by the construction above, we can easily give a presentation of the πorb1 (Q)

in the case when Q is a closed 2-dimensional orbifold which has only cone points as

singular points. We start with the fundamental group of the manifold obtained from

Q by removing small neighborhoods of the cone points and we add the relations

αni

i = 1. Thus, if the underlying space |Q| is a closed orientable surface of genus g

and if Q has m cone points of order ni, 1 ≤ i ≤ m, then a presentation for πorb1 (Q) is

{
a1, b1, . . . , ag, bg, α1, . . . , αm

∣∣ αni

i = 1,

g∏

i=1

[ai, bi]α1 . . . αm = 1
}
.

Using this presentation of the orbifold fundamental group, we can see that the

orbifold considered in example (5) above is not covered by a manifold (i.e. is bad).

Indeed, since the underlying space is S2, the orbifold fundamental group for the Zn-

teardrop is obtained from the fundamental group of S2 minus a point (which is trivial)

by adding a relation, so it is obviously trivial. Hence the Zn-teardrop has no covering

(other than itself).

We will introduce first the Euler number of good compact 2-dimensional orbifold

Q. First note that in general if X̃ → X is a k-fold covering space then χ(X̃) = kχ(X).

As we have seen in the previous section every good compact 2-dimensional orbifold

Q is finitely covered by a manifold N . Thus is natural to define the Euler number of

Q by

χ(Q) =
1

n
χ(N),

where n is the degree of the covering N → Q. Note that the Euler number of an

orbifold is not in general an integer, but is always a rational number. We will compute

χ(Q) directly from the description of the orbifold.

Consider first the case when the orbifold Q is a good compact 2-dimensional

orbifold which has r cone points of order ni, 1 ≤ i ≤ r as singular points. Let

X be the closure of the manifold obtained from |Q| by removing r disjoint 2-discs

D1, D2, . . . , Dr centered at the cone points. Thus |Q| = X ∪
(⋃r

i=1Di

)
and

χ(|Q|) = χ(X) + r
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since χ(Di) = 1 and χ(S1) = 0. If p : N → Q is a finite manifold cover of Q as above

and X̃ = p−1(X), then p| eX
: X̃ → X is a manifold covering of the same degree n,

hence χ(X̃) = nχ(X). The pre-image in N of the discs Di by p are only n/ni 2-discs,

so we have

χ(N) = nχ(X) +

r∑

i=1

n/ni.

The formula for the orbifold Euler number, known also as the Riemann-Hurwitz

formula, follows immediately

χ(Q) = χ(|Q|)−
r∑

i=1

(
1− 1

ni

)
.

Consider now the case when Q is a good compact 2-dimensional orbifold which has

r cone points of order ni, 1 ≤ i ≤ r and s corner reflectors of order mj , 1 ≤ j ≤ s. By

doubling Q along the reflector curves, we obtain a 2-fold orbifold cover of Q, denoted

DQ, which has r pairs of cone points with cone angle 2π/ni, 1 ≤ i ≤ r and s cone

points with angle 2π/mj, 1 ≤ j ≤ s. Then by above formula we have

χ(DQ) = χ(|DQ|)− 2

r∑

i=1

(
1− 1

ni

)
−

s∑

j=1

(
1− 1

mj

)
.

Since χ(DQ) = 2χ(Q) and χ(|DQ|) = 2χ(|Q|), we obtain in this case the following

formula for the orbifold Euler number

χ(Q) = χ(|Q|)−
r∑

i=1

(
1− 1

ni

)
− 1

2

s∑

j=1

(
1− 1

mj

)
.

This formula works also for the bad orbifolds. The Zp−Zq-football has the Euler

number 2− (1− 1
p
)− (1− 1

q
) = −p+q

pq
which proves that the orbifold cannot be covered

by a manifold, hence is bad.

If the orbifold Q is equipped with a Riemannian metric (see Definition 2.6.1), we

can extend to orbifolds the Gauss-Bonnet theorem (see [Sa2])

∫

Q

KdA = 2πχ(Q),
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where K denotes the sectional curvature of Q (see ??) and dA denotes the area

element. Note that an orbifold has a well defined area which has the same naturality

property as the euler number, i.e. if Q̃ → Q is a finite orbifold covering of degree

n, then A(Q̃) = nA(Q). The argument used in the proof is similar to the one

used above to determine the orbifold Euler number : we consider the manifold with

boundary obtained by removing disjoint small discs containing the singular points

and we apply the usual Gauss-Bonnet theorem for manifolds with boundary. We

say that the orbifold Q has an elliptic, parabolic or hyperbolic structure if χ(Q) is

respectively positive, zero or negative. If the Q is elliptic or hyperbolic then the area

A(Q) = 2π|χ(Q)|.
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Figure 2.4: The Zp−Zq-football is not developable. The orbifold atlas consists of two
open sets UN and US uniformized by VN = D2/Zp and by VS = D2/Zq respectively.



Chapter 3

Groupoids

The purpose of this chapter is to describe orbifolds in terms of topological groupoids.

As we will show in section 3.4 any orbifold structure can be represented in a natural

way by an étale groupoid (the étale groupoid associated to the pseudogroup of change

of charts of the orbifold). However, there might be more groupoids representing the

same orbifold structure. In section 3.3 we introduce an equivalence relation between

groupoids, called Morita equivalence and which is a week equivalence of categories. A

theorem of Moerdijk and Pronc [?] states that the category of orbifolds is equivalent to

a quotient category of the proper étale groupoids after inverting Morita equivalence.

Hence, whenever we consider an orbifold, we can chose up to Morita equivalence a

proper étale groupoid representing it. As we will see, the theory of groupoids provides

a more convenient language for developing the foundation of the theory of orbifolds.

In the first section we begin by defining the groupoid and some standard notions

associated to it and then we provide some examples of groupoids. In section 3.2

we investigate the relation between étale groupoids and the pseudogroups of local

homeomorphisms of a topological space. We show there that to each étale groupoid

we can associate a pseudogroup of local homeomorphisms of its space of objects and

conversely that to any pseudogroup of local homeomorphisms of a topological space

X there is associated an étale groupoid whose space of objects is X. However, this

correspondence is not one-to-one as we can see in Remark 3.2.3. In section 3.3 we

31
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introduce the equivalence of étale groupoids and so we have all the ingredients for

describing orbifolds in terms of étale groupoids which will be done in section 3.4.

In section 3.5 we define the notion of G -space and describe the groupoid associated

to the action of a groupoid on a topological space. We emphasis there how the

language of groupoids leads to a uniform definition of structures over orbifolds, like

covering spaces, vector bundles and principal bundles. A more detailed presentation

of the results there is contained in [MM].

In section ?? we introduce morphisms from topological spaces to topological

groupoids to be the groupoid homomorphism between the pair groupoid associated

to the topological space and the topological groupoid. We give there a description

of a morphism in terms of G -maps and we see that if the groupoid represents an

orbifold, this notion coincides with that of a good orbifold map (introduced in sec-

tion 2.4.1) defined on a topological manifold (considered as an orbifold with trivial

orbifold structure). Another way of describing morphisms from topological spaces to

groupoids is in terms of principal G -bundles. We show that there is a natural bijective

correspondence between the set H1(K,G ) of morphisms from the topological space

K to the groupoid G and the set of isomorphism classes of principal G -bundles over

K. After we introduce the notion of relative morphisms, we describe the homotopy

relative to a given morphism of a subspace and define the homotopy groups of a

topological groupoid.

In section 3.7 we investigate the particular case of morphisms from R to a topo-

logical groupoid. In this case a morphism is described by an equivalence class of

G -paths (G -maps from R or the interval I = [0, 1] to the groupoid). This allows as to

introduce the set of G -paths between two points (objects) in the groupoid as well as

the set of G -loops based at a point. We give a description of the fundamental group

of a groupoid based at a point and see that in the case of a connected (G -connected)

groupoid, up to isomorphism, the fundamental group is independent of the base point.

In the last part we introduce the set of free loops on an orbifold and the set of free

loops projecting to a constant loop, which is the base space of the inertia orbifold as

we will see in chapter ??.
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We conclude this chapter with the section 3.8 on the classifying space of a groupoid.

We see there that an equivalence between groupoids induces a homotopy equivalence

between their classifying spaces. This allows us to define the homotopy type of an

orbifold as being that of the classifying space of a groupoid representing it. In this

way we recover the orbifold homotopy groups defined in section ??. When Q is a

Riemannian orbifold there is an explicit construction of the classifying space of the

groupoid of germs of change of charts, which is independent of the particular atlas

defining the orbifold structure. This construction is due to Haefliger (see [H] and also

[GH]) and we present it here for the sake of completeness.

3.1 Definitions and examples

A groupoid can be thought of as a generalization of a group, a manifold and an

equivalence relation. First as an equivalence relation, a groupoid has a set of relations

that we will think of as arrows. It will be denoted here by G . These elements arrows

relate is a set X (that we will think as objects or points). Each arrow g ∈ G has a

source x = α(g) ∈ X and a target y = ω(g) ∈ X. Then we say g : x → y, i.e. x

is related to y. We want to have an equivalence relation. Then for the symmetry

we need that each arrow to be invertible, for the reflexivity we need arrows which

have any element in X as source and target at the same time and for transitivity

we need a way to compose arrows. We also require G and X to be more than just

sets. sometimes we want them to be locally Hausdorff, paracompact, locally compact

topological spaces or smooth manifolds.

Here is the formal definition of the notion of groupoid we will use in this framework.

Definition 3.1.1. A groupoid is a small category in which each arrow is invertible.

We will denote the groupoid (G , X) and it consists of a set of objects X and a set

of arrows G , together with the following structure maps:

(i)

α, ω : G → X,
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the source and the target maps, which assign to each arrow g ∈ G its initial

object α(g), respectively its terminal object ω(g).

(ii)

m : G ×X G := {(h, g) ∈ G × G | α(h) = ω(g)} → G ,

the composition map, which assign to each pair of arrows (h, g) with α(h) = ω(g)

their composition hg with α(hg) = α(g) and ω(hg) = ω(h). This composition

is required to be associative.

(iii)

u : X → G ,

the unit map, which identifies each object x ∈ X with the unit arrow 1x ∈ G .

The unit arrow 1x is a two-sided unit for the composition, i.e. g1x = g and

1xh = h for any two arrows g, h ∈ G such that α(g) = x = ω(h).

(iv)

i : G → G ,

the inverse map, which assign to each arrow g ∈ G the inverse arrow g−1 ∈ G

with α(g−1) = ω(g) and ω(g−1) = α(g). The inverse arrow g−1 is a two-sided

inverse for the composition, i.e. g−1g = 1ω(g) and gg−1 = 1α(g).

Let (G , X) be a groupoid and consider an object x ∈ X. The set

Gx := {g ∈ G | α(g) = ω(g) = x}

is a group and it is called the isotropy group of x. The subset

G .x := (ω ◦ α−1)(x) = {y ∈ X| ∃g ∈ G , α(g) = x, ω(g) = y}

is called the G -orbit of x. The G -orbits form a partition of X and the sets of G -orbits

will be denoted by X/G .

A topological (smooth) groupoid (G , X) is a groupoid for which the spaces G andX

are endowed with topological (smooth) structure, such that the structure maps are
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continuous (smooth) maps and the unit map is homeomorphism (diffeomorphism)

onto its image.

A topological groupoid is called proper if the map (α, ω) : G → X×X is a proper

map. Note that in a proper groupoid every isotropy group is compact.

A topological (smooth) groupoid is called a foliation groupoid if each isotropy

group Gx is discrete.

A topological (smooth) groupoid is called étale if the source and target maps are

étale maps, i.e. are local homeomorphisms (diffeomorphisms). Note that any étale

groupoid is a foliation groupoid and that any proper étale groupoid has finite isotropy

groups.

A groupoid (G , X) of local isometries is an étale groupoid with a length metric

on X that induces the given topology on X and is such that the elements of the

associated pseudogroup are local isometries.

A groupoid of local isometries (G , X) is Hausdorff if G is Hausdorff as a topological

space and for every continuous map c : [0, 1) → G , if limt→1 α ◦ c and limt→1 ω ◦ c
exists, then limt→1 c(t) exists.

A groupoid (G , X) of local isometries of X is complete if X is locally complete

(i.e. each point of X has a complete neighborhood) and if the space of orbits with

the quotient pseudometric is complete.

Example 3.1.2. (1) Any discrete group can be viewed as a groupoid, where the

set of objects is the one-point space and the set of arrows is the group itself.

In this case the composition of the groupoid is just the multiplication of the

group. This groupoid is étale.

(2) Any topological spaceX can be viewed as an étale groupoid where all the arrows

are units (or equivalently the unit map is a bijection). This is called the unit

groupoid on X or the trivial groupoid X.

(3) Let M be a (smooth) manifold and let U = {Ui}i∈I be an open cover. To the

pair (M,U ) we associate a groupoid defined as follows. An object is a pair (m, i)

such that m ∈ Ui and endow the space of objects with the topology of
∐

i∈I Ui.
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The arrows are triples (m, i, j) such that m ∈ Ui ∩Uj = Uij and the topology of

the space of arrows is that of
∐

ij Uij . Note that in this notation Uij 6= Uji. The

structure maps are defined to be the natural maps: α|Uij
: Uij → Ui the source,

ω|Uij
: Uij → Uj the target, u|Ui

: Ui → Ui = Uii the unit map, i|Uij
: Uij → Uji

the inverse map and respectively m|Uijk
: Uijk → Uik the multiplication map.

The groupoid above is called the covering groupoid and is denoted MU .

(4) Let X be a topological space and Γ a group acting by homeomorphisms on it.

One can define the étale groupoid associated to this action (Γ ⋉ X,X) to be

the category whose space of objects is the space X and whose space of arrows

G := Γ × X, where Γ is endowed with the discrete topology. The source and

the target map are defined to be: α(γ, x) = x the projection, and ω(γ, x) = γ.x

the action. The composition is defined from the multiplication of the group

by (γ, x)(γ′, x′) = (γ · γ′, x′), whenever x = γ′.x′, and the inverse of (γ, x) is

(γ−1, γ.x).

(5) If a group Γ acts by isometries on a length spaceX, then the associated groupoid

(Γ ⋉X,X) is a groupoid of local isometries and it is Hausdorff. It is complete

if and only if X is complete as metric space.

3.2 Pseudogroups of local homeomorphisms

Of a particular interest is the correspondence between the étale groupoids (G , X) and

the pseudogroup of local homeomorphisms of X.

First recall that a pseudogroup H of local homeomorphisms of a topological space

X is a collection H of homeomorphisms h : U → V of open sets of X such that:

(i) the inverse and the composition of elements in H (whenever it is possible) are

in H ;

(ii) the restriction of an element of H to any open subset of X belongs to H ;

(iii) the identity of X belongs to H ;
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(iv) H is closed under union of elements in H .

Proposition 3.2.1. To each étale groupoid (G , X) there is associated a pseudogroup

of local homeomorphisms of X.

Indeed, if (G , X) is an étale groupoid, then each arrow g ∈ G with α(g) = x

and ω(g) = y, induces a well defined germ of a homeomorphism g̃ : Ux → Vy of the

form g̃ = ω ◦ s, where s : Ux → G is a continuous section of α over the (sufficiently

small) open neighborhood Ux of x such that s(x) = g. It is easy to see now that

the collection of all such local homeomorphisms induced by the arrows of G form a

pseudogroup.

The groupoid (G , X) is called effective (or reduced) if the assignment g 7→ g̃ is

faithful, i.e. for each point x ∈ X the map g 7→ g̃ induces an injective group homo-

morphism between Gx the isotropy group of x, and the group Homx(X) of homeo-

morphisms of X which fixes x. If X is a differentiable manifold and if the elements of

the pseudogroup associated are diffeomorphisms, then the groupoid (G , X) is what

we defined to be a differentiable or a smooth étale groupoid.

Proposition 3.2.2. To each pseudogroup of local homeomorphisms we can associate

an étale groupoid.

Let H be a pseudogroup of local homeomorphisms of a topological space X. Let

f : U → V be an element of H and consider (f, x), its germ at some x ∈ U . That is,

the equivalence class of pairs (f, x), given by the equivalence relation (f, x) ∼ (f ′, x′),

if and only if x = x′ and f is equal to f ′ on some neighborhood of x. The point x is

called the source and the point f(x) is called the target of the germ of f at x.

Denote by MH (X) the space of germs of the local homeomorphisms of H . This

is an open subspace of the space M (X) of germs of continuous maps from open sets

of X to X, endowed it with the germ topology (a basis of which consists of the subsets

Uf which are the unions of germs of continuous maps f : U → X at various points of

U).
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Define the source and target maps

α, ω : MH (X)→ X

associating to each germ its source, respectively its target. With respect to the

subspace topology on MH (X), the maps α and ω are étale maps, i.e. they are

continuous, open maps and their restriction to any sufficiently small open set is a

homeomorphism into its image. We can also define a continuous composition map

m : MH (X)×X MH (X)→MH (X),

by associating to any two germs (f, x) and (f ′, f(x)) their (well defined) composition,

the germ (f ′ ◦ f, x). The unit map is the natural inclusion of X in MH (X) which

associates to each x ∈ X the germ (idX , x) and the inverse map i : MH (X) →
MH (X) associates to each germ (f, x) the well defined germ (f−1, f(x)).

Hence, we obtained an étale groupoid (G , X), with G = MH (X), of all the germs

of the elements oh H , called the étale groupoid associated to H .

Remark 3.2.3. From the étale groupoid (G , X) associated to a pseudogroup of local

homeomorphisms H one can reconstruct H by considering the pseudogroup asso-

ciated to (G , X). In general, the converse is not true. If H is the pseudogroup

associated to an étale groupoid (G , X), then the étale groupoid associated to H

is a quotient of the original groupoid (G , X). For instance one can consider the

étale groupoid in Example 3.1.2 (1). In this case, the elements of the associated

pseudogroup are the elements of the group and the space of germs of local homeo-

morphisms has only one element.

