CLOSED GEODESICS ON ORBIFOLDS OF NONPOSITIVE OR
NONNEGATIVE CURVATURE
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ABSTRACT. In this note we prove existence of closed geodesics of positive
length on compact developable orbifolds of nonpositive or nonnegative cur-
vature. We also include a geometric proof of existence of closed geodesics
whenever the orbifold fundamental group contains a hyperbolic element and
therefore reduce the existence problem to developable orbifolds with 7rf’“b in-
finite and having finite exponent and finitely many conjugacy classes.

1. INTRODUCTION

An orbifold is perhaps the simplest case of a singular space generalizing the
notion of manifold. Orbifolds are topological spaces which are locally modelled on
quotients of open subsets in Euclidean space by linear actions of finite groups. Each
point of an orbifold carries additional data, that of a finite isotropy group, and the
orbifold structure encodes this information.

Orbifolds arise naturally throughout geometry and one reason for the interest
in orbifolds is that they exhibit geometric properties similar to manifolds. The
specific problem that we take up in this paper has to do with the existence of closed
geodesics on compact Riemannian orbifolds. Every compact manifold contains a
closed geodesic [10], and a beautiful and elegant proof of this fact is presented in [18],
where this is proved by applying Morse theory to the energy functional on the loop
space. The corresponding problem for orbifolds was studied by Guruprasad and
Haefliger in [14], where they adapted the Morse theoretic approach to the orbifold
setting and proved existence of closed geodesics on compact orbifolds whenever (1)
the orbifold is not developable, or (2) the orbifold fundamental group is finite or
contains an element of infinite order. Despite this progress, the general problem of
existence of closed geodesics on compact orbifolds remains open.

In this note we investigate this problem and use a geometric approach that re-
covers and extends part (b) of Theorem 5.1.1 in [14]. We focus exclusively on
developable orbifolds and establish our results by using the geometry of the univer-
sal covering space and properties of the orbifold fundamental group. Our approach
provides an elementary proof of the following theorem (see [2, Proposition 2.16]):
Theorem 3.1 A compact developable orbifold Q admits a closed geodesic of positive

length whenever the orbifold fundamental group is finite or contains a hyperbolic
element.

Because elements of infinite order in 7§"*(Q) are hyperbolic, Theorem 3.1 im-
proves on the result [14, Theorem 5.1.1 (b)] for developable orbifolds, and conse-

quently, allows us to reduce the existence problem to compact orbifolds Q with
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7¢"%(Q) infinite and containing only elliptic elements. As shown in Proposition 3.4,
this latter condition forces the orbifold fundamental group 7§"(Q) to have finitely
many conjugacy classes and finite exponent.

An interesting question related to all of this is whether an infinite torsion group as
above can act geometrically on a simply connected complete Riemannian manifold
M (Question 3.5). While we are not able to rule out such actions in the general
case, we are able to show that such actions cannot occur if M is assumed to carry a
metric of nonpositive or nonnegative sectional curvature (Proposition 4.1 and 4.3).
As a consequence we obtain the following:

Corollary 4.4 Any compact Riemannian orbifold having nonpositive or nonnega-
tive curvature admits a closed geodesic of positive length.
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2. THE SETUP

We begin by setting up the notations and briefly recalling some of the background
needed throughout the subsequent sections. The reader is encouraged to look up
the references for the basics on orbifolds. Besides the original work of Satake [21]
and Thurston [24], other good introductions to the classical theory of orbifolds
include [1, Chapter 1], [6, Chapter II1.G] and [15, Chapter 6].

Throughout this note, unless explicitly stated otherwise, by ‘compact orbifold’
we mean a compact connected effective orbifold without boundary. We also assume
all Riemannian orbifolds to be smooth of class C” with » > 4 and state our results
for this category of orbifolds (see also Remark 3.2).

2.1. Orbifolds. Let @ denote a Hausdorff topological space and let U = {U, }icz
be an open cover of () which is closed under finite intersections. Let n be a positive
integer.