3.3 Morita equivalence

In this section we introduce the equivalence of étale groupoids and an equivalence

relation among étale groupoids, namely the Morita equivalence. The reader should

be warned that the exposition in this section is very succinct. For a more general
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definition of Morita equivalent groupoids (not necessarily étale) and also for the prop-

erties of groupoids which are invariant under the Morita equivalence, the reader is

referred to [MM].

A homomorphism (ψ, f) : (G , X)→ (G ′, X ′) between two étale groupoids consists

of a continuous functor ψ : G → G ′ inducing a continuous map f : X → X ′. We say

that (ψ, f) is an étale homomorphism if f is an étale map.

We say that the homomorphism (ψ, f) : (G , X)→ (G ′, X ′) is an equivalence if it

is étale and the functor ψ is an equivalence, that is:

(i) for each x ∈ X, ψ induces an group isomorphism from Gx onto G ′
f(x),

(ii) f : X → X ′ induces a bijection between the orbits sets X/G and X ′/G ′.

The equivalences between groupoids generate an equivalence relation among étale

groupoids in the following way. We say that two étale groupoids (G1, X1) and (G2, X2)

are Morita equivalent (or weak equivalent) if there exists a third étale groupoid (G , X)

and two étale homomorphisms (ψi, fi) : (G , X)→ (Gi, Xi), i = 1, 2 which are equiv-

alences.

(G , X)

(G1, X1) G2, X2).

�
�

��+

(ψ1,f1) Q
Q

QQs

(ψ2,f2)

The reflexivity and the symmetry of this relation between étale groupoids are

obvious. Before we check the transitivity, note the following: if (ϕi, hi) : (Gi, Xi) →
(G ′, X ′) are two étale homomorphisms which are equivalences, then the fiber product

(G , X) := (G1 ×G ′ G2, X1 ×X′ X2) is naturally an étale groupoid and the projections

(G , X)→ (Gi, Xi) are equivalences.

(G1 ×G ′ G2, X1 ×X′ X2)
pr1−−−→ (G1, X1)

pr2

y
y(ϕ1,h1)

(G2, X2) −−−−→
(ϕ2,h2)

(G ′, X ′).
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Then the transitivity follows easily from the diagram

(G , X)

(G1, X1) (G2, X2)

(G ′
1, X

′
1) (G ′, X ′) (G ′

2, X
′
2).

�
�

��+

pr1 Q
Q

QQs

pr2

Q
Q

QQs

ϕ′

2�
�

��+

ϕ′

1 Q
Q

QQs

ϕ1�
�

��+

ϕ2

If (G , X) and (G ′, X ′) are differentiable étale groupoids, then a homomorphism

(ψ, f) : (G , X)→ (G ′, X ′) is called a differentiable equivalence if it is an equivalence

and f is locally diffeomorphism. The equivalence generated by this relation is called

differentiable equivalence.

In the case of groupoids of local isometries, the equivalence is generated by étale

homomorphisms of groupoids (ϕ, f) : (G , X) → (G ′, X ′) which are equivalences and

such that f : X → X ′ is locally an isometry.

Definition 3.3.1. An étale groupoid (G , X) is developable if it is Morita equivalent

to the groupoid (Γ× X̃, X̃) associated to an action of a group Γ by homeomorphisms

of a space X̃.

3.4 Orbifold groupoids

Recall the definition of a differentiable orbifold given in Remark 2.2.5 with the orbifold

structure given by an atlas of uniformizing charts {(Xi, qi)}i∈I . Let X =
⊔
i∈I Xi. We

identify each Xi to a connected component of the differentiable manifold X and

denote by q : X → |Q| the union of maps qi, that is q(x) = qi(x) whenever x ∈ Xi.

Any diffeomorphism h from an open subset U of X to an open subset of X such that

q ◦ h = q|U will be called a change of charts. The collection of change of charts form

a pseudogroup H of local diffeomorphisms of X, called the pseudogroup of change

of charts of the orbifold with respect to the atlas {(Xi, qi)}i∈I . We have seen that if

h : U → V is a change of charts such that U and V are contained in the same Xi and
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U is connected, then h is the restriction to U of an element of Γi, hence H contains in

particular all the elements of the groups Γi. We say that two points x, x′ ∈ X are on

the same orbit of H if there is an element h ∈H such that h(x) = x′. This defines

an equivalent relation on X whose classes are called the orbits of H . We will denote

X/H the set of orbits endowed with the quotient topology. The map q : X → |Q|
induces a homeomorphism from X/H to |Q|.

Let now {(X(1)
i , q

(1)
i )}i∈I1 and {(X(2)

i , q
(2)
i )}i∈I2 be two atlases defining the same

orbifold structure on |Q|, and let H1 respectively H2 be their pseudogroups of change

of charts. We say that the two pseudogroups are equivalent if there is a pseudogroup

H of local diffeomorphisms of the disjoint union X = X1 ⊔X2 whose restriction to

each Xj is equal to Hj and such that the inclusions of Xj into X induces homeomor-

phisms between the orbit spaces Xj/Hj → X/H , j = 1, 2.

More generally, consider a pseudogroup of local diffeomorphisms H of a differ-

entiable manifold X such that each point x ∈ X has a neighborhood U such that

the restriction of H to U is generated by a finite group of diffeomorphisms ΓU of

diffeomorphisms of U . Assume moreover that the space of orbits is Hausdorff. Then

X/H has a natural orbifold structure (compare with Proposition 2.2.3).

To the pseudogroup H of change of charts of an atlas of uniformizing charts

{(Xi, qi)}i∈I defining an orbifold Q , we can associate the étale groupoid (G , X) of all

the germs of change of charts, with the topology of germs. Then q : X → |Q| induces

an homeomorphism between the space of orbits X/G to |Q|. As we have seen, we

can reconstruct H from (G , X) and we will use the notation Q = X/G to denote

the orbifold whose pseudogroup of change of charts is equivalent to the pseudogroup

associated to the étale groupoid (G , X). Note that this groupoid is also proper.

An orbifold structure on a topological space Q could be defined as a differentiable

equivalence class of (differentiable) proper étale groupoids (G , X) together with a

homeomorphism from X/G to Q, such that

(i) X/G is Hausdorff, and
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(ii) each point of X has a neighborhood U such that the restriction of (G , X) to U

is the groupoid associated to an effective action of a finite group on U .

In fact, any proper étale groupoid (G , X) comes from an orbifold in this way.

To see this, note first that any isotropy group of a proper étale groupoid is finite.

Furthermore, any proper étale groupoid locally looks like the translation groupoid

with respect to an action of the isotropy group. That is, for any x ∈ X there exists

an open neighborhood U ⊂ X with an action of the isotropy group Gx such that the

restriction (G |U , U) is isomorphic to (U ⋊ Gx, U).

The étale groupoid of change of charts of an orbifold is developable if and only if

the orbifold structure is developable.

Recall that an orbifold structure Q is said to be Riemannian if each Xi is a

Riemannian manifold and if the changes of charts are Riemannian isometries. On

X = ⊔Xi the Riemannian metric induces a length metric whose quotient gives a

pseudometric on the space of orbits |Q|. In this case, the groupoid (G , X) of germs

of changes of uniformizing charts is a groupoid of local isometries. The fact that |Q|
is Hausdorff implies that the quotient pseudometric is always a metric and induces

the given topology on |Q|. Moreover the groupoid (G , X) is complete if and only if

|Q| is complete.

3.5 Structures over groupoids

Recall that if G be a topological group then topological space Y is called a (right) G-

space if there is a continuous right action Y ×G→ Y , written (y, g) = y.g satisfying

(y.g).g′ = y.(gg′) and y.1G = y for any g, g′ ∈ G and y ∈ Y .

Let now (G , X) denote a topological (smooth) groupoid with source and target

projections α, ω : G → X. A (right) G -space is a topological (smooth) manifold E

together with a continuous (smooth) map pE : E → X and a continuous (smooth)

right action of G on E with respect to the map pE . That is, a continuous (smooth)

map from

E ×X G := {(e, g)| pE(e) = ω(g)}
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to E, written (e, g) = e.g, and such that α(g) = pE(e.g), (e.g).g′ = e.(gg′) and

e.1x = e. Note that for any groupoid (G , X), the space X is trivially a G -space.

For two such G -spaces (E, pE) and (E ′, pE′), a map of G -spaces is a continuous

(smooth) map h : E → E ′ which commutes with the structure, i.e. pE′ ◦ h = pE and

h(e.g) = h(e).g (here each action is to be considered in the corresponding G -space).

This defines a category (G − spaces). If

(ψ, f) : (G ′, x′)→ (G , X)

is a homomorphism of groupoids, then there is a functor

ψ∗ : (G − spaces)→ (G ′ − spaces)

which associates to each G -space E the pullback E×XX ′ with the induced action. If

(ψ, f) is an equivalence of groupoids, then ψ∗ is an equivalence of categories. Thus,

up to equivalence of categories, the category (G −spaces) depends only on the Morita

equivalence of the groupoid G .

Similar to the group case, if E is a G -space, one can define the groupoid associated

to the action of G on E to be the groupoid (E ×X G , E). Its arrows g : e′ → e are

arrows g : pE(e′)→ pE(e) in G with e.g = e′, and its source and target

αE, ωE : E ×X G → E

are given by αE(e, g) = e′ the action and ωE(e, g) = e the projection. We will denote

this groupoid by (E ⋊ G , E), its dependance of the space X is to be understood.

There is an obvious homomorphism of groupoids

(π, pE) : (E ⋊ G , E)→ (G , X)

and the fiber over x ∈ X is p−1
E (x) ⊂ E. Note that if (ψ, f) : (G ′, X ′) → (G , X) is a

homomorphism of groupoids, then the diagram

(ψ∗(E) ⋊ G ′, ψ∗(E)) −−−→ (E ⋊ G , E)y
y(π,pE)

(G ′, X ′) −−−→
(ψ,f)

(G , X).
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is a week pullback up to Morita equivalence. We will define the quotient E/G to be

the space of orbits of the groupoid (E ⋊ G , E). This in general is not a manifold and

note that at the level of orbit spaces E/G → X/G the fiber above x is p−1
E (x)/Gx.

It is easy to see that if the groupoid (G , X) is an étale groupoid or is a foliation

groupoid, then so is the groupoid (E⋊G , E). Moreover, if E is Hausdorff and (G , X)

is proper, then (E ⋊ G , E) is also proper. In particular, if the groupoid (G , X) rep-

resents an orbifold Q = X/G , then any Hausdorff G -space E represents an orbifold

E/E ⋊ G → X/G over Q.

A covering space over a groupoid (G , X) is a G -space X̂ for which the the map

p : X̂ → X is a covering map. The covering spaces of an groupoid form a full

subcategory of (G − spaces) denoted Cov(G ). If (ψ, f) : (G ′, X ′) → (G , X) is a

groupoid homomorphism, the functor ψ∗ : (G − spaces)→ (G ′ − spaces) restricts to

functor from Cov(G ) to Cov(G ′) and this is an equivalence of categories whenever

(ψ, f) is an equivalence of groupoids.

Let Γ be a group acting by homeomorphisms on a simply connected topological

space X. let Γ0 be a subgroup of Γ. Let X̂ := X×Γ/Γ0, where Γ/Γ0 has the discrete

topology. The group Γ acts naturally on X̂ by the rule (x, γ′Γ0).γ = (x.γ, γ′Γ0γ).

Let p : X × Γ/Γ0 → X be the natural projection. The functor π : X̂ ⋊ Γ → X ⋊ Γ

mapping (x̂, γ) 7→ (p(x̂), γ) gives the morphism (π, p) : (X̂ ⋊ Γ, X̂) → (X ⋊ Γ, X)

which can be considered as a covering. The natural inclusion X×Γ0 → X̂×Γ sending

(x, γ0) 7→ ((x,Γ0), γ0) defines an étale homomorphism (X ⋊ Γ0, X) → (X̂ ⋊ Γ, X̂)

which is an equivalence. In fact the equivalence classes of connected coverings of the

groupoid (X ⋊ Γ, X) are in bijective correspondence with the conjugacy classes of

subgroups of Γ.

In particular, for an orbifold Q, up to equivalence of categories, there is a well

defined category Cov(Q). In this case, (G , X) is the associated groupoid of germs of

changes of charts of an atlas defining the orbifold structure on Q, then any covering

(Ĝ , X̂) of (G , X) is the groupoid of germs of changes of charts of an orbifold structure

on the space of orbits Q̂ := X̂/Ĝ , and Q̂ is a covering orbifold.***
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A vector bundle over a groupoid (G , X) is a G -space E for which the projection

map p : E → X is a vector bundle over the space of objects and the action of G on E

is fiberwise linear. In particular each fiber Ex is a linear representation of the isotropy

group Gx. We denote V ect(G ) for the category of vector bundles over (G , X). If the

groupoid (G , X) is Morita equivalent to another groupoid (G ′, X ′) then the category

V ect(G ) is equivalent to V ect(G ′). In particular, if (G , X) represents an orbifold

Q then up to equivalence of categories there is a well defined a category of vector

bundles over Q denoted V ect(Q). It is easy to see that the tangent bundle TX of

the space of objects of a groupoid (G , X) has a natural structure of a vector bundle

over (G , X). A metric on such a vector bundle is a metric in the usual sense which is

preserved by the action of G .

Let G be a topological group. A principal G-bundle over a groupoid (G , X) is a

G -space P with a left action G × P → P which makes the projection p : P → X

into a principal G-bundle over X and is compatible with the groupoid action in the

following sense: for any e ∈ P , γ ∈ G and g ∈ G such that ω(g) = p(e) we have

(γe).g = γ(e.g).

3.6 Morphisms from spaces to topological groupoids.

The homotopy groups

Let K be a topological space and (G , X) be a topological groupoid with source and

target projections α, ω : G → X. A morphism from K to (G , X) is a homomorphism

between the pair groupoid (K ×K,K) (see examples of groupoids) to the groupoid

(G , X). A more direct definition of a morphism from a topological space to a groupoid

can be given using G -maps (or cocycles. See [GH]).

Let U := {Ui}i∈I be an open cover of the topological space K. A G -map from K

to (G , X) over the cover U is a collection of continuous maps fi : Ui → X such that
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whenever Ui ∩ Uj 6= ∅ there is a continuous map

fij : Ui ∩ Uj → G with α(fij(x)) = fi(x) and ω(fij(x)) = fj(x)

and which satisfies the cocycle condition

fik(x) = fij(x)fjk(x),

for any x ∈ Ui ∩ Uj ∩ Uk. Note that the cocycle condition implies in particular that

each fii(x) is a unit of G and also that f−1
ij = fji. Moreover, since the maps fi can

be identified with the maps fii via the the natural inclusion X → G , the G -map over

U is completely characterized by the 1-cocycle fij over U .

Two G -maps over two open covers of K with value in G are equivalent if there is a

G -map with value in G on the disjoint union of those two covers extending the given

ones on each of them. An equivalence class of G -map is called a morphism from K

to G (or when Q is an orbifold G \X a ”continuous map” from K to Q). The set of

equivalence classes of G -maps on K with value in G is denoted, according Haefliger,

by H1(K,G ). Any morphism from K to G projects, via q : X → G \X = |Q|, to a

continuous map from K to |Q|; note that two distinct morphisms may have the same

projection.

If G and G ′ are the groupoids of germs of the changes of charts of two atlases

defining the same orbifold structure on a space |Q|, then there is a natural bijection

between the sets H1(K,G ) and H1(K,G ′). Any continuous map between topological

spaces f : K ′ → K induces a map

f ∗ : H1(K,G )→ H1(K ′,G ).

Two morphisms from K to G are homotopic if there is a morphism from K× [0, 1]

to G such that the morphisms from K to G induced by the natural inclusions k 7→
(k, i), i = 0, 1, from K to K × [0, 1] are the given morphisms.

Another description of morphisms from K to G can be given in terms of isomor-

phism classes of principal G -bundles over K (see [GH]).
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A principal G -bundle over K is a topological space E together with a surjective

continuous map p : E → K and a continuous action (e, g) 7→ e.g of G on E with

respect to a continuous map qE : E → X such that p(e.g) = p(e). Moreover we

assume that the action is simply transitive on the fibers of p in the following sense.

Each point of K has an open neighborhood U with a continuous section s : U → E

with respect to p such that the map U ×X G → p−1(U) mapping pairs (u, g) ∈ U ×G

with ω(g) = qEs(u) to s(u).g is a homeomorphism. It follows that if U = (Ui)i∈I is

an open cover of K and if si : Ui → E is a local continuous section of p above Ui

for each i ∈ I, then there are unique continuous maps fij : Ui ∩ Uj → G such that

si(u) = sj(u)fji(u) for each u ∈ Ui ∩ Uj . Thus f = (fij) is a 1-cocycle over U with

value in G .

If f = (fij) is a 1-cocycle over an open cover U = (Ui)i∈I of K with value in G ,

then we can construct a principal G -bundle E over K by identifying in the disjoint

union of the fiber products

Ui ×X G = {(u, g) ∈ Ui × G : ω(g) = fii(u)}

the point (u, g) ∈ Ui ×X G , u ∈ Ui ∩ Uj, with the point (u, fji(u)g) ∈ Uj ×X G . The

projections p : E → K and qE : E → X map the equivalence class of (u, g) ∈ Ui×X G

to u and α(g) resp. and the action of g′ on the class of (u, g) is the class of (u, gg′). A

principal G -bundle obtained in this way by using an equivalent cocycle is isomorphic

to the preceding one, i.e. there is a homeomorphism between them projecting to the

identity of K and commuting with the action of G . This isomorphism is determined

uniquely by a cocycle extending the two given cocycles.

Therefore we see that there is a natural bijection between the set H1(K,G ) and

the set of isomorphism classes of principal G -bundles over K. This correspondence

is functorial via pull back: if E is a principal G -bundle over K and if f : K ′ → K is

a continuous map, then the pull back f ∗E of E by f (or the bundle induced from E

by f) is the bundle K ′×K E whose elements are the pairs (k′, e) ∈ K ′ ×E such that

f(k′) is the projection of e.
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G itself can be considered as a principal G -bundle over X with respect to the

projection ω : G → X, the map qG : G → X being the source projection. Any

continuous map f : K → X induces the principal G -bundle f ∗G = K ×X G over K.

Let K be a topological space, L ⊆ K be a subspace and F be a principal G -

bundle over L. A morphism from K to G relative to F is represented by a pair (E,ϕ)

where E is a principal G -bundles E over K and ϕ is an isomorphism from F to the

restriction E|L of E above L. Two such pairs (E,ϕ) and (E ′, ϕ′) represent the same

morphism from K to G relative to F if there is an isomorphism Φ : E → E ′ such

that ϕ′ = Φ ◦ ϕ.

Two morphisms represented by (E0, ϕ0) and (E1, ϕ1) from K to G relative to F

are homotopic (relative to F ) if there is a bundle E over K × I and an isomorphism

from E|(K×∂I)∪(L×I) to the bundle obtained by gluing F × I to E0×{0} and E1×{1}
using the isomorphism ϕ0 and ϕ1.

Let In = [0, 1]n be the n-cube, and let ∂In be its boundary. Fix a base point x in

X. Let F be the bundle over ∂In induced from the bundle G by the constant map

∂In → X onto the point x. We define πn((G , X), x) as the set of homotopy classes of

principal G -bundle over In relative to F . Similar to the case of topological spaces one

proves that this set has a natural group structure, called the nth- homotopy group of

(G , X) based at x. In the case where (G , X) represents a connected orbifold Q, this

group is called the n-th homotopy group of Q, and for n=1 the (orbifold) fundamental

group of Q.

3.7 Paths and loops on orbifolds

Let (G , X) be an étale topological groupoid representing an orbifold Q. A G -path on

Q is a morphism from R to (G , X). If x and y are two points in X a G -path between

them parametrized by [0, 1] is just a morphism from [0, 1] as topological space to

(G , X). Using the compactness of [0, 1], such a morphism can be represented over a

finite subdivision of the unit interval.
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Definition 3.7.1. Let x and y be two points of X. A G -path from x to y over

a subdivision 0 = t0 < t1 < · · · < tk = 1 of the interval [0, 1] is a sequence c =

(g0, c1, g1, . . . ck, gk) where:

(i) ci : [ti−1, ti]→ X are continuous maps,

(ii) gi are elements of G such that α(gi) = ci(ti) for i = 1, 2, . . . k, ω(gi) = ci+1(ti)

for i = 0, 1, . . . k − 1 and α(g0) = x, ω(gk) = y.

If (G , X) is a groupoid of local isometries (for example if (G , X) represents a Rie-

mannian orbifoldQ) then we can define the length of the G -path c = (g0, c1, g1, . . . ck, gk),

l(c) as being the sum of the length of the paths ci. The pseudodistance on the space

of orbits X/G between the orbits of two points x and y is the infimum of the length

of the paths joining x to y.

Among G -paths from x to y parametrized by [0, 1] we can define an equivalence

relation given by the following operations:

(i) Given a G -path c = (g0, c1, g1, . . . , ck, gk) over the subdivision 0 = t0 < t1 <

· · · < tk = 1, we can add a new point t′ ∈ (ti−1, ti) together with the unit

element g′ = 1ci(t′) to get a new sequence, replacing ci in c by c′i, g
′, c′′i , where c′i

and c′′i are the restriction of ci to the intervals [ti−1, t
′] respectively [t′, ti].

(ii) Replace the G -path c by a new one c′ = (g′0, c
′
1, g

′
1, . . . , c

′
k, g

′
k) over the same

subdivision as follows: for each i = 1, . . . , k choose continuous maps hi :

[ti−1, ti] → G such that α(hi(t)) = ci(t), and define c′i(t) := ω(hi(t)), g
′
i :=

hi+1(ti)gi(hi(ti))
−1 for i = 1, . . . , k − 1 and g′0 := h1(0)g0, g

′
k := gk(hk(1))−1.

Remark 3.7.2. (a) if two G -paths on different subdivisions are equivalent, then

we can pass from one to another first by considering their equivalent paths by

(i) on a suitable common subdivision, and then by an operation similar to (ii).

(b) note that two equivalent G -paths have the same initial and terminal point.
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(c) for any G -path c = (g0, c1, g1, . . . , ck, gk) From x to y, we can find equivalent

paths c′ = (g′0, c
′
1, g

′
1, . . . , c

′
l, g

′
l) such that g′0 = 1x or g′l = 1y. For this reason,

by abuse of notation we will denote sometimes the initial point of c by c(0) and

the terminal point by c(1), even if g0 or gk may not be units.

(d) since the groupoid (G , X) is Hausdorff and étale, then the continuous maps hi

in (ii) above are uniquely defined by c and c′.

(e) if a G -path c from x to y is such that all the ci’s are constant, then the equiva-

lence class of c is completely characterized by an element c ∈ G with α(g) = x

and ω(g) = y.

The equivalence class of a G -path c from x to y will be denoted by [c]x,y, and the

set of such equivalence classes will be denoted by Ωx,y(G ), or simply by Ωx,y.

As we have seen in the previous section, the set Ωx,y corresponds bijectively to

the set of isomorphism classes of principal G -bundles E over I = [0, 1] relative to

the bundle F over ∂I induced from G by the map ∂I → X sending 0 to x and 1

to y. The bundle E is obtained from c as the quotient of the union of the bundles

c∗i (G ) by the equivalence relation identifying (ti, gig) ∈ c∗i (G ) to (ti, g) ∈ c∗i+1(G ) for

i = 1, . . . , k−1. The isomorphism from E|∂I to F maps (0, g) ∈ c∗1(G ) to (0, g0g) and

(1, g) ∈ c∗k(G ) to (1, g−1
k g).

If x = y, c is called a closed G -path (based at x). Its equivalence class is called a

G -loop based at x and is denoted by [c]x. The set of G -loops based at x is denoted

by Ωx(G ) or simply Ωx. The set
⋃
x∈X Ωx of based loops will be denoted by ΩX .

The set Ωx is in bijective correspondence with the set of isomorphisms classes of

principal G -bundle over the circle S1 relative to the bundle F over 1 ∈ S1 induced

from G by the map sending 1 to x. The relative bundle E[c]x corresponding to c is

constructed as follows. For j = 1, . . . , k, let S1
j be the image of the interval [tj−1, tj ]

by the map t 7→ e2iπt; let Ej be the pull back of the principal G -bundle G by the map

S1
j → X sending e2iπt to cj(t). The bundle E[c]x is the quotient of the disjoint of the

Ej by the equivalence relation identifying (e2iπtj , g) ∈ Ej+1 to (e2iπtj , gjg) ∈ Ej for
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j < k and (1, g) ∈ E1 to (1, gkg0g) ∈ Ek. The isomorphism from the restriction of

E[c]x over {1} to F maps the equivalence class of (1, g) ∈ E1 to (1, g0g) ∈ F .

Remark 3.7.3. If c = (g0, c1, g1, . . . , ck, gk) and c′ = (g′0, c
′
1, g

′
1, . . . c

′
k, g

′
k) are two

equivalent G -paths from x to y (or closed G -loops at x) over the same subdivision,

then the maps hi in (ii) above induces an isomorphism from the relative principal

G -bundle associated to c to the one associated to c′. By Remark 3.7.2 (d) this

isomorphism is unique.

Let x, y ∈ X and c = (g0, c1, g1, . . . , ck, gk) be a G -path from x to y, defined over

the subdivision 0 = t0 < t1 < · · · < tk = 1. We can define the inverse of c to be the

G -path from y to x given by c−1 = (g′0, c
′
1, g

′
1, . . . , c

′
k, g

′
k) defined over the subdivision

0 = t′0 < t′1 < · · · < t′k = 1, where for each i = 0, . . . , k we have t′i = 1− tk−i, g′i = g−1
k−i

and c′i(t) = ck−i(1 − t) for t ∈ [t′i−1, t
′
i] and i = 1, . . . , k. It is easy to see that the

inverses of equivalent G -paths are equivalent.

If we are given two G -paths c = (g0, c1, g1, . . . , ck, gk) over a subdivision 0 = t0 <

t1 < · · · < tk = 1 and c′ = (g′0, c
′
1, g

′
1, . . . , c

′
k′, g

′
k′) over 0 = t′0 < t′1 < · · · < t′k′ = 1 such

that the initial point of c′ is the terminal point of c, we can define their composition(or

concatenation) c ∗ c′ to be the G -path c′′ = (g′′0 , c
′′
1, g

′′
1 , . . . , c

′′
k, g

′′
k) over a subdivision

0 = t′′0 < t′′1 < · · · < t′′k+k′ = 1, where

t′′i = ti/2, for i = 0, . . . , k and t′′i = 1/2 + t′i−k/2, for i = k, . . . , k + k′ ;

c′′i (t) = ci(t/2), for i = 1, . . . , k and c′′i (t) = c′i−k(2t− 1), for i = k+ 1, . . . , k+ k′ ;

and g′′i = gi, for 0, . . . , k − i, g′′k = g′0gk, g′′i = g′i−k, for i = k + 1, . . . , k + k′.

Again, if c is equivalent to c and c′ is equivalent to c′, then the composition c ∗ c′ is

equivalent to c ∗ c′.
An elementary homotopy between two G -paths c = (g0, c1, g1, . . . , ck, gk) over 0 =

t0 < t1 < · · · < tk = 1 and c′ = g′0, c
′
1, g

′
1, . . . , c

′
k, g

′
k) over 0 = t′0 < t′1 < · · · < t′k = 1,

with the same end points, is a family of G -paths parametrized by s ∈ [s0, s1], c
s =

(gs0, c
s
1, g

s
1, . . . , c

s
k, g

s
k) over 0 = ts0 < ts1 < · · · < tsk = 1 where tsi , c

s
i and gsi depend

continuously on the parameter s, gs0 and gsk are independent of s and cs0 = c, cs1 = c.
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We say that two paths are homotopic (relative to their end points) if one can be

obtain from the other by a finite sequence of the following operations:

(i) equivalence of G -paths,

(ii) elementary homotopies.

The homotopy class of a G -path c will be denoted by [c]. If c and c′ are two

composable G -paths, the homotopy class of c ∗ c′ depends only on the homotopy

classes of c and c′ and will be denoted [c ∗ c′] = [c]∗ [c′]. If c, c′ and c′′ are composable

G -paths, then [c ∗ c′] ∗ [c′′] = [c] ∗ [c′ ∗ c′′] = [c] ∗ [c′] ∗ [c′′].

With the operation of composition of G -paths, the set of homotopy classes of G -

loops based at a point x0 form a group called the fundamental group π1((G , X), x0) of

(G , X) based at x0. A continuous homomorphism of étale groupoids (ψ, f) : (G , X)→
(G ′, X ′) induces a homomorphism π1((G , X), x0)→ π1((G

′, X ′), f(x0)).

As we can see in the following proposition in the case of a G -connected étale

groupoid, up to isomorphism, the fundamental group π1((G , X), x0) is independent

of the choice of the base point (see [BH]).

Proposition 3.7.4. Let (G , X) be an étale groupoid and x0 ∈ X be a base point

and let a be a G -path joining x0 to x1 ∈ X. Then the map that associates to each

G -loop based at x0 the G -loop a−1 ∗ c ∗ a based at x1 induces an isomorphism from

π1((G , X), x0) to π1((G , X), x1).

If (ψ, f) : (G , X)→ (G ′, X ′) is an equivalence of étale groupoids, then the induced

homomorphism on the fundamental groups is an isomorphism.

A groupoid is called simply connected if it is G connected and its fundamental

group is trivial.

In the case when the groupoid (G , X) represents a connected orbifold Q the funda-

mental group π1((G , X), ∗) is denoted πorb1 (Q) and it is called the orbifold fundamental

group of Q.
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Let Q be a topological orbifold and (G , X) the étale groupoid associated to the

pseudogroup of change of uniformizing charts. The set of free loops on Q is the set

of equivalence classes of morphisms from the circle S1 to (G , X). Such a morphism

can be represented by a closed G -path c = (g0, c1, g1, . . . , ck, gk) over a subdivision

0 = t0 < t1 < · · · < tk = 1 based at some point x ∈ X. This time the equivalence

relation is generated by i) and ii) from the previous section together with

(iii) for any element g ∈ G such that α(g) = x, then c = (g0, c1, g1, . . . , ck, gk) is

equivalent to c.g := (g0g, c1, g1, . . . , ck, g
−1gk).

The class of c under this equivalence relation is noted [c] and is called a free loop on

Q. It depends only of the orbifold structure Q and not on a particular atlas defining

Q.

The groupoid G acts naturally on the right on the set ΩX of based G -loops with

respect to the projection p : ΩX → X associating to a G -loop based at x the point

x: if g is an element of G with source x and target y, then [c]x.g ∈ Ωy is the G -loop

based at y represented by c.g. The action of G on ΩX with respect to the projection

assigning to a based G -loop its base point is continuous. The quotient of ΩX by this

action is by definition the ”space” of (continuous) free loops |Λ(G )| = |ΛQ| on Q.

Under the projection q : X → |Q|, every free G -loop is mapped to a free loop on

|Q|. Therefore if Λ|Q| is the space of free loops on the topological space |Q|, we have

a map

|ΛQ| → Λ|Q|.

We denote |Λ0Q| the subset of |ΛQ| formed by the free loops on Q projecting to

a constant loop. An element of this subset is represented by a closed G -path c =

(g0, c1, g1), where g0 is a unit 1x, c1 is the constant map from [0, 1] to x and g1 is an

element of the subgroup Gx = {{g ∈ G : α(g) = ω(g) = x}. The equivalence class [c]

of c correspond to the conjugacy class of g1 in Gx.

In the developable case, if Q is the quotient of a connected manifold X by a

properly discontinuous action of a discrete subgroup Γ of its group of diffeomorphisms,
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then the free loops based at x ∈ X are in bijective correspondence with pairs (c, γ),

where c : [0, 1] → X is a continuous path with c(0) = x and γ is an element of Γ

mapping c(1) to x. The free loops on Q are represented by classes of pairs (c, γ)

like above, this pair being equivalent to (c ◦ δ, δ−1γδ), where δ ∈ Γ. Assuming X

simply connected, the set of homotopy classes of elements of |ΛQ| is in bijective

correspondence with the set of conjugacy classes in Γ.

For instance let X = R2 and Γ be the group generated by a rotation ρ fixing 0

and of angle 2π/n. Let G be the groupoid associated to the action of Γ on X. The

orbifold Q = X/G is a cone. Consider the closed free G -loop represented by the pair

(c, ρk), where c is the constant path at 0. If we deform this loop slightly so that

it avoids the origin, its projection to the cone |Q| will be a curve going around the

vertex a number of times congruent to k modulo n ; in particular, when k = n, it

could also be a constant loop.

On free loop space, we have two operations, the first one defined by a change of

parameter, and the second one by m-times iteration.

Since |ΛQ| = H1(S1,G ), a homeomorphism h : S1 → S1 induces a bijection

h∗ : H1(S1,G ) → H1(S1,G ). This gives a continuous action on |ΛQ| of the group of

homeomorphisms of S1 leaving invariant the subspace |Λ0Q| of free loops of length 0.

By restriction we get an action of the group O(2) of isometries of S1 on |ΛQ|. The

fixed points set of the action of O(2) (or SO(2)) on |ΛQ| is the subspace |Λ0Q| of free

loops of length zero.

For a positive integer m, the map e2iπt 7→ e2iπmt from S1 to S1 induces a map

H1(S1,G )→ H1(S1,G ). If c = (g0, c1, . . . , ck, gk) is a closed G -path over a subdivision

0 = t0 < · · · < tk = 1, the image of [c] by this map is equal to [cm], where cm is the

m-th iterate of c.

3.8 Classifying space

Given an groupoid G a very important construction is that of its classifying space

BG , the base space of a principal G -bundle EG → G . In the general case one possible
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construction is the geometric realization of the nerve of the groupoid representing the

orbifold. This follows Segal’s fat realization construction. An alternative method is

Milnor’s infinite join construction.

Let (G , X) denote a topological groupoid with source and target maps α, ω : G →
X. Let G (n) denote the iterated fiber product

G
(n) := {(g1, g2, . . . , gn) | gi ∈ G , α(gi) = ω(gi+1) for i = 1, . . . , n− 1}

and let G (0) = X denote the set of objects. It is worth thinking of G (n) as the manifold

of composable strings of arrows in G :

x0
g1←−−− x1

g2←−−− x2 ←−−− · · ·
gn←−−− xn

With this data we can form a simplicial set (see [Se]).

Definition 3.8.1. A semi-simplicial set (resp. group, space, manifold) A• is a se-

quence of sets (resp. groups, spaces, manifolds) {An}n∈N together with maps

A0
−→←A1

−→←A2
−→← · · · −→←Am−→← · · ·

∂i : Am → Am−1, sj : Am → Am+1, 0 6 i, j 6 m

called boundary and degeneracy maps, satisfying

∂i∂j = ∂j−1∂i if i < j

sisj = sj+1si if i < j

∂isj =





sj−1∂i if i < j

1 if i = j, j + 1

sj∂i−1 if i > j + 1

The nerve of a category C (see [Se]) is a semi-simplicial set NC where the objects

of C are vertices, the morphisms of C are the 1-simplexes, the triangular commutative

diagrams are the 2-simplexes, and so on.



56

For a groupoid (G , X), the corresponding simplicial object NG is defined by

NGn = An = G (n) and the boundary maps ∂i : G (n) → G (n−1):

∂i(g1, . . . , gn) =





(g2, . . . , gn) if i = 0

(g1, . . . , m(gi, gi+1), . . . , gn) if 1 ≤ i ≤ n− 1

(g1, . . . , gn−1) if i = n

and the degeneracy maps sj : G (n) → G (n+1):

sj(g1, . . . , gn) =

{
(u(α(g1)), g1, . . . , gn) for j = 0

(g1, . . . , gj, u(ω(gj)), gj+1, . . . , gn) for j ≥ 1

Denote by ∆n the standard n-simplex in Rn. Let δi : ∆n−1 → ∆n be the linear

embedding of ∆n−1 into ∆n as the i-th face, and let σj : ∆n+1 → ∆n be the linear

projection of ∆n+1 onto its j-th face. Define the spaces ∆n×G (n), where the points of

∆n×(g1, g2, . . . , gn) are understood as the points in the simplex with longest sequence

of edges being named as (g1, g2, . . . , gn).