A Riemannian n-orbifold structure Q on the space @ is given by an atlas of
uniformizing charts {((NJhFi,cpi)}ieI, where each T}Z is a Riemannian n-manifold
without boundary, I'; is a finite group of isometries of Tj}-, and @; : U’Z — U, is a
continuous I';-invariant map that induces a homeomorphism from (Z /T'; onto the
open set U;. The change of charts are Riemannizin isometries. The orbifold Q
is said to be effective if the action of each I'; on U, is effective. Note that if all
the groups I'; are trivial, or if they act freely on the U;’s then Q is a Riemannian
manifold.

The Riemannian orbifold Q is said to be developable if it arises as the global
quotient M/T" of a Riemannian manifold M by the proper action of a discrete
subgroup I of its group of isometries. Let m : M — @ denote the natural projection
map. For a point € @ we define the isotropy group of x = 7(Z) to be the finite
group I', = {v € T' | vZ = Z}. This group is uniquely determined up to conjugacy
in I'. The point z € @Q is said to be a singular point if its isotropy group I, is
nontrivial and x is said to be a regular point otherwise. The singular set 3 of the
orbifold @ is the collection of all the singular points in Q. If ¥ = @, the orbifold
Q is in fact a manifold.
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Orbifold covering spaces are defined similarly to the ones for topological spaces.
Thurston showed that each orbifold Q has a universal covering [24, Proposition
13.2.4] and also defined the orbifold fundamental group 7§"(Q) as the group of
deck transformations of its universal orbifold covering.

In the case of a developable orbifold @ = M/T", the quotient M — M/T can
be regarded as an orbifold covering with I' as the group of deck transformations.
Any subgroup I of T" induces an intermediate orbifold covering M/T" — M/T.
On the other hand, any manifold covering M — M gives an orbifold covering by
composing with the quotient map M — M/T. In particular, the universal covering
space of M gives rise to the universal orbifold covering space of Q, and the orbifold
fundamental group belongs in a short exact sequence

1= m(M)—a0(Q) —»T —1.

Note that an orbifold is developable if and only if its universal covering space is a
manifold.

From here on, Q will denote an effective n-dimensional compact connected de-
velopable Riemannian orbifold without boundary. We choose to write Q as the
orbifold quotient M /T, where M is the orbifold universal covering space of Q and
I' = 7¢"*(Q) is the orbifold fundamental group. Thus M is a connected, simply
connected complete Riemannian n-manifold (with the natural Riemannian struc-
ture pulled back from Q) and T is a discrete subgroup of the group Isom(M) acting
properly and cocompactly by isometries on M. In short, we say that I' acts geo-
metrically on M.

2.2. Metric structure. The Riemannian structure on M induces naturally a
length metric d on M: the distance d(Z,7) between two points & and § in M
is defined to be the infimum of the Riemannian length of all the piecewise contin-
uously differentiable paths connecting = and y. The topology of the metric space
(M,d) coincides with the topology of the manifold M. Since M is complete, by
the Hopf-Rinow theorem [0, Proposition 1.3.7], the length metric space (M,d) is a
geodesic space, i.e. any two points in M can be connected by a (metric) geodesic.

Since a Riemannian isometry is also a metric isometry, I' acts by isometries on
(M, d) and the quotient space @ of this action carries the quotient pseudo-metric
associated to the length metric d on M. Because @ is Hausdorff, this pseudo-metric
is actually a metric and induces the given topology of Q.

It is important to note, however, that unless the action of I" on M is free (i.e. the
orbifold Q is a manifold), the natural projection 7 : M — @ is neither a covering
map nor a local isometry. In general, the fundamental group of the underlying
topological space m1(Q) is isomorphic to the factor group I'/Ty where I'g is the
normal subgroup generated by all the elements in I' which have fixed points in M
(see [3]). It is an easy exercise to see that the projection = is a local isometry when
restricted to M ~ 77 1(3) — Q \ .

2.3. Isometries. Let now v be an isometry of (M,d). That is, v is a distance
preserving self-homeomorphism of (M, d). Recall that the displacement function
of an isometry <y is the function d, : M — Ry defined by d(z) = d(z,yx). The
translation length of « is the number |y| = inf{d,(z) | « € M}. The minimal set
of 7, denoted Min(y) = {z € M | dy(z) = |y|}, is the set of points where the
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displacement function attains this infimum. An isometry « is called semi-simple if
Min(y) is non-empty.

Using the displacement function one has the following classification of the isome-
tries of a metric space [0, Definition 11.6.3]. An isometry ~ is called:

(1) elliptic if v has a fixed point,

(#) hyperbolic if its displacement d., attains a strictly positive minimum,

(79¢) parabolic if d,, does not attain a minimum, i.e. Min(vy) is empty.

Each isometry of the metric space (M,d) belongs to one of the above disjoint
classes, and an isometry is semi-simple if and only if it is elliptic or hyperbolic.

Because any Riemannian isometry of M is also a metric isometry of the as-
sociated length space (M,d), the above classification applies to the Riemannian
isometries of M. Furthermore, since in this case the length space (M, d) is a com-
plete simply connected geodesic space and I" acts geometrically on M, the elements
of T' are semi-simple isometries (cf. [6, Proposition 11.6.10(2)]). Thus we distin-
guish two classes of elements in I': the elliptic elements, which are the isometries
with nonempty fixed point set in M; and the hyperbolic elements which are the
semi-simple isometries that act on M without fixed points.

Remark 2.1. Our general assumption that the Riemannian orbifolds are of class
at least C* can be relaxed to class C? for the present exposition (see also Remark
3.2). As noted in [6, Remark 1.3.22], if the Riemannian structure on M is of class
C?, then a metric isometry of the length space (M, d) associated to M is also a
Riemannian isometry (cf. [20]).

2.4. Geodesics. Recall that a Riemannian geodesic on M is a continuously differ-
entiable path ¢ : I — M which is locally distance-minimizing in the following sense:
there exists a constant v > 0 such that for any interior point ¢ of I there exists a
neighbourhood J C I of ¢ such that d(&(s),é(s’)) = v|s—s'| for all s,s" € J. We say
that the geodesic é: I — M is normalized (or has unit speed) if v = 1, and that it
is minimal if d(é(s),é(s")) = |s — §'| holds for all s, s’ € I. In particular, the length
of a minimal geodesic segment is equal to the distance between its endpoints.

It is important to notice that Riemannian geodesics need not be geodesics in the
metric sense; in general they are only local geodesics and, a Riemannian geodesic
is a metric geodesic if and only if it is minimal. Note also that given two points
on a connected manifold M, it may be possible that there is no minimal geodesic
connecting them or even no geodesic at all containing them. For example, in the
FEuclidean space with the origin removed there are no geodesics containing antipodal
points. However, as we have mentioned before, if the manifold M is complete, by
the Hopf-Rinow theorem, any two points in M can be connected through a minimal
geodesic.

For the Riemannian orbifold @ = M/T, given two points z and y in Q it is
natural to ask for a geodesic connecting them to be a path ¢ : [0,1] — @ with
¢(0) = z and ¢(1) = y that lifts to a Riemannian geodesic in the universal cover
M. However, in general such lift is not unique and an orbifold geodesic connecting
x to y encodes the choice of a lift as we will now see.

We first recall the definition of an orbifold path in @ = M/T'. This is just a special
case of the definition of a G-path in the étale groupoid G of germs of change of charts
of an orbifold. When Q = M/T" is a developable orbifold, G = (I' x M, M) is the
étale groupoid associated to the action of I on M (see [6, Example I11.G.3.9(1)]).
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Let ¢ : [0,1] — @ be a continuous path in @ with ¢(0) = z and ¢(1) = y. Let

7 €7m z) and § € 7 1(y) and consider the pair (¢,7), where
(i) ¢:[0,1] = M is a continuous path such that ¢(0) = Z and w0 ¢ = ¢;

(i4) v €T is such that v¢(1) = 3.
Let now &’ € 7=1(z) and § € 7~ !(y) be a different choice of points in the orbit
above x and y, and let (¢,+') be such that & : [0, 1] — M is continuous, & (0) = &/,
mod =cand v'@(1) = §'. We say that the pairs (¢,v) and (¢,~') are equivalent if
there exists an element & in I' such that & = 6.¢ and 7/ = 75~ L. An orbifold path
with underlying continuous path ¢ : [0, 1] — @ is an equivalence class of pairs (¢, )
as above. Such an orbifold path is said to be smooth if ¢ is a smooth path in M.