By gluing these spaces together along the simplicial operators we obtain the so

called geometric realisation of the simplicial object A•.

Definition 3.8.2. The geometric realization |A•| of the simplicial object A• is the

space

|A•| =
(
∐

n∈N

∆n × An
)/

(z, ∂i(x)) ∼ (δi(z), x)

(z, sj(x)) ∼ (σj(z), x)

The semi-simplicial object NC determines C and its topological realization BC is

called the classifying space of the category. Here C is a topological category in Segal’s

sense [Se].

For a groupoid (G , X) we will call B(G , X) = BG = |NG | the classifying space

of the groupoid. Note that BG is an infinite dimensional space and the topology of

BG is the quotient topology induced from the topology of
∐

∆n × G (n) (hence the

topologies of G (n)’s are relevant here).
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An important basic property of the classifying space construction is that an equiv-

alence between groupoids (ψ, f) : (G , X)→ (G ′, X ′) induces a homotopy equivalence

between their classifying spaces (see [Se], [M])

Bψ : BG → BG
′.

This means that for any point x ∈ X, the equivalence (ψ, f) induces an isomorphism

of homotopy groups

πn(BG , x) ≈ πn(BG
′, f(x)).

Thus, if Q is an orbifold whose orbifold structure is given by the groupoid (G , X) we

can define its homotopy type as being that of the classifying space BG :

πorbn (Q, x) = πn(BG , x̃)

the definition being independent of the choice of the groupoid representing the orbifold

and of the base point x ∈ Q and of the lift x̃ ∈ X for which q(x̃) ∈ |Q| is mapped to

x by the induced homeomorphism X/G → |Q|.

Example 3.8.3. (1) For the groupoid (∗, G) the classifying space coincides with

the classifying space BG of the group G. This space classifies the principal

G-bundles.

(2) If (M,U ) is a manifold then the classifying space of the groupoid MU is homo-

topy equivalent to M : BMU ≃M . (see Se)

(3) For the groupoid (G⋉M,M) associated to an action of a group G on a topo-

logical space M , the classifying space is the homotopy quotient

B(G⋉M) ≃MG = (EG×M)/G

where the action of G is given by g.(e, x) = (eg−1, gx) .

When G is the groupoid of germs of changes of charts of an atlas of uniformizing

charts for a Riemannian orbifold Q of dimension n, there is an explicit construction of
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BG which is independent of the particular atlas defining Q and which will be therefore

be denoted BQ (see [GH]). Indeed consider the bundle of orthonormal coframes FX

on X; an element of FX above x ∈ X can be identified to a linear isometry from the

tangent space TxX at x to the Euclidean space Rn; the group O(n) of isometries of

Rn acts naturally on the left on FX and this action commutes with the right action of

the groupoid G on FX through the composition with the differential of the elements

of G . As the action of G on FX is free, the quotient FX/G is a smooth manifold

depending only on Q and not on a particular atlas defining Q. The left action of

O(n) on FX gives a locally free action of O(n) on FX/G .

Choose a principal universal O(n)-bundle EO(n) → BO(n) for the orthogonal

group O(n) and take for EG the associated bundle EO(n) ×O(n) FX, quotient of

EO(n)× FX by the diagonal action of O(n). The projection from FX to X gives a

projection qEG : EG → X with contractible fibers isomorphic to EO(n). As the action

of O(n) on FX commutes with the natural right action of G , we get a free action of G

on EG with respect to the projection qEG , and EG → EG /G = EO(n)×O(n) FX/G

is a universal principal G -bundle whose base space BG = EG /G will be noted BQ.

There is a canonical map π : BQ → |Q| induced from the map q ◦ qEG : EG →
X/G = |Q|; it is the projection of the morphism from BQ to G associated to the

principal G -bundle EG → BQ; the fiber of π above a point z = q(x) is an acyclic

space with fundamental group isomorphic to the isotropy subgroup Gx of x.
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Figure 3.1: A G -path.
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Figure 3.2: Equivalent G -path over a subdivision with a new point t′ ∈ (ti−1, ti) .
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Figure 3.3: Equivalent G -paths over the same subdivision.
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Figure 3.4: An elementary homotopy of G -paths.
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Figure 3.5: A description of ∆3 × (g1, g2, g3) and its boundary ∆2 × (g1, g2g3).



Chapter 4

Developability of orbifolds of non

positive curvature

In this chapter we give a proof of developability for complete Riemannian orbifolds

of non positive curvature. Apparently (we do not know a reference yet) the result

was first proved by Gromov. However, the developability of complete orbifolds of non

positive curvature appears as an exercise in [BGS] (see exercise (a) on page 16). This

result is also a direct consequence of a result in [BH] (Theorem 2.15 and Corollary

2.16 in chapter III.G ). It is proved there that if (G , X) is a connected groupoid

of local isometries which is Hausdorff and complete and such that the metric on

X is locally convex, then it is developable. The proof there follows the Alexander-

Bishop proof of the Cartan-Hadamard Theorem (see II.4 in [BH]). The chapter is

structured as follows. In first section we introduce the notion of G -geodesic path

on a connected Riemannian orbifold, where (G , X) is the groupoid associated to the

germs of change of charts of the orbifold structure. This is possible since in this case

(G , X) is a groupoid of local isometries which is Hausdorff and is G -connected. It is

also complete if the orbifold is assumed to be complete. In section 4.2 we introduce

an analogue of the exponential map from the manifold case, as being the map that

associates to any (sufficiently short) vector v ∈ TxX the end point of a G -geodesic

issuing at x with velocity vector v. Note that this map is well defined (even as a

64
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map) up to the choice of the terminal point within its orbit. However, this gives a

well defined map on the space of orbits which is the base map of a morphism from

the tangent cone at the projection of x into Q. This is also the base map of the good

C∞ orbifold map Exp considered by Ruan and Chen in [CR].

In section 4.3 we investigate the relation between completeness and the geodesi-

cally completeness of the orbifold and we will prove a result similar to the Hoph-Rinow

Theorem for manifolds that is, a connected Riemannian orbifold is complete if and

only if it is geodesically complete. We also prove there that in a connected Rieman-

nian orbifold which is complete any two points can be joined by a minimal geodesic

G -path.

In section 4.4 we introduce Jacobi fields and the notion of conjugate points along

a G -geodesic in an orbifold. Via the definition of Jacobi fields using the exponential

map we relate the the conjugate points to the critical points of the exponential map.

In the last section we consider the case of complete Riemannian orbifolds of non

positive curvature. Using Jacobi fields we prove that in this case there are no con-

jugate points along any G -geodesic and using the results in section 4.4 we conclude

that the exponential map is étale. Moreover, we can prove in this case that it is also a

covering map. Then the morphism from the developable (by Lemma 4.5.3) groupoid

associated to the action of G on TxX into (G , X) whose base map is the exponential

map is a covering. This proves that (G , X) is developable, i.e. the orbifold Q is

developable. The same proof works for the case when Q is a complete Riemannian

orbifold which contains a pole by using the exponential map at the pole. The only

thing to prove in that case is that the exp map is a covering map, without using the

non positive curvature. This is possible since exp is étale and has the path lifting

property. A different approach of proving this is by using the path space (at least in

the simply connected case)?
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4.1 Geodesic G -paths

Let Q be a Riemannian orbifold. Recall that an orbifold structure is said to be

Riemannian if each uniformizing chart Xi is a Riemannian manifold and if the change

of charts are local isometries. On X = ⊔Xi a Riemannian metric is defined as the

union of the riemannian metrics on each Xi and this Riemannian structure induces

a length metric whose quotient gives a pseudo-metric on the space of orbits |Q|. In

this case, the étale groupoid of germs of change of uniformizing charts is a group

of local isometries. The fact that the base space |Q| is Hausdorff implies that the

pseudometric is always a metric and induces the given topology on |Q|. Moreover the

groupoid (G , X) is always Hausdorff and it is complete if and only if Q is complete.

In the case when Q is connected note that X as a disjoint union is not connected

but it is G -connected in the following way (it is G -path connected). For any two

points x, y ∈ X there is a sequence of points (x1, y1, . . . , xk, yk) such that x1 = x,

yk = y and each xi is in the orbit of yi−1 for all i = 2, . . . k and there is a path

(in some Xi) joining xi to yi for all i = 1, . . . , k (or equivalently, there is a G -path

c = (1x, c1, g2, . . . , ck, 1y) defined over some subdivision 0 = t0 < t1 < · · · < tk = 1

connecting x to y). We will assume in what follows that Q is connected.

Definition 4.1.1. A geodesic G -path from x to y in a Riemannian orbifold is a

G -path c = (g0, c1, g1, . . . , ck, gk) from x to y such that:

(i) each ci : [ti−1, ti]→ X is a geodesic segment with constant speed ċi;

(ii) the differential dgi of a representative of gi at ci(ti), maps the velocity vector

ċi(ti) to the velocity vector ċi+1(ti).

We say that a geodesic G -path c = (g0, c1, g1, . . . , ck, gk) is normalized if the all

the geodesic segments ci are normalized geodesics, i.e. they are parametrized by the

arc-length. In what follows we will consider normalized geodesic G -paths.

If c is a closed G -path, it represents a closed geodesic [c] (or a geodesic loop) on Q

if moreover the differential of g0gk maps the velocity vector ċk(1) to the vector ċ1(0).

A free loop of length 0 is always a closed geodesic.
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Note that the projection q : X → |Q| associates uniquely to each equivalence

class of G -geodesics [c] parametrized over [0, 1] a continuous path [0, 1] 7→ |Q|. This

is the base map of a smooth orbifold map which is also good in the sense of the

Definition 2.4.2. Equivalently we could define a geodesic on an orbifold to be a good

C∞ orbifold map from [0, 1] to Q which locally lifts to geodesics. When there is no

place of confusion, we will refer to the underlying map as of the geodesic path on the

orbifold. Sometimes is convenient to consider the geodesic G -paths issuing at a point

which can be extended indefinitely. Then, one should consider (admissible) covers

of R (or [0,∞)) and the associated (possible infinite) sequence of elements gi and

geodesic paths ci as in definition 4.1.

It is easy to see that if c is a geodesic G -path from x to y, then the vector

d(g0)
−1ċ1(0) at x is an invariant of the equivalence class [c]x,y and is called the initial

vector of the G -geodesic c.

In the developable case, if the orbifoldQ is the quotient of a connected Riemannian

manifold X by a discrete subgroup Γ of its group of isometries, then any closed

geodesic on Q is represented by a pair (c, γ), where c : [0, 1]→ X is a geodesic and γ

an element of Γ such that the differential of γ at c(1) maps the velocity vector ċ(1)

to ċ(0); another such pair (c′, γ′) represents the same geodesic if and only if there is

an element δ ∈ Γ such that c′ = δ.c and γ′ = δ−1γδ.

As an example (see [GH]), consider the orbifold Q which is the quotient of the

round 2-sphere S2 by a rotation ρ of angle π fixing the north pole N and the south

pole S. The quotient space |Q| is a sphere with two conical points [N ] and [S], images

of N and S. There are two homotopy classes of free loops on Q. Closed geodesics

homotopic to a constant loop are represented by a closed geodesic on S2 (their length

is an integral multiple of 2π). If they have positive length, their image in |Q| is either

the equator, a figure eight or a meridian. Closed geodesics in the other homotopy

class are represented by a pair (c, ρ), where c is either the constant map to N or S,

or a geodesic arc on the equator of length an integral odd multiple of π.
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4.2 Exponential map

We would like to introduce on X a correspondent of the exponential map such that

the geodesic G -paths could be the image of a line segment containing the origin in

TxX. We will have to overcome the following difficulty. For any point x ∈ X there is

a uniquely defined exponential map for sufficiently small vectors v ∈ TxX using the

Riemannian structure on the connected component Xi which contains x. In this case

the geodesic obtained as the image by the exponential map of a segment containing

the origin in the tangent space TxX would lie in the connected component Xi, hence

it would be just a particular type of G -geodesic, namely one that can be represented

over the entire interval. This is not enough since the G -geodesics can have their

terminal point in other connected components of X. Using the local existence of the

exponential map and the groupoid structure we will construct an ”exponential map”

which is well defined up to a choice of an element in its fiber.

Let x0 ∈ X. Then x0 ∈ Xi for some i and recall from the Riemannian geometry

of manifolds that there exist a neighborhood U ⊂ Xi of x0 and ǫ > 0 such that for

each x ∈ U and each tangent vector v ∈ TxX with length less then ǫ there is a unique

geodesic ci : (−2, 2) → Xi satisfying the conditions ci(0) = x and ċi(0) = v. In this

case there is a uniquely defined map denoted expx, given by expx(v) = c(1) and the

geodesic c : [0, 1]→ Xi can be described by the formula c(t) = expx(tv).

Thus for every i and x ∈ Xi the exponential map expx is defined throughout

a neighborhood of (x, 0) in TxX and it is differentiable. Moreover there exists a

neighborhood V of the origin in TxX such that expx|V is a diffeomorphism and the

image expx(V ) = U ⊂ Xi is called a geodesic neighborhood of x. If the open ball

B(0, δ) ⊂ TxX is such that B(0, δ) ⊂ V then we call the image ex(B(0, δ)) = B(x, δ)

the geodesic ball centered at x and of radius δ. The boundary of the geodesic ball

is a submanifold of codimension one in X which is orthogonal to the geodesics rays

issuing from x. Furthermore for any point x ∈ Xi there exists a neighborhood W of x

which is a geodesic neighborhood of each point point y ∈W . That is, a neighborhood

W ⊂ Xi of x together with a δ > 0, such that for every y ∈ W , the exponential map
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expy is a diffeomorphism on B(0, δ) ⊂ TyX and the geodesic ball B(y, δ) contains W .

A such of pair (W, δ) is called a totally geodesic neighborhood for x. Note that any

two points of W can be joined by a unique geodesic in Xi of length less than δ.

The following lemma (see [GH]) will allow us to extend the image of the exponen-

tial map to other connected components Xj of X.

Lemma 4.2.1. Let Q = X/G be a Riemannian orbifold. Let g ∈ G with x = α(g)

and y = ω(g). Let ǫ > 0 be such that B(x, ǫ) and B(y, ǫ) are convex geodesic balls

at x and y respectively. Then there is an element h of the pseudogroup of change of

charts of Q which is an isometry from B(x, ǫ) and B(y, ǫ).

Proof. Let h : B(x, ǫ) → B(y, ǫ) be the diffeomorphism which maps isometrically

geodesic rays issuing from x to the geodesic rays issuing from y and such that the

differential dhx = dg. For 0 < r < ǫ sufficiently small the restriction hr of h to the

B(x, r) is an element of the pseudogroup of change of charts H (see 3.2 and also

3.1). It is sufficient to prove that the restriction of h to a neighborhood of the closure

of B(x, r) is also an element of H . Let z ∈ ∂B(x, r). Since the space of orbits is

Hausdorff, the point z and its image h(z) are in the same orbit of H . Then there

are sufficiently small neighborhoods U of z and V of h(z) and an element f : U → V

of H with f(z) = h(z) and such that the restriction of H to the open neighborhood

U is generated by a group ΓU of diffeomorphisms of U and such that the germ of any

element of H defined on U with the target in V is the germ of a the composition of

f to an element of ΓU . Since f is a Riemannian isometry, it must coincide with h|U
on the geodesic rays issuing from x and hence on U .

The above lemma allows us to consider the following construction. Let v ∈ TxX
such that the expx(v) is defined. Since the length of the geodesic expx(tv) is finite

there exists an ǫ > 0 and a subdivision 0 = t0 < t1 < · · · < tk = 1 of the interval

[0, 1] such that B(expx(tiv), ǫ) are convex geodesic balls. By applying inductively

the above lemma for i = 1, . . . , k it is easy to see that we obtain a G -geodesic c =

(g0, c1, g1, c2, . . . , ck, gk) equivalent with the initial one. Note that the gi’s may be units

and that each ci+1(ti) respectively ci(ti) are in the orbit of expx(tiv). In particular,
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the ”end point” ω(gk) of the G -geodesic c is in the same orbit of expx(v). Hence

we can associate to any pair (x, v) where x is a point in X and v is a vector TxX

of small enough length the orbit through expx(v). This gives a well defined map

on the space of orbits which we will still denote expex : |TexQ| ≃ TxX/Gx → |Q|
where q(x) = x̃ ∈ |Q| associating to ξ ∈ |TexQ| of small enough norm, the projection

q(expx(v)) where v ∈ TxX such that v = dg0(ξ) where g0 is the element of Γex which

lifts x̃ to x. Note that this map is continuous (even more it is étale) and induces an

étale groupoid homomorphism from the groupoid associated to the action of Gx on

TxX to the groupoid (G , X). Note also that this exponential map can be seen as the

base map of the good orbifold map Exp considered by Ruan and Chen in [CR].

4.3 Geodesically complete orbifolds

Note that the construction above works for ”short” vectors v ∈ TxX and we would like

to investigate weather a such exponential map can be defined for vectors of arbitrarily

length. Similar to the manifold case, we will call an orbifold geodesically complete if

the exponential map expx : |TxQ| → |Q| is defined for all |TxQ|. That is, (by the

above argument) if for every x ∈ X the exponential map expx is defined on all TxX,

i.e. any G -geodesic starting at x can be extended infinitely. By analogy, we will say

in this situation that X is G -geodesically complete. We will see that this is always

the case when the orbifold Q is complete.

In what follows, using the connectedness ofQ (or equivalently the G -connectedness

of X) we will introduce a pseudodistance topology on X which agrees the induced

topology on X by the Riemannian structure (this could be easily avoided, it just

make the analogy with the manifold case simpler). Define the G -distance between

the two points by

dG (x, y) = inf{
k∑

i=1

d(xi, yi)},

where the infimum is considered on all possible sequences (x1, y1, . . . , xk, yk) and for

all k and d(·, ·) denotes the distance induced by the Riemannian metric on each
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connected component in X. Note that dG defines a pseudo-distance on X (it is not

a distance since any two distinct points in the same orbit have dG distance zero) and

that its restriction to each connected component Xi ⊂ X is a distance which agrees

with the induced by the Riemannian structure. This implies that the topology on

each component is the same as the one induced (as the subspace topology) by the

pseudo-distance topology given by dG on X. Note that the pseudo-distance topology

on X is not Hausdorff (it is not even Kolgomorov (T0)). Moreover the projection

q : X → |Q| becomes an isometry. With respect to this pseudo-distance topology,

the association via the exponential map (x, v) 7→ y, where x ∈ X and v ∈ TxX of

small norm and y is a point in the orbit of expx(v) (i.e. it is the ’end point’ of the

G -geodesic given by expx(tv), t ∈ [0, 1]) is continuous.