Given two points z and y in ), a Riemannian orbifold geodesic joining z to y is an
equivalence class of a pair (¢,~y) where ¢ : [0,1] — M is a Riemannian geodesic in M
such that 7(¢(0)) = = and 7(¢é(1)) = y. Note that an orbifold geodesic represented
by (&) is uniquely determined by the initial velocity vector ¢(0) € Ts0yM and
the conjugacy class of v in I'. Note also that the underlying continuous path of
an orbifold geodesic need not be a metric geodesic on () with the quotient metric.
Once a geodesic passes through a point with larger isotropy group, it stops being

minimizing.
&(1)
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FIGURE 1. Examples of closed geodesics in Q@ = M/T.

The closed geodesics of positive length on the developable orbifold Q are in one-
to-one correspondence with the equivalence classes of pairs (é,), where ¢ : [0,1] —
M is a non-constant geodesic segment in M and v € T' is an isometry such that:

7é(1) = &(0) and ~é&(1) = ¢(0)

(see Figure 1). Two pairs (¢,v) and (&,~') are equivalent if and only if there is an
isometry 6 € I' such that & = §.¢ and v/ = 6y6 !
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3. A FIRST RESULT

We now present an elementary proof of an existence result for closed geodesics
on developable orbifolds that implies part (b) of the Theorem 5.1.1 of Guruprasad
and Haefliger in [14]. As before, Q denotes a compact connected developable Rie-
mannian orbifold of class C* and without boundary. Suppose @ = M/I" with M
simply connected and I' = 7"%(Q).

We begin by noticing that it follows easily from the definition of closed geodesics
on developable orbifolds that any nontrivial closed geodesic ¢ in the universal cover
M gives rise to a closed geodesic of positive length on Q represented by the pair
(¢,1), where 1 denotes the identity of I'. The result of Lyusternik and Fet [17]
on the existence of closed geodesics on compact manifolds can be used to show the
existence of a closed geodesic of positive length in the case when the universal cover
M of Q is compact. This is precisely the case when the orbifold fundamental group
T is finite.

We will next show that the existence of closed geodesics of positive length in Q
follows whenever the orbifold fundamental group I' contains an element with acts
without fixed points on M. The idea of the proof follows that of [4, Lemma 6.5].

Let v € T" be a hyperbolic isometry of M. By definition the minimal set Min(+y)
is non-empty. Let x € Min(vy). Since Min(vy) is v-invariant, the translate yz of
x belongs to Min(y). Let now ¢ : [0,1] — M be a minimizing geodesic in M
connecting x to yx (such geodesic exists since M is complete) and let y = é(1/2)
be the midpoint of ¢. Then the translate ¢ is a minimizing geodesic connecting
vz to v2x, and vy is the midpoint of 7¢ (see Figure 2 below). From the triangle

FI1GURE 2. Midpoint argument.

inequality we have that

0 < d(y,vy) < d(y,vz) + d(yz,vy) = d(z, yz) = [7],
which implies that y € Min(y) or equivalently that d(y,vy) = |vy|. Since the
distance between y and vy measured along ¢ and then ~¢ is also ||, it follows that
the concatenation of the two geodesics is a smooth geodesic, i.e. 7.6(0) = &(1).

Thus the pair (¢,7~!) represents a closed geodesic of positive length in Q.
We have thus proved the following ([2, Proposition 2.16], [L1, Theorem 4.3]):

Theorem 3.1. A developable compact Riemannian smooth orbifold Q of class at
least C* has a closed geodesic of positive length if the orbifold fundamental group
79" (Q) is finite or if it contains a hyperbolic element.
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We would like to mention that Theorem 3.1 is more general than [14, Theorem
5.1.1(b)] since semi-simple isometries of infinite order are hyperbolic, but the con-
verse is not necessarily true. Therefore, by Theorem 3.1 the existence of closed
geodesics of positive length follows whenever I has an element that acts without
fixed point, which can be of finite order.

Remark 3.2. The differentiability condition of class at least C* in Theorem 3.1
is required by the variational argument used in [17]. When 7¢"%(Q) contains a
hyperbolic element, this condition can be relaxed to class C2. In this case, the
existence of a closed geodesic on @ is obtained without employing the result of
Lyusternik and Fet [17] when the orbifold fundamental group is finite.

As a simple example, consider the compact orbifold Q obtained as the quotient of
the round 2-sphere S? by the action of the group generated by two elements (v, §),
where v is the reflection in the horizontal equatorial plane and ¢ is the rotation
of angle 7 around the vertical axis through the north pole N and the south pole
S. Clearly v2 = 62 = (76)? = 1 and 7{"(Q) ~ Zy x Zy is the Klein four-group.
The elements v and § are elliptic isometries with Fix(y) = {N, S} and Fix(§) ~ S!,
the equator. The element ¢ is the antipodal map on S? and, since it acts without
fixed points, 74 is a hyperbolic isometry. It has translation length |yé| = 7 and
minimal set Min(vd) = S2. The ‘midpoint argument’ applied to the element v3§
shows that for any point 2 € S? and any geodesic arc ¢ : [0,1] — S? connecting =
to its antipodal point vd(z) = —z, the pair (¢,+J) represents a closed geodesic of
length 7 on the orbifold Q.

Remark 3.3. Tt is easy to see that the translate v¢ of a geodesic ¢ : [0,1] = M
by an isometry v € T', is again a geodesic. Given a pair (é,+) representing a

FicURE 3. Collinear geodesics in M.

closed geodesic in Q, the condition that yé(1) = &(0) implies that in M the two
geodesic segments ¢ and ¢ have the point ¢(0) in common; and the condition that
vé(1) = ¢(0) implies that the union of the two geodesic segments is smooth at this
point (Figure 3). Therefore, a closed geodesic of positive length exists on Q@ = M/T
whenever there is a point * € M and an isometry v € I' that does not fix z, and
the points z,yz, and 2z lie on a smooth geodesic in M.

Moreover, if (&,+) represents a closed geodesic with « of finite order, say v* = 1,
then the path ¢~ := &« ~éx ... xv*~1¢ obtained by successively concatenating
the translates of ¢ by 7, is a smooth closed geodesic in M (see Figure 4 below).

The only situation not covered by Theorem 3.1 is when I' is infinite and each
~v € I is elliptic. Since elliptic isometries have finite order, I" is an infinite torsion
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FI1GURE 4. Closed geodesic in the universal cover M.

group. Moreover, since the action is proper and cocompact, I' is finitely presented
(cf. [6, Corollary. 1.8.11]) and also has finitely many conjugacy classes of isotropy
groups (cf. [6, Proposition 1.8.5]). Another important property of groups which act
exclusively by elliptic isometries is the following:

Proposition 3.4. Suppose that the group I' acts properly and cocompactly by el-
liptic isometries on a simply connected metric space. Then I' has finite exponent.

This follows from the fact that each element in I belongs to one of the isotropy
groups, and these groups are finite. Then the least common multiple of the orders
of the isotropy groups gives an upper bound for the exponent of I'. Note that one
cannot deduce that I" has finite exponent from the results of [14].