We will say that a sequence {x(n)}n of points in X is G -convergent to a point

x ∈ X if it is convergent in the pseudo-distance topology, i.e. if for every ǫ > 0 there

is n(ǫ) such that for any n ≥ n(ǫ) we have dG (x(n), x) < ǫ. As expected the limit point

of the sequence x(n) is not unique and obviously any other point in the orbit of x will

also be the limit point. In a similar way we say that the sequence x(n) of points in

X is G -fundamental if for every ǫ > 0 there is n(ǫ) such that for any n,m ≥ n(ǫ) we

have dG (x(n), x(m)) < ǫ. It is easy to see that the completeness of |Q| is equivalent

with the G -completeness of X via the projection q : X → |Q|.
The following proposition is an important property of geodesically complete orb-

ifolds.

Proposition 4.3.1. If a connected Riemannian orbifold Q = X/G is geodesically

complete then any two points can be joined by a minimal geodesic G -path.

Proof. Let x and y be two points in X and let r denote the G -distance between them.

Consider a geodesic ball B(x, δ) at x (note that this ball is contained in the connected

component of X containing x). The boundary of this ball is quasi-compact in the

pseudometric topology and since the function

dG (y, ·) : X → R
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is continuous, there exist a point in x0 ∈ ∂B(x, δ) such that dG (y, ∂B(x, δ)) attains

its minimum. Then x0 = expx(δv) for some v ∈ TxX with norm one.

Since X is G -geodesically complete, there is an equivalence class of geodesic G -

path issuing from x with velocity v and which can be extended indefinitely. We will

show that these geodesic G paths intersect the orbit through y and therefore there

exists a G -geodesic in this equivalence class which contain y. Moreover, we well prove

that the length of this geodesic is equal to r.

Similar to the manifold case we will prove that a point which moves along one

of the geodesic G -paths as above must get closer (with respect to dG ) to y. Let c

be a such geodesic G -path which is represented over an admissible cover of [0,∞) by

a sequence c = (g0, c1, g1, . . . , gk−1, ck, . . .). For convenience we will denote c(t) the

point ci(t) for t ∈ [ti−1, ti].

Consider the equation

dG (c(t), y) = r − t

and let A be the set of points in [0, r] for which the equation holds.

A is not empty since the above equation is satisfied for t = 0 and it is clearly

closed. Let t∗ ∈ A. We will show that if t∗ < r then the equation holds for t∗ + δ′,

where δ′ > 0 is sufficiently small. This implies that supA = r and since A is closed we

conclude that r ∈ A, i.e. c(r) is in the orbit of y. Denote x∗ = c(t∗) ∈ X and consider

a geodesic ball B(x∗, δ′) at x∗. Let x′0 ∈ ∂B(x∗, δ′) be the point which minimizes

the G -distance dG (y, ∂B(x∗, δ′)). Note that by the previous lemma, we can assume

without loss of generality that [t∗ − δ′, t∗ + δ′] ⊂ (ti−1, ti) for some i. Then it suffices

to show that the point x′0 = c(t∗ + δ′).

Note first that

dG (c(t∗), y) = inf
z∈∂B(x∗,δ′)

(
dG (x∗, z) + dG (z, y)

)
= δ′ + dG (x′0, y)

and since dG (c(t∗), y) = r − t∗, it follows that

r − t∗ = δ′ + dG (x′0, y) = dG (c(t∗ + δ′), y),

i.e.

dG (c(t∗ + δ′), y) = r − (t∗ + δ′).



73

To prove now that x′0 = c(t∗ + δ′), note that using (*)

dG (x, x′0) ≥ dG (x, y)− dG (y, x′0) = r − (r − t∗ − δ′) = t∗ + δ′.

On the other hand, the G -distance between x and x′0 measured along the G -geodesic

c up to x∗ and then along the geodesic ray joining x∗ to x′0 gives

dG (x, x′0) ≤ dG (x, x∗) + dG (x∗, x′0) = t∗ + δ′.

Hence dG (x, x′0) = t∗+δ′. Consider now c(ti−1) which is a point in the same connected

component ofX as x∗. Clearly d(c(ti−1), x
′
0) ≤ d(c(ti−1), x

∗)+d(x∗, x′0). We claim that

we have equality in the inequality above. Indeed, if we assume that d(c(ti−1), x
′
0) <

d(c(ti−1), x
∗) + d(x∗, x′0) then we have

t∗ + δ′ = dG (x, x′0) ≤ dG (x, c(ti−1)) + d(c(ti−1), x
′
0)

< dG (x, c(ti−1)) + d(c(ti−1), x
∗) + d(x∗, x′0)

= dG (x, x∗) + dG (x∗, x′0)

= t∗ + δ′

which cannot be true. This means that the broken path obtained from the geodesic

segment ci|[ti−1,t∗] and the minimal geodesic joining x∗ = ci(t
∗) to x′0, is distance

minimizing, and so it is a (unbroken) geodesic, i.e. it coincides with ci. This proves

that x′0 = c(t∗ + δ′) and completes the proof.

The following proposition relates the concepts of G -completeness and G -geodesically

completeness of X. It is the similar of the Hoph-Rinow Theorem in the manifold case

(or even more generally for length spaces (see [?]).

Theorem 4.3.2. Let Q = X/G be a connected Riemannian orbifold. Then X is

G -complete if and only if it is G -geodesically complete.

Thus, a connected Riemannian orbifold Q is complete if and only if it is geodesi-

cally complete.

Proof. Assume that X is G -complete and suppose that it is not G -geodesically com-

plete. That is, there exist a point x ∈ X and a (normalized) G -geodesic issuing from x
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which is defined for t < t∗ and is not defined for t∗. Let 0 = t0 < t1 < · · · < tk−1 < t∗

be a subdivision of [0, t∗] and c = (g0, c1, g1, . . . , ck) be a representative of this G -

geodesic over it such that ck is defined for t ∈ [tk−1, t∗) and not for t∗. Consider a se-

quence (tn)n in [0, t∗) which converges at t∗. We can assume without loss of generality

that tn ∈ [tk−1, t
∗). Note that tm is Cauchy and therefore for every ǫ > 0 there exists

nǫ such that if n,m > nǫ then |tn−tm| < ǫ. Since c is a normalized G -geodesic, this im-

plies that dG (ck(t
n), ck(t

m)) ≤ |tn−tm| < ǫ, i.e. the sequence ck(t
n) is G -fundamental.

Hence it is G -convergent to a point y ∈ X (actually it is G -convergent to any point

in the orbit of y). Let (W, δ) be a totally geodesic neighborhood of y. For δ > 0 there

exists nδ such that for n ≥ nδ we have dG (ck(t
n), ck(t

m)) < δ. We can choose nδ large

enough such that (eventually passing to a subsequence) the orbits through ck(t
n) have

nonempty intersection with W . Denote these intersections with xn. It follows that

for any n,m ≥ nδ we have d(xn, xm) = dG (xn, xm) = dG (ck(t
n), ck(t

m)) < δ. Then,

there exists a unique geodesic connecting xn to xm of length smaller than δ. Denote c′

this geodesic. It is clear that this geodesic is equivalent to ck whenever this is defined.

Since expxn
is a diffeomorphism on B(0, δ) ⊂ Txn

X and W ⊂ expxn
(B(0, δ)), the

geodesic c′ can be extended over t∗. By replacing in c = (g0, c1, . . . , ck) the geodesic

ck with c′ we obtain a G -geodesic path issuing at x which is defined beyond t∗ and

whose restriction to [0, t∗) is equivalent to c, i.e. c can be extended in its equivalence

class. This leads to a contradiction and proves the claim.

Conversely, assume that X is G -geodesically complete. Consider a G -fundamental

sequence (xn)n in X. It is clearly that the set A = {xn | n} is bounded in the G -

distance. Thus there exist a ball BG centered at a point x ∈ X which contains its

closure. By the above proposition, there exists a ball B(0, r) ⊂ TxX such that BG ⊂
expx(B(0, r)). As the map expx is continuous in the pseudo-distance topology and

B(0, r) is compact in TxX, the image expx(B(0, r)) is quasi-compact in X. Then the

closure of A is also quasi-compact and so the sequence (xn) contains a G -convergent

subsequence and being G -fundamental, it converges. This proves that X is also G -

complete.
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4.4 Jacobi fields

Let x, y ∈ X and c = (g0, c1, . . . , ck) be a geodesic G -path connecting them over a

subdivision 0 = t0 < t1 < · · · < tk = 1.

Definition 4.4.1. A Jacobi field along c is a sequence J = (J1, . . . , Jk) of vector

fields Ji along ci and such that

(i) dgi maps (Ji,
D
dt
Ji(ti)) 7→ (Ji+1,

D
dt
Ji+1(ti)), for i = 1, . . . , k − 1

(ii) each Ji is a Jacobi field along ci, i.e. satisfies the Jacobi equation:

D2Ji
dt2

(t) +R(ċi(t), Ji(t))ċi(t) = 0,

for any t ∈ [ti−1, ti] and i = 1, . . . , k.

If c is a closed geodesic, a periodic Jacobi field is a Jacobi field such that the

differential d(g0gk) maps (Jk(1), DJk

dt
(1)) to (J1(0), DJ1

dt
(0)).

Note that for each i the Jacobi equation (*), as a second order differential equation,

has 2n linearly independent smooth solutions. Since each Ji along the geodesic ci is

uniquely determined by its initial conditions (Ji(ti−1),
DJi

dt
(ti−1)), by condition (i) in

the definition we see that a Jacobi field J along a G -geodesic c is uniquely determined

by (J1(0), DJ1

dt
(0)). So there are 2n linearly independent Jacobi fields, each of which

can be defined throughout c. Moreover, note that the vector fields ċ(t) and tċ(t) are

Jacobi fields along c. The first one has the derivative zero and vanishes nowhere,

and the second one is zero if and only if t = 0. Note also that the Jacobi fields

do not depend on a particular choice of c in its equivalence class. That is, if c′ =

(g′0, c
′
1, g

′
1, c

′
2, . . . , c

′
k, g

′
k) is another representative of the geodesic G -path c over the

same subdivision then J ′ = (J ′
1, J

′
2, . . . , J

′
k) given by J ′

i(t) =
(
dhi(t)

)
ci(t)

(Ji(t)) is a

Jacobi field along c′, where the hi’s are as in (ii), and J ′ is uniquely determined since

the hi’s are unique by Remark 3.7.2 (d).

As in the manifold case, one can prove that every Jacobi field along a geodesic

G -path c may be obtained by a one-parameter variation of c through geodesics. That



76

is, a sequence ν = (τ0, ν1, τ1, ν2, . . . , τk−1, νk) associated to the division 0 = t0 < t1 <

· · · < tk = 1, where

(i) for each i = 1, . . . , k, νi : (−ε, ε) × [ti−1, ti] → X are differentiable functions

such that νi(0, t) = ci(t) and each νi(s), s ∈ (−ε, ε) given by νi(s)(t) = νi(s, t)

is a geodesic, and

(ii) each τi : (−ε, ε) → G , i = 0, . . . , k are G -valued differentiable functions such

that τi(0) = gi and such that α(τi(s)) = νi(s, ti) and ω(τi(s)) = νi+1(s, ti) for

any s ∈ (−ε, ε) and any i = 0, . . . , k − 1.

We will give a construction of Jacobi fields along a geodesic G -path using the

exponential map. Here we will consider only Jacobi fields which satisfy J(0) = 0, but

analogous constructions can be obtain in the general case.

Let c be a geodesic G -path onQ = X/G and J a Jacobi field along c with J(0) = 0.

Denote v = ċ(0) ∈ Tc(0)X and w = DJ
dt

(0) ∈ Tv(Tc(0)X) and construct a (*) path v(s)

in Tc(0)X with v(0) = v and v̇(0) = w. Put ν(s, t) = expc(0)(tv(s)) and define the

Jacobi field J along c by J(t) = ∂ν
∂s

(0, t).

Proposition 4.4.2. With the notations above, J = J on [0, 1].

Proof. At s = 0 we have

D

dt

∂ν

∂s
=
D

∂t
((dexpc(0))tv(tw)) =

D

∂t
(t(dexpc(0))tv(w))

= (dexpc(0))tv(w) + t
D

∂t
((dexpc(0))tv(w))

Therefore, for t = 0

DJ

dt
(0) =

D

∂t

∂ν

∂s
(0, 0) = (dexpc(0))0(w) = w.

Since the initial conditions are J(0) = J(0) = 0 and DJ
dt

(0) = DJ
dt

(0) = w, from the

uniqueness of the Jacobi fields, we conclude that J = J .
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Corollary 4.4.3. Let c be a geodesic G -path. Then a Jacobi field J along c with

J(0) = 0 is given by

J(t) = (dexpc(0))tċ(0)(t
DJ

dt
(0)), t ∈ [0, 1].

Definition 4.4.4. A point c(t′) ∈ X is conjugate to c(0) ∈ X along the geodesic

G -path c if there exists a non-zero Jacobi field along c such that J(0) = 0 = J(t′).

The maximum number of such linearly independent fields is called the multiplicity of

c(0) and c(t′) as conjugate points.

Note that the multiplicity of two conjugate points never exceeds n − 1. Indeed,

the dimension of the vector space consisting of all Jacobi fields which vanish at t = 0

has dimension at most n and the non-zero Jacobi field J(t) = tċ(t) never vanishes for

t 6= 0.

Note that this gives on the space of orbits |Q| a well defined notion of conjugate

points along a geodesic path and of their multiplicity. Thus two points x, x′ ∈ |Q| on a

geodesic path [c] are conjugate if their lifts to X are conjugate along a representative

of [c].

The relation between the conjugate points and the critical points of the exponential

map is given by the following proposition.

Proposition 4.4.5. Let c be a geodesic G -path. Then c(t′) is conjugate to c(0) along c

if and only if the vector t′ċ(0) is a critical point for expc(0). Moreover, the multiplicity

of c(t′) as conjugate to c(0) is equal to the dimension of the kernel of the linear map

(dexpc(0))t′ċ(0).

Proof. Let J be a non-zero Jacobi field along c which vanishes at 0 and t′. Denote

v = ċ(0) and w = J ′(0). Then, from the Corollary 4.4 J(t) = (dexpc(0))tv(tw), t ∈
[0, 1] and since (dexpc(0))tv is linear, we have that w 6= 0, as J is not identically zero.

But 0 = J(t′) = (dexpc(0))t′v(t
′w) for t′ 6= 0 and w 6= 0, which is possible if and only

if t′v is a critical point of the exponential map at c(0).

For the second part of the proposition note that the Jacobi fields J (1), J (2), . . . , J (m)

along c which are zero at t = 0 are linear independent if and only if the vectors
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(D
dt
J (1))(0), D

dt
(J (2))(0), . . ., D

dt
(J (m))(0) are linear independent in Tc(0)X. Then, from

the construction above, we can see that the maximal number of linear independent

Jacobi fields along c which vanish also at t = t′, is equal to the maximal number of

linear independent vectors such that the linear map (dexpc(0))t′ċ(0) is zero, i.e. the

dimension of its kernel. �

Let x be a point in an orbifold Q. We say that x is a pole if there are no conjugate

points to it on any geodesic path starting at x (or actually on any geodesic path

containing x). Note that if x is a pole, there are no Jacobi fields along any geodesic

G -path starting at x which vanish anywhere else than at x. In this case, by the

proposition above, we see that the exponential map at any x̃ with q(x̃) = x has no

critical points, hence it is étale.

4.5 Orbifolds of non positive curvature

In the following proposition we will see that this is always the case if the orbifold has

non positive curvature.

Proposition 4.5.1. Let Q be a Riemannian orbifold with non positive sectional cur-

vature. Then any point of Q is a pole.

Proof. Let c = (g0, c1, g1, . . . , ck, gk) be an arbitrary geodesic G -path on X, over a

subdivision 0 = t0 < t1 < · · · < tk = 1, and J = (J1, J2, . . . Jk) a non-zero Jacobi filed

along it which vanishes at zero. Then, for each i = 1, . . . , k we have

D2Ji
dt2

(t) +R(ċi(t), Ji(t))ċi(t) = 0,

for any t ∈ [ti−1, ti], and

<
D2Ji
dt2

(t), Ji > + < R(ċi(t), Ji(t))ċi(t), Ji > = 0.

Hence

<
D2Ji
dt2

(t), Ji > = − < R(ċi(t), Ji(t))ċi(t), Ji > ≥ 0,



79

for any t ∈ [ti−1, ti]. Therefore

d

dt
<
DJi
dt

, Ji > = <
D2Ji
dt2

, Ji > + ‖ DJi
dt
‖2 ≥ 0

i.e. each function < DJi

dt
, Ji > is monotonically increasing on each [ti−1, ti] and strictly

increasing if DJi

dt
6= 0 on [ti−1, ti].

Note that the condition (i) in the definition [..] together with the fact that G is a

groupoid of local isometries imply that < DJi

dt
(ti), Ji(ti) > = < DJi−1

dt
(ti), Ji−1(ti) >,

for any i = 1, . . . , k−1. This defines a continuous function on the interval [0, 1], which

we will denote by < DJ
dt
, J >. Moreover, this function is monotonically increasing on

[0, 1] and strictly increasing if DJ
dt
6= 0 on [0, 1].

Suppose now that c(0) has a conjugate points along c. Choose the first one.