While examples of infinite torsion groups that are finitely generated and even
of finite exponent are known to exist, there are no examples known to be finitely
presentable (as also noted in [14, Remark 5.1.2]). The existence problem for closed
geodesics of positive length on compact orbifolds is therefore intimately related (but
not equivalent) to the following question:

Question 3.5. Can an infinite torsion group T' act properly and cocompactly by
elliptic isometries on a complete simply connected Riemannian manifold M ¢

Clearly, a negative answer to this question would imply the existence of closed
geodesics on all compact orbifolds. On the other hand, if such actions were to
exist, then by Remark 3.3, the existence of a closed geodesic on M/T" would be
equivalent to the existence of a closed smooth geodesic in M. There are many
examples of complete simply connected non-compact manifolds that are known to
have no closed geodesics (e.g. simply connected manifolds of nonpositive curvature,
or simply connected Riemannian manifolds without conjugate points). An inter-
esting problem is then, whether any of these spaces can admit geometric actions
as in Question 3.5, for an affirmative answer would give rise to a compact orbifold
with no closed geodesics of positive length. We will tackle with this problem in
next section.
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4. GEOMETRIC CONDITIONS

In this section we continue to denote by Q a compact connected Riemannian
developable n-orbifold without boundary, obtained as the quotient M /T of a simply
connected Riemannian manifold M by the geometric action of a discrete group
I' C Isom(M). We also continue to retain the assumption that the Riemannian
structure on Q (resp. M) is of class C*.

As noted at the beginning of the previous section, any closed geodesic of positive
length in M projects to a closed geodesic of positive length in the quotient Q. On
the other hand, as we have seen in Remark 3.3, any closed geodesic of positive
length (¢,7) in @ = M/T for which v € T has finite order gives rise to a closed
geodesic in M.

A particularly interesting situation is when the orbifold fundamental group I is
infinite torsion and the universal cover M is a manifold without closed geodesics.
For such manifolds M, the existence of closed geodesics on any compact orbifold
quotient of M would follow if one could show that infinite torsion subgroups of
Isom(M) cannot act properly and cocompactly on M (see Question 3.5). Clearly,
if a discrete infinite torsion group I' acts on such a manifold geometrically, then the
orbifold quotient @ = M/I" does not contain a closed geodesic of positive length.

If one believes that compact orbifolds are similar to manifolds, then the existence
of closed geodesics would suggest that infinite torsion groups do not act properly and
cocompactly by isometries on simply connected manifolds without closed geodesics
in all the dimensions. The purpose of this section is to study certain similar situ-
ations and to show that such actions cannot exist under the assumption of certain
curvature conditions.

There are many examples of complete, connected, simply connected Riemannian
non-compact manifolds that do not admit closed geodesics and, in general, there
are no topological restrictions (like on homotopy or homology groups) that are in-
dependent of the dimension of the manifold and that can be forced upon a complete
manifold to obtain the existence of closed geodesics with respect to all Riemannian
metrics ([23]).

For instance, given any (non-compact) complete Riemannian manifold N, the
product M =R x N with the (complete) metric

(X)Y) =y + (X7, Y7)",
where X = (z,X*) and Y = (y,Y™) are in T, ,)(R x N), and (-,-)* denotes the
metric on IV, has no closed geodesics of positive length. This holds regardless of
whether the factor NV has closed geodesics or not.

However, not all simply connected manifolds can be realized as the universal
covering space of a compact orbifold. In other words not all simply connected com-
plete Riemannian manifolds admit geometric actions by discrete (infinite) groups
of isometries. In particular, product manifolds as above cannot be the universal
covering space of a compact orbifold. To see this, assume I' C Isom(M) acts geo-
metrically on M = N xR and let K C M be a fundamental domain for the action.
Since I' acts cocompactly, the set K is compact and of course M = I''K. Then
any point « € M has a neighbourhood U, € M which is isometric (via an element
v € T') to a neighbourhood of the point y~'z € K. If M has the above metric,
we can see that two points (r1,p) and (r2,¢) cannot be in the same orbit of an
isometry unless r; = 4.
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This shows in particular that the universal covering space of a compact orbifold
has in some sense bounded and uniform geometry.

4.1. Curvature constraints. Given a Riemannian orbifold @ and a point = € Q,
we define the sectional curvature s, at x to be the sectional curvature k; at one
of its lifts & in a orbifold chart at . Furthermore, we say that the orbifold Q is of
positive (resp. nonnegative, zero, negative, nonpositive) sectional curvature if the
sectional curvature x, at any point x € () has the appropriate sign.

Proposition 4.1. Suppose Q is a compact Riemannian n-orbifold.

(a) If Q is developable and the sectional curvature is everywhere positive, then
the orbifold fundamental group m§"°(Q) is finite.
(b) If Q has negative sectional curvature, then it is developable and the orbifold

fundamental group 79™°(Q) cannot be an infinite torsion group.

Proof. (a) In the case when Q has positive sectional curvature, its universal cover
M is a complete connected and simply connected manifold of positive sectional
curvature. The classical Bonnet—Meyer theorem states that if the curvature of
M is bounded from below by a positive constant e > 0, then M is compact (see
[19] for the stronger form involving the Ricci curvature). In this case the orbifold
fundamental group 7§7°(Q) is necessarily finite.

If the curvature is not bounded away from zero, M may not be compact. How-
ever, in this case, by a well known theorem of Gromoll and Meyer, the full group
Isom(M) of isometries of M is compact (see [13, Theorem 3]). Any discrete group
that acts by isometries on M is finite and the action is necessarily non-free. The lat-
ter claim follows from the fact that any complete open manifold of positive curvature
is contractible (see [13, Theorem 2]). Thus any quotient by a group of isometries of
a complete non-compact manifold of positive curvature is a non-compact orbifold
(which is not a manifold, i.e. has nonempty singular locus).

(b) Orbifolds with negative sectional curvature are examples of orbifolds of nonposi-
tive curvature and are therefore developable [6, Corollary II1.G.2.16]. The universal
covering of an orbifold of negative curvature is diffeomorphic to R™, where n is the
dimension of the orbifold. Thus, for a compact orbifold of negative curvature Q the
fundamental group 7¢"°(Q) is always infinite, and it admits an automatic struc-
ture (cf. [12, Theorem 3.4.1]). Since infinite torsion groups cannot be automatic
(see [12, Example 2.5.12]), they cannot be realized as the fundamental group of a

compact orbifold of negative curvature. O

Corollary 4.2. If Q is a compact Riemannian orbifold with Riemannian metric of
positive or negative sectional curvature, then Q admits a closed geodesic of positive
length.

Proof. If Q has positive sectional curvature, then either it is not developable or if
developable, by (a) in Proposition 4.1 the fundamental group 7$™®(Q) is finite. In
either case such an orbifold admits closed geodesics of positive length. This follows
in the developable case from Theorem 3.1 and in the non-developable one by using
part (a) of [14, Theorem 5.1.1].

If Q has negative sectional curvature, then by part (b) of Proposition 4.1 the
fundamental group 7¢"(Q) is infinite and cannot be torsion. Thus 7¢"?(Q) contains
an element of infinite order, thus hyperbolic, and by Theorem 3.1 the orbifold Q
has a closed geodesic of positive length. [
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Proposition 4.3. Suppose Q is a compact Riemannian n-orbifold.

(a) If Q has nonpositive sectional curvature, then it is developable and the
orbifold fundamental group 7¢™(Q) cannot be an infinite torsion group.
(b) If Q is developable and has nonnegative sectional curvature, then the orb-

ifold fundamental group 7{"(Q) cannot be an infinite torsion group.

Proof. (a) It is well known that all orbifolds of nonpositive curvature are devel-
opable [6, Corollary I11.G.2.16]. If Q is such an orbifold, then its universal cover M
is a simply connected complete manifold of nonpositive curvature. Equivalently, the
space M with the metric induced by the Riemannian structure is a Hadamard space
(i.e. a connected, simply connected, complete C AT (0) space). By a result of Swen-
son in [22], any discrete group acting geometrically on a Hadamard space contains

an element of infinite order, and therefore 7{"*(Q) cannot be infinite torsion.