Then, there exists a Jacobi field as above and t′ ∈ (0, 1] such that Ji(t
′) = 0 for some

i ∈ {1, 2, . . . , k}, and so < DJi

dt
, Ji > vanishes at t′. Therefore < DJ

dt
, J > vanishes at

both 0 and t′, hence it has to vanish identically on [0, t′]. This implies that DJ1

dt
(0) = 0

and since J1(0) = 0, we have that J ≡ 0, which contradicts the fact that J is a non-

zero Jacobi field. Hence there are no conjugate points to c(0) along c, and since c is

arbitrary, c(0) is a pole and of course any point of Q is a pole.

In particular, on an orbifold with non positive curvature, the exponential map

Expx : TxQ → Q has no critical points and is an orbifold local diffeomorphism. In

what follows we will show that if the orbifold is also complete the exponential map is

an orbifold covering map. This will give a proof of Gromov’s developability theorem.

Proposition 4.5.2. Let Q = X/G be a complete Riemannian orbifold with non

positive sectional curvature. Then the exponential map expx : TxX → X has the path

lifting property. Moreover, it is a covering map.

Proof. Since the orbifold is complete, the exponential map expx : TxX → X is defined

for all the points x ∈ X and is surjective. Since Q has non positive curvature, it is

also a local diffeomorphism. This allows us to introduce a Riemannian metric on the

tangent space TxX such that expx : TxX → X is a local isometry. Indeed, consider

u ∈ TxX and put for any v, w ∈ Tu(TxX) ∼= TxX

µu(v, w) := ρexp
x
(u)(d(expx)u(v), d(expx)u(w)),
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where ρexp
x
(u) denotes the inner product metric on the tangent space at expx(u) to

X induced by the Riemannian metric on the connected component of X containing

expx(u). Note that since the Riemannian metric is invariant, the definition is good in

the sense that it does not depend on a particular choice in the fiber above expx(u).

Then µu defines an inner product in each tangent space Tu(TxX) ∼= TxX which

clearly varies smoothly with respect to u ∈ TxX, i.e. defines a metric on TxX and

the exponential map is a local isometry. Note that, by Prop 4.4, this metric is also

complete, since the geodesics in TxX through the origin are straight lines.

We will show now that expx has the path lifting property. Let c = (g0, c1, g1, . . . , ck, gk)

be an arbitrarily rectifiable G -path in X, over a subdivision 0 = t0 < t1 < · · · < tk =

1. Assume that c(0) = x ∈ X and consider the origin 0 ∈ TxX. Then expx(0) = x

and since expx is a local diffeomorphism at 0 we can lift c in a small neighborhoodof

x. That is, there exists ε > 0 such that we can define ĉ : [0, ε] → TxX with ĉ = 0

and expx(ĉ) = c|[0,ε]. Denote by A ⊂ [0, 1] the set of values for which the G -path c

can be lifted to a path starting from 0 ∈ TxX. Then A is nonempty and since expx

is a local diffeomorphism on all TxX, A is open and connected in [0, 1]. That is,

A = [0, t′). If we show that t′ is also in A, then A would be also closed and will follow

that A = [0, 1]. This means that the G -path c can be lifted throughout the whole

interval [0, 1], i.e. expx has the path lifting property.

To show that t′ ∈ A, let t(m), m = 1, . . . be an increasing sequence in A such

that lim t(m) = t′. Since t′ ∈ (0, 1], there is i ∈ 1, 2, . . . , k such that ti−1 < t′ ≤ ti,

and without loss of generality we can assume that ti−1 < t(m) ≤ t′ ≤ ti for all m.

Note now that the set {ĉ(t(m))} is contained in a compact subset K ⊂ TxX. Indeed,

otherwise, since TxX is complete the set {ĉ(t(m))} would be unbounded, and so the

distance between ĉ(t(m)) and ĉ(ti−1) could be made arbitrarily large. However this is

not possible since

d(ĉ(t(m)), ĉ(ti−1)) ≤ L|t(m)

ti−1
(ĉ) =

∫ t(m)

ti−1

|dĉ
dt
|dt =

∫ t(m)

ti−1

|d(expx)bc(t)(
dĉ

dt
)|dt

=

∫ t(m)

ti−1

|dci
dt
|dt = L|t(m)

ti−1
(ci)

and the length of ci is finite.
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The completeness of TxX and the fact that {ĉ(t(m))} ⊂ K imply that there is

an accumulation point v ∈ TxX of {ĉ(t(m))}. Let V be a neighborhood of v such

that expx|V is a diffeomorphism onto an open neighborhood of expx(v) ∈ Xi. Then

ci(t
′) ∈ expx(V ) and by continuity of ci there is a subinterval I ⊂ [ti−1, ti] containing

t′ such that ci(I) ⊂ expx(V ). Since expx|V is a diffeomorphism there is a lift of ci|I
through v, say c. But v ∈ V is an accumulation point for {ĉ(t(m))}, so there exists

an index m such that ĉ(t(m)) ∈ V . Since ex|V is bijective the lifts ĉ and c coincide

on the interval [ti−1, t
(m)) ∩ I. Hence c is an extension of ĉ to I and so ĉ is defined

at t′, i.e. t′ ∈ A. This completes the proof that expx has the path lifting property.

Note that equivalent G -paths in X lift to the same path in TxX. In particular expx

maps the terminal point of the lift ĉ to the terminal point of c. Since expx is étale

and surjective, it is a covering map.

For x ∈ X there is a well defined continuous action of G on TxX over expx : TxX →
X defined in the following way. If v ∈ TxX and g ∈ G such that ω(g) = expx(v), we

define v.g ∈ TxX to be such that expx(v.g) = α(g). It is well defined in the sense that

if y ∈ X is a different choice in the fiber above expx(v), i.e. there exists h ∈ G such

that y = ex(v), then α(hg) = α(g) and expx(v.(hg)) = expx(v.g). Denote (G ′, TxX)

the groupoid associated to this action.

Lemma 4.5.3. The space of orbits of the groupoid (G ′, TxX) is Hausdorff and the

natural projection q′ : TxX → TxX/G
′ is étale and induces an equivalence from

(G ′, TxX) to the groupoid (TxX ⋊ Gx, TxX). In particular, the groupoid (G ′, TxX) is

developable.

Proof. First note that if g ∈ G is not an element in the isotropy group Gx and if

the ω(g) = expx(v) then expx(v.g) and expx(v) are not in the same fiber. In other

words if ω(g) = y is the terminal point of a G -geodesic issuing at x and with velocity

vector v ∈ TxX, then the G -geodesic issuing at x and with velocity vector v.g is not

equivalent with the previous one and so its terminal point cannot be in the same fiber

with y. More generally if g̃ : B(α(g), ǫ)→ B(ω(g), ǫ) is a section of α as in lemma 4.2

and such that g̃(α(g)) = g, then BG (α(g), ǫ)∩BG (ω(g), ǫ) = ∅. This proves that the
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projection q′ : TxX → TxX is étale and that TxX/G
′ is Hausdorff. The map (v, g) 7→

q′(v) gives an equivalence from (G ′, TxX) to the groupoid (TxX ⋊ Gx, TxX).

Theorem 4.5.4. Every connected complete Riemannian orbifold with non positive

curvature is developable.

Proof. Let Q = X/G be a such orbifold. Let π : G ′ → G be the map (v, g) 7→ g.

By Proposition 4.5.2 (π, expx) : (G ′, TxX) → (G , X) is a covering. By the lemma

above (G ′, TxX) is developable, therefore (G , X) is developable, i.e. the orbifold Q is

developable.



Chapter 5

Loop spaces for orbifolds

We consider in this section a connected Riemannian orbifold Q = X/G . Recall that

ΩX =
⋃
x∈X Ωx is the union of the sets Ωx of classes [c]x of continuous G -loops based

at x and the space Ωx,y is the set of classes [c]x,y of continuous G -paths connecting x

to y.

Proposition 5.0.5. The set ΩX of based G -loops, as well as the set Ωx,y of equivalence

classes of G -paths from x to y, has a natural structure of Banach manifold.

Proof. Let c = (g0, c1, g1, . . . , ck, gk) be a closed G -path over the subdivision 0 = t0 <

t1 < · · · < tk = 1 based at x (the source of g0 and the target of gk). Let c∗TX be

the induced vector bundle over S1 = R/Z (see ... a previous section). That is the

quotient of the disjoint union of the bundles c∗iTX by the equivalence relation which

identifies the point (ti, ξi) ∈ c∗i−1TX with the point (ti, dgi(ξi)) ∈ c∗iTX for 1 < i ≤ k

and (0, ξ0) ∈ c∗1TX with (1, d(g−1
k g−1

0 )(ξ0)) ∈ c∗kTX. The projection to the base space

c∗TX → S1 maps the equivalence class of (t, ξ) to t modulo 1. As in Remark 3.3 if

we consider another closed G -path c′ based at x which is equivalent to c then there

is a natural isomorphism between the vector bundles c∗TX and c′∗TX.

Consider now the vector space C0(S1, c∗TX) of continuous sections of c∗TX.

Such a section is represented by a vector field v along c. That is a sequence v =

(v1, v2, . . . , vk), where each vi is a vector field along ci such that compatibility condi-

tions are satisfied at each of the points ti (see Definition 4.2 (i)). This vector space

83
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can be viewed as the ’tangent space’ of the ’manifold’ ΩX at the point [c]x. Note now

that the inner product on the fibers of TX given by the Riemannian metric on X

induces an inner product on each fiber in c∗TX. Using this inner product, we can

define the sup norm on C0(S1, c∗TX) to be

||v||∞ = Σk
i=1supt∈[ti−1,ti]|vi|.

This norm makes C0(S1, c∗TX) into a Banach space.

To describe the natural atlas for ΩX we will make use of the exponential map

restricted to ’short’ vector fields. Given a G -path c based at x, choose ǫ > 0 such

that, for each t ∈ [ti−1, ti], the exponential map expci(t) is defined on the ball of radius

ǫ in Tci(t)X and it is a diffeomorphism onto the geodesic ball B(ci(ti), ǫ) (see *exp

map*). By a previous result each of the arrows gi : ci(ti)→ ci+1(ti) extends uniquely

(see 2.1.5) to a section g̃i of α defined on the ball B(ci(ti), ǫ) for 0 < i ≤ k respectively

B(x, ǫ) for i = 0.

Let Ũ ǫ
c be the open ball centered at the zero section and of radius ǫ in C0(S1, c∗TX).

We define the exponential map expǫc : Ũ ǫ
c → U ǫ

c ⊆ ΩX by mapping a section

v = (v1, . . . , vk) to the equivalence class of the based G -path cv = (gv0 , c
v
1, g

v
1 , . . . , c

v
k, g

v
k)

defined as follows: the paths cvi (t) := expci(t) vi(t) and the arrows gvi := g̃i(c
v
i (ti)) :

cvi (ti) → cvi+1(ti) for 0 < i < k, gvk := g̃k(c
v
k(1)) and gv0 := g̃0(ω(gvk)). Note that, as

expected, the G -path cv is not necessarily based at x, but at a point in B(x, ǫ). It

is not hard to see that the construction above depends essentially on the equivalence

class of c. So, if we consider an equivalent G -path at x, say c′ then the representative

G -path c′v
′

, the image of the section v′ by the map expǫc′ : Ũ ǫ
c′ → U ǫ

c has the same

base point as cv and they are equivalent. Above, v′ is considered to be the correspon-

dent of v via the natural isomorphism between the vector spaces C0(S1, c∗TX) and

C0(S1, c′∗TX) induced by the vector bundles isomorphism between c∗TX and c′∗TX.

Note that the set U ǫ
c consists precisely of the equivalence classes of continuous

based G -paths c′ whose representative over the subdivision 0 = t0 ≤ t1 ≤ · · · ≤ tk = 1,

c′ = (g′0, c
′
1, g

′
1, . . . , c

′
k, g

′
k) is such that all c′i(t) are images expci(t)(vi(t)) for some vector

field v = (v0, v1, . . . , vk) along c with the norm smaller than ǫ, up to composition with

maps hi : [ti−1, ti] → G with hi(t) : c′i(t) → expci(vi(t)). Note that by Remark 3.2
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(d) the maps hi are uniquely determined by expci(t)(vi(t)) and hence by v since each

expci(·) is bijective. It is easy to see that the arrows g′i defined in a similar way as

above are also uniquely determined by v. Hence each map expǫc is a bijection.

At each point [c]x of ΩX for a small enough ǫ > 0 we define the chart (U ǫ
c , (expǫc)

−1).

It is easy to see that the images U ǫ
c for various c and ǫ form then a basis for the

topology on ΩX and that the change of charts are differentiable. Therefore ΩX is a

Banach manifold. Recall that the topology of the based loop space ΩX is given by

the metric

d∞([c]x, [c
′]x) = Σk

i=1 sup
t∈[ti−1,ti]

d(ci(t), c
′
i(t)),

where both c and c′ are representatives over the same subdivision 0 = t0 ≤ t1 ≤ · · · ≤
tk = 1 and d(·, ·) is the metric derived from the Riemannian metric on X. Note that

Ω0
X is a finite dimensional submanifold of ΩX .

The Banach manifold structure on Ωx,y is defined similarly. For a G -path c =

(g0, c1, . . . , ck, gk), the tangent space at [c]x,y is isomorphic to the space of vector

fields v = (v1, . . . , vk) along c which vanish at 0 and 1. �

As we have already seen in a previous section, the groupoid G acts naturally on

the right on the set ΩX of based G -loops with respect to the projection p : ΩX → X

associating to a G -loop based at x the point x. The action of G on ΩX with respect

to the projection assigning to a based G -loop its base point is continuous. We defined

the quotient of ΩX by this action to be the ”space” of free loops |Λ(G )| = |ΛQ| on Q.

Proposition 5.0.6. The space |ΛQ| of free G -loops has a natural orbifold structure

noted ΛQ. The subspace |Λ0Q| of free loops of length zero is a ”suborbifold” Λ0Q of

ΛQ.

Proof. The natural orbifold structure is given by the groupoid structure associated

to the action of G on the ΩX with respect to the projection p : ΩX → X. The

groupoid of germs of changes of chart is the groupoid G := G ×X ΩX , the subspace

of G × ΩX consisting of pairs (g, [c]x) with α(g) = x. The source (resp. target)

projection maps (g, [c]x) to [c]x (resp. [c]x.g). The composition (g′, [c′]x′)(g, [c]x) is

defined if [c′]x′ = [c]x.g and is equal to (gg′, [c]x).
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The suborbifold structure on Λ0Q is obtained by replacing ΩX by Ω0
X and G×XΩX

by G ×X Ω0
X .�

The orbifold Λ0Q is called in the mathematical literature the inertia orbifold of

Q, and it is, according Chen and Ruan the classical geometrical manifestation on the

twisted sectors of the orbifold string theory (see Chen and Ruan and also Lupercio..).

As in the section 3.6, we can associate a classifying space to orbifold ΛQ (resp.

Λ0Q). It turns out a that the functor B ”commutes” with the construction of loop

spaces, in the sense that there is a homotopy equivalence

BΛQ ≃ ΛBQ,

where BΛQ denotes the classifying space of ΛQ and ΛBQ denotes the loop space of

the classifying space of Q.

We consider as before a classifying space BQ, base space of a universal principal

G -bundle EG → BG = BQ. Let EG ×X ΩX be the subspace of EG ×ΩX consisting

of pairs (e, [c]x) such that qEG (e) = x. We note EG ×G ΩX its quotient by the

equivalence relation identifying (e.g, [c]x) to (e, g.[c]x).

Proposition 5.0.7. (prop. 3.2.1 [GH]) EG ×X ΩX → EG ×G ΩX is a principal

universal (G ×X ΩX)-bundle. The base space EG ×G ΩX will be noted BΛQ.

Similarly EG ×X Ω0
X → EG ×G Ω0

X is a principal universal (G ×X Ω0
X)-bundle.

Its base space EG ×G Ω0
X is noted BΛ0Q.

The natural projection BΛQ → BQ (i.e. EG ×G ΩX → EG /G = BG = BQ) is

a Serre fibration with fibers isomorphic to Ωx.

Theorem 5.0.8. (Theorem 3.2.2 [GH]) ΛBQ is the base space of a universal (G ×X
ΩX)-bundle. This bundle is the pull back of EG ×X ΩX by a map ϕ : ΛBQ→ BΛQ

which is a weak homotopy equivalence and commutes with the projections to BQ.

Therefore ΛBQ is a classifying space for the orbifold ΛQ.

For points z ∈ BQ and x ∈ X projecting to the same point of |Q|, the map ϕ

induces a weak homotopy equivalence from the space ΩzBQ of loops on BQ based at

z to Ωx.
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Remark 5.0.9. Composing ϕ : ΛBQ → BΛQ with the natural projection BΛQ →
|ΛQ|, we get an O(2)-equivariant map

ΛBQ→ |ΛQ|.

Remark 5.0.10. One can show that, for a space K, there is a canonical correspon-

dance associating to a principal G -bundle E over K × S1 a principal G − bundle over

K, where G = G ×X ΩX , inducing a bijection on isomorphisms classes. The universal

G -bundle over ΛBQ corresponds to the principal G -bundle over ΛBQ× S1 which is

the pull back of EG by the evaluation map ΛBQ× S1 → BQ sending (l, t) to l(t).

5.1 The Riemannian orbifold Λ
′Q of free G -loops

of class H1

We consider as above a Riemannian orbifold Q = G \X. Note that on these spaces

of continuous paths we cannot define neither the length nor the energy of a path.

Therefore, in differential geometry one considers the subspaces of picewise differen-

tiable G -paths (i.e. each ci is picewise differentiable). Their infinitesimal approxi-

mation at a picewise differentiable G -path c is given by the vector space of picewise

differentiable vector fields along c, denoted C ′∞(c∗TX) = C ′∞(S1, c∗TX).

As we just have seen, the space ΩX , as well as the space Ωx,y, caries a natu-

ral structure of a Banach manifold given by the Banach structure of of the space

C0(c∗TX) = C0(S1, c∗TX) with the norm || · ||∞. This space can be seen as the

completion of C ′∞(c∗TX) with respect to the sup norm.