(b) Assume now that Q is a compact developable orbifold of nonnegative sectional
curvature. As before, its universal cover M is a complete simply connected manifold
of nonnegative curvature. Unlike the positive curvature case, if M is non-compact,
then its isometry group Isom(M) needs not be compact and there are examples of
compact manifolds of nonnegative curvature whose universal covering space is not
compact. Thus, if Q@ is a compact developable orbifold of nonnegative curvature,
then it is possible for its universal covering space to be non-compact.

A key result concerning the manifolds of nonnegative curvature is the Toponogov
Splitting Theorem [25], that states that any complete manifold M of nonnegative
sectional curvature may be written uniquely as the isometric product M x R*,
where R* has the standard flat metric and M has nonnegative sectional curvature
and contains no line (that is, a normal geodesic ¢ : (—oo0,00) — M, any segment
of which is a minimal geodesic). Furthermore, Cheeger and Gromoll showed in [9]
that if the isometry group of a manifold M of nonnegative sectional curvature is not
compact, then M contains at least a line. In consequence, any complete manifold
M of nonnegative curvature admits a unique isometric splitting M = M x R* such
that the isometry group of M is compact, and Isom(M) = Isom(M) x Isom(R¥).
Note that cf. [8] the same results hold in the more general case of manifolds with
nonnegative Ricci curvature.

If T is a discrete group acting geometrically on M, then I' = TV xI"”’| where T and
I are discrete subgroups of Isom(M) and Isom(R¥), respectively. Since Isom (M)
is compact, the factor I' is necessarily finite. Note that if M is not compact then T
cannot act cocompactly on M. On the other hand, the group I acts geometrically
on the Euclidean factor R™ and, as before, it follows from Bieberbach’s theorem
that I contains elements of infinite order. This implies that T' contains elements
of infinite order, and so it cannot be torsion. [l

Corollary 4.4. If Q is a compact orbifold with Riemannian metric of nonpositive
or nonnegative sectional curvature, then Q admits a closed geodesic of positive
length.

Proof. If Q is a compact orbifold of nonpositive curvature, then by part (a) in
Proposition 4.3 the orbifold Q is developable and its fundamental group contains
elements of infinite order, hence hyperbolic. The existence of a closed geodesic on
Q follows from Theorem 3.1.

If Q is a compact orbifold of nonnegative sectional curvature, then either Q
is not developable and the existence of a closed geodesic on @ follows from part
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(a) of [14, Theorem 5.1.1]; or if Q is developable, by (b) in Proposition 4.3 the
fundamental group 7¢"?(Q) is either finite or contains elements of infinite order,
and the existence of a closed geodesic on Q is given by Theorem 3.1. O

Note that if Q has zero curvature everywhere, the conclusion of Proposition 4.3
follows from a celebrated theorem of Bieberbach [5] (see also [7]). In this case I is a
discrete group of isometries of the Euclidean space E™ and has compact fundamental
domain. By Bieberbach’s theorem, I' is then virtually abelian, and since finitely
generated abelian torsion groups are finite, I' cannot be infinite torsion.

In the light of Theorem 3.1, in this note we obtained existence of closed geodesics
on compact developable orbifolds @ = M/T by showing that I’ cannot be infinite
torsion when the universal cover M satisfies certain curvature conditions. We point
out that, via the uniformization theorem, these results help to establish the exis-
tence of closed geodesics for all compact developable orbifolds in dimension two. If
Q is a 2-dimensional compact developable orbifold without boundary, then it has
an elliptic, parabolic or hyperbolic structure (cf. [24, Theorem 13.3.6]). That is,
Q has either positive, zero or negative curvature and, by Corollary 4.2 and 4.4, it
admits a closed geodesic of positive length.

In [10] we take the opposite approach and, by showing that any compact orbifold
of dimension 3, 5 or 7 admits a closed geodesic of positive length, we conclude
that infinite torsion groups cannot act geometrically on simply connected complete
Riemannian manifolds without closed geodesics and having dimension 3, 5 or 7 (see
also [11, Corollary 4.10]).
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