We will consider a different norm on C ′∞(c∗TX) denoted || · ||1, derived from the

following scalar product

< v,w >1=< v,w >0 + < ∇v,∇w >0,

where v and w are picewise differentiable vector fields along a G -path c = (g0, c1, g1, . . . , ck, gk)

and ∇v denotes the covariant derivative with respect to the induced connection on
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c∗TX. The scalar product < ·, · >0 is given by

< v,w >0= Σk
i=1

∫ ti

ti−1

< vi(t), wi(t) > dt.

Here < ·, · > denotes the inner product on fiber of c∗TX above t, induced by the

Riemannian metric on X. The completion of C ′∞(c∗TX) with respect to the norm

|| · ||1 will be denoted H1(c∗TX), the vector space of H1 sections of c∗TX. By a

classical result of Lebesgue, a continuous section v = (v1, v2, . . . vk) is a H1 section if

each vi is absolutely continuous and its covariant derivative ∇vi is square integrable.

H1(c∗TX) with the scalar product < ·, · >1 is a separable Hilbert space.

Definition 5.1.1. A G -path c = (g0, c1, g1, . . . , ck, gk) over a subdivision 0 = t0 <

t1 < · · · < tk = 1 is of class H1 if each ci is absolutely continuous and the velocity

functions t 7→ |ċi(t)| are square integrable.

Note that any equivalent G -path to c will satisfy these conditions. We denote

Ω′
x,y (respectively Ω′

x) the set of equivalence classes of G -paths of class H1 from x to

y (respectively G -loops based at x). Let Ω′
X =

⋃
x∈X Ω′

x and |Λ′Q| be the set of free

G -loops on Q represented by closed G -path of class H1. The energy function E is

defined on all those spaces.

As in the case of continuous G -paths one can prove the following.

Proposition 5.1.2. The set Ω′
X as well as the set Ω′

x,y has a natural structure of

Riemannian Hilbert manifold.

The tangent space at Ω′
X at [c]x is canonically isometric to the space H1(c∗TX)

of H1 sections of the bundle c∗TX. The inner product < ·, · >1 defined above is

independent of the choice of c in its equivalence class. Similarly the tangent space

to Ω′
x,y at [c]x,y can be identified with the Hilbert space of H1-sections of the bundle

c∗TX over [0, 1] which vanish at 0 and 1 with the inner product < ·, · >1.

The natural action of G on ΩX restricts to an action by isometries on Ω′
X . There-

fore on the quotient space |Λ′(Q)| we get a structure of Riemannian Hilbert orbifold

noted Λ′Q. It is complete if Q is complete. Like before we have a continuous action
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of the group of diffeomorphisms of S1 on |Λ′Q|, and by restriction an action of O(2)

by isometries. (The inertia orbifold is invariant by this action.) The groupoid of

change of charts is G
′
:= G ×X Ω′

X . As in previous section one proves that the space

BΛ′Q := EG ×G Ω′
X is a classifying space for Λ′Q.

Proposition 5.1.3. The natural inclusions

Ω′
X → ΩX , Ω′

x,y → Ωx,y

are continuous and are homotopy equivalences. In particular, if Q is connected, Ω′
X

has the same weak homotopy type as the space of loops on BQ based at a fixed point.

The induced inclusion

BΛ′Q→ BΛQ

is a homotopy equivalence.

Proof. The topologies on ΩX and Ω′
X can be described as the those induced by the

corresponding distances given by the Riemannian metric. If [c] and [c′] are points

in ΩX then the distance d∞([c], [c′]) is the infimum of the length L∞(F ) of curves

F : [0, 1]→ ΩX from [c] = F (0) to [c′] = F (1). Here the length is defined by

L∞(F ) =

∫ 1

0

||dF
ds
||∞ds,

where || · ||∞ is the sup norm on C0(F (s)∗TX). If [c] and [c′] are in Ω′
X , then the

distance induced by the Riemannian metric d1([c], [c
′]) is the infimum of the length

L1(F ) =

∫ 1

0

||dF
ds
||1ds

of curves F : [0, 1]→ Ω′
X , where the || · ||1 is the norm derived from the inner product

< ·, · >1 on H1(F (s)∗TX). Note that if v = (v1, v2, . . . , vk) is a H1 vector field along

a G -loop of class H1, then ||v||∞ ≤
√

2||v||1. Indeed, if we choose t∗i ∈ [ti−1, ti] such

that supt∈[ti−1,ti]
||vi(t)|| = ||vi(t∗i )||, then
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(
sup

t∈[ti−1,ti]

||vi(t)||
)2

= ||vi(t)||2 +

∫ t∗i

t

d

dσ
||vi(σ)||2dσ

≤ ||vi(t)||2 + 2

∫ ti

ti−1

||vi(σ)|| ||∇vi(σ)||dσ

≤
∫ ti

ti−1

||vi(σ)||2dσ +

∫ ti

ti−1

||vi(σ)||2dσ +

∫ ti

ti−1

||∇vi(σ)||2dσ

≤ 2

∫ ti

ti−1

(
||vi(σ)||2 + ||∇vi(σ)||2

)
dσ,

and the inequality follows. This implies in particular that if F : [0, 1] → Ω′
X then

L∞(F ) ≤
√

2L1(F ). Therefore, for [c], [c′] ∈ Ω′
X we have

d∞([c], [c′]) = inf{L∞(F ) | F : [0, 1]→ ΩX} ≤ inf{L∞(F ) | F : [0, 1]→ Ω′
X}

≤ inf{
√

2L1(F ) | F : [0, 1]→ Ω′
X} =

√
2d1([c], [c

′]),

i.e. the inclusion Ω′
X → ΩX is continuous.

The map r(s, c) = rs(c) is continuous as function of two variables. Note that this

inclusion also compact. If the orbifold Q is compact, then this is true for Ω′
X → ΩX .

In particular Ω′
x is a closed submanifold of Ω′

X . If the orbifold Q is complete then

the space Ω′
x,y with the distance induced by the Riemannian metric is also complete.

The same is true for Ω′
X if Q is compact. (see Klingemberg, Theorem 2.7)

We will show now that the above inclusions are homotopy equivalences by follow-

ing the argument of Milnor used in [.M.Th.]. Denote by P the spaces ΩX or Ωx,y and

by P ′ the spaces Ω′
X or Ω′

x,y.

For a positive integer k, let Pk (resp.P ′
k) be the subspace of P (respectively P ′)

formed by the equivalence classes represented by G -paths c = (g0, c1, g1, . . . , c2k , g2k)

defined over the subdivision 0 = t0 < · · · < t2k = 1, where ti = i/2k, and such

each ci(ti−1) is the center of a convex geodesic ball containing the image of ci. Then

to each such representative G -path c we can associate uniquely the G -path c =

(g0, c1, g1, . . . , c2k , g2k), where ci is the (unique) geodesic segment joining ci(ti−1) to

ci(ti). Note that as in the manifold case the G -path c is a ”broken G -geodesic” with

a braking point at each ti, i = 1, . . . , 2k. Denote by Bk the set of all such broken
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G -geodesics. We will show that Bk is a deformation retract of Pk (respectively of P ′
k).

Indeed, denote by r : Pk → Bk the map c 7→ c (i.e. each r(c)i = ci) and define for

s ∈ [0, 1] the family rs : Pk → Pk as follows. For ti−1 ≤ s ≤ ti let

rs(c)j = r(c)j, for 1 ≤ j < i

rs(c)i|[ti−1,s]
= minimal geodesic from ci(ti−1) to ci(s),

rs(c)i|[s,ti] = ci|[s,ti] and

rs(c)j = cj, for i < j ≤ 2k

Then r0 = idPk
and r1 = r. The continuity of the minimal geodesic with respect to

its end points implies the continuity of r(s, c) = rs(c) as function of two variables.

This proves that Bk is a deformation retract of Pk and that the inclusion Bk →
Pk is a homotopy equivalence. In a similar way the set P ′

k retracts to the space

of broken geodesics and that Bk → P ′
k is a homotopy equivalence. This gives a

continuous deformation of i|P ′

k
: P ′

k → Pk and implies that this inclusion is a homotopy

equivalence.

We will prove now that P (respectively P ′) is the homotopy limit of the subspaces

Pk (respectively P ′
k). That is, the projection map p : PΣ → P is a homotopy equiv-

alence, where PΣ is the infinite union P0 × [0, 1] ∪ P1 × [1, 2] ∪ · · · , topologiezed as a

subset of P ×R (see Milnor, Appendix).

First, following Milnor, we will define a continuous function A : P → (0, 1/2k]

such that for any t, t′ ∈ [ i−1
2k ,

i
2k ] with |t− t′| < 2k+1A(ci) we have that ci(t) and ci(t

′)

can be joined by a unique minimal geodesic which varies differentiably with the end

points.

Let f : X → [0,∞) be a continuous function such that f−1([0, a]) is compact for

every a ∈ [0,∞). Let ǫ1(a) ≤ ∞ be the largest number such that any two points with

distance smaller than ǫ1(a) can be joined by a unique minimal geodesic which varies

differentiably with the end points. Since ǫ1 is positive, monotone decreasing function,

we can choose ǫ2 : [0,∞)→ R such that ǫ2 is continuous and 0 < ǫ2(a) < ǫ1(a). Now

define ǫ : P → R by ǫ(ci) = ǫ2

(
maxt∈[0,1]

(
f(ci(t))

))
. Thus ǫ is continuous, and any

two points of ci([
i−1
2k ,

i
2k ]) of distance ≤ ǫ(ci) are joined by a unique minimal geodesic.
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Define a continuous function

F : P × [0, 1]→ R

by

F (ci, s) = (s− 1)ǫ(c+ i) + max
|t−t′|≤s

d
(
ci(t), ci(t

′)
)
.

Then F , considered as a function of s, is strictly monotone, and F (ci, 0) < 0 ≤
F (ci, 1). Hence for each c ∈ P there is a unique s ∈ (0, 1/2k] with F (ci, s) = 0.

Define A(ci) = s/2. Since F is continuous, the function A : P → (0, 1] is continuous.

If |t − t′| ≤ s = 2k+1A(ci) then d
(
ci(t), ci(t

′)
)
≤ (1 − s)ǫ(ci) ≤ ǫ(ci) hence ci(t) and

ci(t
′) are joined by a unique minimal geodesic.

Now define a continuous function h : P → Pk as follows. For a G -path c =

(g0, c1, g1, . . . , ck, gl) we can find an integer k and a subdivision 0 = t0 < t1 < · · · <
t2k = 1with ti = i/2k and a G -path path over it equivalent to the initial one. Let h(c)

be the unique G -path such that (i) h(c)i coincides with ci for t = (i − 1)/2k, ((i −
1) + A(ci))/2

k, ((i− 1) + 2A(ci))/2
k, . . . ((i− 1) +miA(ci))/2

k, i/2k, where k is

the largest integer in 1/A(ci); and

(ii) h(c)i is a geodesic in each intermediate interval.

One can deform continuously such a G -path c to the G -path h(c). Passing to

equivalence classes, this gives a continuous deformation. As the spaces P and P ′ are

the increasing union of the open subspaces Pk and P ′
k for k = 1, 2, . . . , it follows that

i is a homotopy equivalence. (see [Mi])

The last assertion follows from the fact that the above deformation commutes

with the projection to X and with the action of G .

5.2 The energy function

The energy function E is well defined on Ω′
x,y and Ω′

X . As it is invariant by the action

of G , it gives a well defined function on |Λ′Q| still noted E.
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E is a differentiable function on Ω′
X or Ω′

x,y. The gradient grad E of E at [c]x is

given by the formula:

grad E(v) =< ċ,∇v >0=

k∑

i=1

∫ ti

ti−1

〈ċi(t),∇vi(t)〉dt,

where v = (v1, . . . , vk) ∈ H1(c∗TX) and where < ·, · > denotes the inner product in

the fiber above t in c∗TX induced by the Riemannian metric on X (see Theorem 1.20

[K1]).

Now we can characterize the critical points of E in Ω′
X and Ω′

x,y.

Proposition 5.2.1. The critical points [c]x,y of E on Ω′
x,y are the geodesics G -paths

from x to y and the critical points [c]x of E on Ω′
X are either points in Ω′0

X (i.e. based

G -loops of length zero) or closed G -geodesics at x.

Proof. By partial integration and using that the action of G is by isometries we get

gradE(v) =

k∑

i=1

(
−
∫ ti

ti−1

〈∇ċi(t), vi(t)〉dt+ 〈ċi(ti), vi(ti)〉 − 〈ċi(ti−1), vi(ti−1)〉
)

= −
( k∑

i=1

∫ ti

ti−1

〈∇ċi(t), vi(t)〉
)

+ 〈ċk(1), vk(1)〉 − 〈ċ1(0), v1(0)〉

= −〈∇ċ, v〉0 + 〈ċk(1), vk(1)〉 − 〈ċ1(0), v1(0)〉

Thus, if c represents a G -geodesic from x to y, then ∇ċ = 0 (i.e. ∇ċi = 0 for

all i) and since v ∈ H1(c∗TX) we have that v(0) = v(1) = 0, which implies that

gradE(v) = 0 for any v, i.e. [c]x,y is a critical point. Conversely, if we assume that

at [c]x,y we have gradE(v) = −〈∇ċ, v〉0 = 0 for all v ∈ H1(c∗TX), then ∇ċ = 0 i.e. c

represents a G -geodesic from x to y.

In the case of Ω′
X , if [c]x ∈ Ω′0

X then it is obvious a critical point for E. If [c]x is a

closed G -geodesic then ∇ċ = 0 and ċ1(0) = d(g0gk)ċk(1). Then the conclusion follows

again from the compatibility conditions for v ∈ H1(c∗TX), v1(0) = d(g0gk)vk(1)

together with the fact that the action is by isometries. Conversely, if gradE(v) =

〈ċ,∇v〉0 = 0 for any v ∈ H1(c∗TX), determine H1 vector fields u, u′ along c by

∇u = ċ, u(0) = 0;
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∇u′ = 0, u′(1) = u(1)

and consider w = u− tu′. Then w(0) = w(1) = 0 and ∇w = ċ− u′. But,

0 = gradE(w) = 〈ċ,∇w〉0 = 〈ċ, ċ− u′〉0

and

〈u′, ċ− u′〉0 = 〈u′,∇w〉0 =

k∑

i=1

∫ ti

ti−1

d

dt
〈u′i, wi〉dt = 〈u′(1), w(1)〉 − 〈u′(0), w(0)〉 = 0

imply that ||ċ− u′||0 = 0, i.e. ċ = u′ and so ∇ċ = ∇u′ = 0.

In order to be able to extend the classical theory of functions and their critical

points on an Euclidian manifold to a Hilbert manifold, we will make use of the so-

called Palais-Smale condition (C). This condition is a substitute for the failure of a

proper Hilbert manifold to be locally compact.

Condition 5.2.2. (The Palais-Smale condition) Let cm be a sequence of closed G -

paths (resp. of G -paths from x to y) such that

(i) the sequence E(cm) is bounded,

(ii) the sequence |grad E(cm)| tends to zero;

then the sequence [cm] (resp. [cm]x,y) has accumulations points and any converging

subsequence converges to a geodesic.

For a compact orbifold (resp. a complete orbifold) the Palais-Smale condition (C)

holds for the function E on |Λ′Q| (resp. on Ω′
x,y) (see Theorem 2.9 [K1]). This implies

that, for a ≥ 0, the set of critical points of E in the subspaces E−1([0, a]) of |Λ′Q| or

Ω′
x,y is compact.

Note that on Ω′
x,y the smallest value for E is d(x, y)2/2. Hence, for a < d(x, y)2/2

the set E−1([0, a]) is empty. On Ω′
X the smallest value of E is zero and it is attained

on Ω′0
X .
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The vector field −grad E generates a local flow ϕt on Ω′
X (respectively on Ω′

x,y).

As it is known from the theory of differential equations, for every [c]x ∈ Ω′
X (resp.

[c]x,y ∈ Ω′
x,y) there exists a maximal interval J = J([c]) containing 0 ∈ R on which

ϕt, t ∈ J , is defined. If gradE = 0 then ϕt = c for all t ∈ R, i.e. in this case J = R.

It can be proved that the local flow on Ω′
X is defined for all t ≥ 0 when Q is compact

(resp. on Ωx,y if Q is complete) (see Theorem 2.15 Klingenberg). Here we essentially

use the fact that E(ϕt) is bounded from below by 0. If E(ϕt) is also bounded from

above then the same argument will show that ϕt is defined also for t ≤ 0.

On Ω′
X , ϕt commutes with the action of G and gives a local flow on |Λ′Q|. If Q is

compact, the local flow ϕt is G
′
-complete in the following sense, where G

′
:= G ×XΩ′

X

is the groupoid of germs of change of charts of the orbifold Λ′Q. Given x ∈ Ω′
X and

τ ≥ 0, one can find a G
′
-path c = (g0, c1, g1, . . . , ck, gk) over a subdivision 0 = t0 ≤

t1 ≤ · · · ≤ tk = τ of the interval [0, τ ] such that ω(g0) = x and ci(t) = ϕt−ti−1
(ci(ti−1))

for i = 1, . . . , k. The image of this path in |Λ′Q| is the ϕt trajectory of the projection

of x for t ∈ [0, τ ]. When x remains in a small neighbourhood, such a G
′
-path exists

over the same subdivision and varies continuously.

Given another such G
′
-path c′ = (g′0, c

′
1, g

′
1, . . . , c

′
k, g

′
k) issuing from x′ defined

over the same subdivision of the interval [0, τ ] and an element g ∈ G
′
with source

x and target x′, then there are unique continuous maps hi : [ti−1, ti] → G such

that α(hi(t)) = ci(t), ω(hi(t)) = c′i(t), g
′
0h1(0) = gg0 and hi(ti)gi = g′ihi+1(ti) for

i = 1, . . . , k − 1. This implies easily the following

Lemma 5.2.3. Given a morphism from K to G ) and τ ≥ 0, there is a unique

homotopy ft of f parametrized by t ∈ [0, τ ] whose projection to |Λ′Q| is the flow ϕt

applied to the projection of f .

Let P be either |Λ′Q| or Ω′
x,y. In the first case we assume that |Q| compact and in

the second case that |Q| is complete. Up to the end of this section, we assume that

Q is compact (resp. complete) if P = |Λ′Q| (resp. P = Ωx,y). For a number a ∈ R,

we denote P a the set of point of P for which the value of the energy function is ≤ a.



96

Definition 5.2.4. A ϕ-family is a collection F of non-empty subsets F of P such

that

(i) E is bounded on each F and

(ii) F is closed under the flow ϕt, i.e. F ∈ F , then ϕt(F ) ∈ F for all t ≥ 0.

Let a ∈ R and chose sufficiently small ǫ > 0 such that E has no critical values in

(a, a+ ǫ]. A ϕ-family of P mod P a is a ϕ-family F such that

(iii) F ∈ F implies that F 6⊂ P a+ǫ.

The value

aF = inf
F∈F

supE|F

is called the critical value of the ϕ-family F of P mod P a.

Note that if a < 0 a ϕ-family is always a ϕ-family of P mod P a. The importance

of the concept of a ϕ-family lies in the fact that its critical value is a critical value for

E as it can be seen in the following theorem (see Theorem 2.18 Klingenberg).

Theorem 5.2.5. The critical value aF of a ϕ-family F of P mod P a is always > a

and there is a critical point of E with value aF .

We will first prove two lemmas. The first one is an immediate consequence of

condition (C).

Lemma 5.2.6. Let a > 0 and denote by Cra the set of critical points of E in

E−1([0, a]). Let U be an open neighborhood of U in P . Then there exist ǫ = ǫ(Cra) > 0

and δ = δ(ǫ) > 0 such that [c] ∈
(
P a+ǫ − P a−ǫ

)
∩CU implies |gradE| ≥ δ.

Proof. Assume this is not the case. Then this would mean that there exists a sequence

[cm] in CU with lim |gradE(cm)| = 0 and limE(cm) = a. Then the Palais-Smale con-

dition gives us the existence of a limit point in Cra of this sequence, which contradicts

the choice of [cm]. �

Lemma 5.2.7. Let a be a noncritical value of E. Then a > 0 and there exist ǫ > 0

and t∗ > 0 such that ϕt(P
a+ǫ) ⊂ P a−ǫ.
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Proof. From the previous lemma we have, for U = ∅, the existence of ǫ > 0 and δ > 0

such that |gradE([c])| ≥ δ for [c] satisfying a − ǫ ≤ E(c) ≤ a + ǫ. If E(c) < a − ǫ,
then also E(ϕt(c)) < a − ǫ, for all t ≥ 0. Let t∗ = 2ǫ/δ2 and consider [c] such that

a− ǫ < E(c) ≤ a + ǫ. Assume now that E(ϕt(c)) > a− ǫ for 0 ≤ t ≤ t∗. Then

E(ϕt(c)) = E(c) +

∫ t∗

0

d

dt
E(ϕt(c))dt = E(c)−

∫ t∗

0

|gradE(ϕt(c))|2dt

≤ a + ǫ− δ2t∗ = a− ǫ

which is a contradiction.�

Proof. (Proof of Theorem) The definition of aF implies that for every ǫ > 0 there

exists F ∈ F such that supE|F < aF + ǫ. Hence aF > a. Suppose aF is not a

critical value for E. Then by Lemma [..] there exists ǫ0 > 0 and t∗ > 0 such that

ϕs(P
aF+ǫ0) ⊂ P aF−ǫ0 for all t ≥ t∗. In particular this would imply supE|F < aF − ǫ0

with F as above, which is not possible. Hence aF is a critical value for E. �

Applying this theorem to the ϕ-family formed by the points of a connected com-

ponent of P and for a < 0, we get the following corollary.

Corollary 5.2.8. The energy function E restricted to a connected component of P

assumes its infimum in some point, and such a point is a critical point of E.

5.2.1 The second order neighborhood of a critical point

We study the second order neighborhood of a critical point c of E, i.e. the Hessian

D2E(c). Consider a G -path c = (g0, c1, . . . , ck, gk) over the subdivision 0 = t0 < t1 <

· · · < tk = 1, representing a closed geodesic of positive length based at x or a geodesic

from x to y. Let v = (v1, . . . , vk) and w = (w1, . . . , wk) are vector fields along c,

identified to elements of the tangent space T[c]xΩ
′
X or T[c]x,y

Ω′
x,y, The Hessian of the

energy function at the critical point [c]x ∈ Ω′
X of [c]x,y in Ω′

x,y is given by the following

expression.

D2E(c)(v, w) =
k∑

i=1

∫ ti

ti−1

(〈∇vi(t),∇wi(t)〉dt+ 〈R(ċi(t), vi(t))ċi(t), wi(t)〉)dt
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where R is the curvature tensor of the Riemannian metric on X. This is a symmetric

and bilinear function of v and w.

The tangent space Tc at [c]x (or at [c]x,y) splits as an orthogonal direct sum of the

negative, the null and the positive space of the corresponding selfadjoint operator:

Tc = T−
c ⊕ T 0

c ⊕ T+.

By an argument similar to that used in the construction of P ′
k in the proof of Prop

[...] we can choose a representative of c defined over a sufficiently fine subdivision of

the unit interval such that each ci is contained in an open set with the property that

any of its two points can be connected by unique minimal geodesic which depends

differentiably of the two points. Then we can define the finite dimensional space

Tc(t0, t1, . . . , tk) ⊂ Tc of broken Jacobi fields along c, i.e. consisting of vector fields

v = (v1, v2, . . . , vk) such that each vi is a Jacobi field along ci. As in the manifold

case one can prove that the tangent space Tc splits as the direct sum

Tc = Tc(t0, t1, . . . , tk)⊕ T ′,

where T ′ denotes the vector space consisting of the vector fields along c which vanish

simultaneously at the braking points 0 = t0 < t1 < . . . < tk = 1. Moreover, the

two subspaces are mutually perpendicular with respect to the inner product D2E(c)

and the Hessian restricted to T ′ is positive definite (see Lemma 15.3 Milnor [...]). An

immediate consequence of this fact is that the negative space T−
c (as well as the null

space T 0
c ) is always a finite dimensional vector space. The dimension of the negative

space is called the index of c. As in the manifold case one can prove that T 0
c consists

precisely of the Jacobi vector fields along c (this is an alternative way to see that the

null space is always finite dimensional). In the case of Ω′
x,y, its dimension is called

the nullity of c and as we have seen it never exceeds n − 1. In the case of Ω′
X , the

nullity is defined to be dimT 0
c − 1 since in this case ċ = (ċ1, ċ2, . . . , ċk) belongs to T 0

c .

We say that the Hessian of the energy function is degenerate if the nullity is positive.
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5.2.2 Finite dimensional approximation

As above, for a real number a ≥ 0, we denote by P a (resp. P<a) the subspaces

of P = Ω′
X and Ω′

x,y where the energy function is ≤ a ( resp. < a). In the first

case we assume |Q| to be compact, and complete in the second case. Similar to

the manifold case we will investigate the topology of P a by constructing a finite

dimensional approximation to it.

Let k > 0 be an integer and 0 = t0 < t1 < t2 < . . . < tk = 1 be the subdivision of

the unit interval with ti = i/2k. Consider the subspaces Pk,ǫ of P formed by elements

represented by G -paths of class H1, c = (g0, c1, g1, . . . , ck, gk) defined over the above

subdivision and such that each ci(ti−1) is the center of a convex open geodesic ball

of radius ǫ containing the image of ci. Note that a similar subspace was used in the

proof of Proposition 5.9. We have the following lemma concerning the space Pk.

Lemma 5.2.9. There exists ǫ > 0 and a sufficiently large integer k such that every

element of P a can be represented by an element of Pk,ǫ.

Proof. If the orbifold is compact then there exists ǫ > 0 such that every point is the

center of a convex geodesic ball of radius ǫ. In particular, if z ∈ X, the exponential

map is defined on the ǫ-ball centered at the origin in TzX and maps this ball diffeo-

morphically onto the ball B(z, ǫ) centered at z and of radius ǫ. Moreover, note that

using the compactness of |Q| there exists an integer k0 > 0 such that every G -path

has a representative over the subdivision 0 = t0 < t1 < . . . < tk0 = 1 with ti = i/2k0 .

Let now [c] ∈ P a. From the inequality L2 ≤ 2E we have that L(c) ≤
√

2a. Choose

k such that 2k > min{2k0, 2a/e2}. If c = (g0, c1, g1, . . . , ck, gk) is a representative of

[c] over the uniform subdivision with norm 1/2k then for each i we have

(
L|[ti−1,ti](ci)

)2
= 2(ti − ti−1)E|[ti−1,ti](ci) ≤ 2

1

2k
E(c) ≤ 2a

2k
< ǫ2.

But L(ci) < ǫ means that ci is contained in the convex geodesic ball centered at

ci(ti−1) and of radius ǫ, i.e. c = (go, c1, g1, . . . , ck, gk) is an element of Pk,ǫ.

The above construction works also in the case when the orbifold is complete as

follows. Let S denote the closed ball

{z ∈ |Q|
∣∣ d(z, x) ≤

√
2a},
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where x = q(x) and d(·, ·) denotes the metric on the base space induced by the

Riemannian metric on Q. Since |Q| is complete, S is a compact set. Again the

inequality L2 ≤ 2E implies that the projection of any element of P a lies entirely in

this set. Then an ǫ and a k0 as above can be defined for all the G -paths with energy

≤ a. �

Consider now the subspace Ba
k ⊂ P a consisting of broken G -geodesics of energy

smaller than a. This is a finite dimensional manifold. The tangent space TcB
a
k to

Ba
k at a broken geodesic c = (g0, c1, g1, . . . , ck, gk) can be identified with the space

Tc(t0, t1, . . . , tk) of broken Jacobi fields along c. The following result shows that the

finite dimensional manifold Ba
k provides a faithful model for the infinite dimensional

space P a.

Proposition 5.2.10. (Finite dimensional approximations)(Proposition 4.1.3. [GH])

(i) The space Ba
k is a deformation retract of the space P a. The restriction of the

energy function to P<a and to B<a
k have the same critical points, and at such

points the nullity and the index are the same.

(ii) The suborbifold Λ′Qa = G \Ω′a
X retracts by deformation onto the finite dimen-

sional suborbifold ΛQa(k) := G \Ω′a
X(k). The inclusion

BΛQa(k) = EG ×G Ω′a
X(k)→ BΛ′Qa = EG ×G Ω′a

x,y

is a homotopy equivalence.

Proof. (i)The proof of the first part follows the argument used in the proof of Prop.

5.9. For the second part note that every G -geodesic is also a broken G -geodesic. Thus

every critical point of E on P<a will be in B<a
k . Conversely, if c is a critical point for

the energy function restricted to the space B<a
k , then (see the proof of 5.4) it has to

be an unbroken G -geodesic. The fact that the index (resp. nullity) of D2E|P<a(c) is

equal to the index (resp. nullity) of D2E|B<a
k

(c) is a consequence of the fact that the

index (resp. the nullity) localizes in the (finite dimensional) space Tc(t0, t1, . . . , tk) of

broken Jacobi fields along c.

(ii) The last claim follows from the observation that the deformation commutes with

the action of G .
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5.3 Existence of at least one closed geodesic with

positive length

Theorem 5.3.1. On every compact connected Riemannian orbifold which is bad there

exists at least one closed geodesic with positive length.

Proof. Let Q = X/G be a such orbifold. There is a point x ∈ X and a nontrivial

element g in its isotropy group Gx such that the closed loop based at x represented

by the pair (c, g), where c : [0.1]→ X is the trivial map to x, is homotopically trivial

(***give a proof***). The homotopy gives us a continuous path in |Λ′Q| joining the

point z ∈ |Λ0Q| represented by (c, g) to the point z′ ∈ |Λ0Q| represented by the

constant loop. Those points are in different components of |Λ0Q| by [..?] and these

components are compact [..?]. By [Prop...?] the sets of points |Λ′ǫQ| of |Λ′Q| for

which the energy function is smaller than ǫ for various ǫ > 0 form a fundamental

system of neighbourhoods of |Λ′0Q|. Therefore the family of paths in |Λ′Q| joining z

to z′ is a ϕ-family mod |Λ′0Q| and we can apply Theorem 5.8.

Theorem 5.3.2. Let Q = M/Γ be a good compact connected Riemannian orbifold

(i.e. M is a connected Riemannian manifold and Γ is a discrete group acting on

M by isometries and such that the quotient space is compact). There is at least one

closed geodesic on Q wit positive length in the following cases:

(i) Γ is finite (i.e. the orbifold is very good) or it contains an element of infinite

order;

(ii) M is simply connected and any of the higher homotopy groups πi(M), i > 1 is

notrivial or M is a nontrivial K(π, 1).

Proof. (i) If the group Γ is finite then M is compact and the classical result of Fet

implies that there exists at least one closed geodesic on M with positive length. Its

projection gives a closed geodesic on Q with positive length.

In the second case, the element of infinite order in Γ gives an element of infinite

order in πorb1 (Q). The energy function restricted to the component of |Λ′Q| corre-

sponding to this element attains its minimum at some point which is critical for E
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(by Corollary 5.11). This point is a closed geodesic. Since it represents an element of

infinite order, it has positive length.

(ii) Suppose that there is i > 1 such that πi(M) is the first not trivial homotopy

group. Then the standard loop fibration shows that πi−1(LM)≈πi(M), where LM

denotes the space of loops on M . By Hurewicz Theorem Hj(LM) ≈ πj(LM) for

the for the first nontrivial πj . Hence Hi−1(LM) ≈ πi(M) is nontrivial. Applying the

Fundamental Theorem of Morse Theory for the loop space and energy function, we

obtain the existence of an index i− 1 > 0 critical point. This is a closed geodesic on

M of positive length, since the index is positive. The projection of this geodesic will

give us a geodesic of positive length on Q = M/Γ.

Consider now the case when all the higher homotopy groups πi(M), i > 1 are

trivial. We will see that in this case π1(M) contains no element of finite order.

Denote by M̃ the universal cover of M . Then M̃ is a complete manifold (see [..?] and

πi(M̃) = 0 for all 1 ≥ 0. By a result of Witehead M̃ is contractible and then the

cohomology group Hk(M) can be identified with the cohomology groupHk(π1(M)) of

the group π1(M). Assume now that π1(M) contains a nontrivial finite cyclic subgroup

G. Then for a suitable covering space M̂ of M we have π1(M̂) = G and as above

Hk(G) = Hk(M̂) = 0 for k > n. But since the cohomology groups of a finite cyclic

group are nontrivial in arbitrarily high dimensions, this gives a contradiction. Hence,

π1(M) contains no element of finite order. This implies that πorb1 (Q) contains an

element of infinite order and again we can proceed as in the second part of (i).

Corollary 5.3.3. On every compact connected 2-dimensional Riemannian orbifold

there exists at least one closed geodesic with positive length.

Remark 5.3.4. For the existence of a closed geodesic of positive length on compact

orbifolds, the only case left open by the preceding theorem would be the following

one. Let Γ be an infinite group all of whose elements are of finite order acting properly

on a Riemannian manifold M by isometries with compact quotient Q = Γ\M ; does

there exists a non constant geodesic c : [0, 1] → M and an element γ ∈ Γ such that

the differential of γ maps ċ(0) to ċ(1). Note that such a group Γ would be finitely

presented, and no examples of such groups are known yet.
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5.3.1 Developability of orbifolds with non positive curvature

Let Q = X/G be a connected Riemannian orbifold with non positive curvature. Con-

sider Q̃ its universal orbifold covering. Then Q̃ is a complete Riemannian orbifold

of non positive curvature. Let (G̃ , X̃) be the étale groupoid associated to the pseu-

dogroup of change of charts of Q̃. Note that this groupoid is Morita equivalent to the

universal covering groupoid of (G , X). Since Q̃ is simply connected, Ω′
x,y is connected

for every x, y ∈ X̃. Since Q̃ has non positive curvature, every G -geodesic from x to

y has index 0 (there are no conjugate points along it). Thus, πi(Ω
′
x,yQ̃) are trivial

for all i ≥ 1. This implies that all the orbifold homotopy groups are trivial, i.e. Q̃ is

contractible. It follows that there is precisely one G̃ -geodesic from x to y.

Let TxQ̃ denote the tangent cone to Q̃ at x and let (G̃x ⋊ TxX̃, TxX̃) denote

the groupoid associated to the action of G̃ on TxX̃. Since up to equivalence of G̃ -

geodesics there is exactly one G̃ -geodesic between any two points in the orbifold Q̃,

the exponential map expx : TxQ̃ → Q̃ induces an equivalence (Morita) between the

groupoids (G̃x⋊TxX̃, TxX̃) and (G̃ , Q̃). Since (G̃ , X̃) is simply connected, the isotropy

group Gx is trivial. Thus, Q̃ is a manifold, i.e. Q is developable.

Note that in the above argument we used essentially the completeness of Q for

the domain of the exponential map and also for the onto part and the fact that the

orbifold has non positive curvature for the uniqueness of the geodesic connecting any

two points (i.e. for the one-to-one part). The same argument works in that case when

Q̃ is a complete Riemannian orbifold which has a pole.
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[MM] I. Moerdijk and J. Mrčun, Introduction to foliations and Lie groupoids. Cam-

bridge Studies in Advanced Mathematics, 91. Cambridge University Press,

Cambridge, 2003.

[Sa1] I. Satake, On a generalization of the notion of manifold, Proc. Nat. Acad.

Sci. U.S.A. 42 (1956), 359–363.

[Sa2] I. Satake, The Gauss-Bonnet theorem for V -manifolds, J. Math. Soc. Japan

9 (1957), 464–492.

[Sc] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1993),

No. 5, 401–487.

[Se] G. Segal, Classifying spaces and spectral sequences, Publications

mathématiques de l’I.H.É.S., 34, (1968), 105–112.

[Ra] J. G. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Math-

ematics, 149, Springer-Verlag, New York, 1994.



106

[T] W. P. Thurston, The geometry and topology of 3-manifolds, Chapter 13.

Princeton University, 1978-1979.

[T1] W. P. Thurston, Three-dimensional geometry and topology, Volume 1, Prince-

ton Mathematical Series, 35, Princeton University Press, Princeton, NJ,

1997.


