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METRIC TRANSFORMS YIELDING GROMOV HYPERBOLIC

SPACES

GEORGE DRAGOMIR AND ANDREW NICAS

Abstract. A real valued function of one variable ϕ is called a metric trans-
form if for every metric space (X, d) the composition dϕ = ϕ ◦ d is also a met-
ric on X. We give a complete characterization of the class of approximately
nondecreasing, unbounded metric transforms ϕ such that the transformed Eu-
clidean half line ([0,∞), | · |ϕ) is Gromov hyperbolic. A consequence of this
result is a type of rigidity with respect to metric transformation of roughly
geodesic Gromov hyperbolic spaces: If (X, d) is any metric space containing a
rough geodesic ray and ϕ is an approximately nondecreasing, unbounded met-
ric transform such that the transformed space (X, dϕ) is Gromov hyperbolic
and roughly geodesic then ϕ is an approximate dilation and (X, d) is Gromov
hyperbolic and roughly geodesic.

1. Introduction

A function ϕ : [0,∞) → [0,∞) is called a metric transform if for each metric

space (X, d) the composition dϕ = ϕ ◦ d is also a metric on X . A metric transform

ϕ is necessarily subadditive and satisfies ϕ−1(0) = {0}. While these two conditions

on ϕ are not sufficient for it to be a metric transform, if we further require that

ϕ is nondecreasing then it is a metric transform. In particular, any nonconstant,

nonnegative concave function ϕ with domain [0,∞) and satisfying ϕ(0) = 0 is a

metric transform.

A central question concerning metric transforms is whether there exist metric

transforms ϕ for which the transformed metric space (X, dϕ) has certain specified

properties or preserves some of the characteristics of the original metric space (X, d).

Early results about transformed metric spaces dealt with their “Euclidean” prop-

erties. Blumenthal [Blu43] showed that if 0 < α ≤ 1
2 and (X, d) is any metric space

then the snowflake metric dα is Ptolemaic, that is, any four points in (X, dα) can be

isometrically embedded into Euclidean space. Wilson [Wil35] showed that the real

line with the snowflake metric |t− s|1/2 embeds isometrically in real infinite dimen-

sional space, but cannot embed isometrically in any finite dimensional Euclidean
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space E
n. Remarkable results in this direction were obtained by Schoenberg, inde-

pendently in [Sch38a, Sch38b] and, together with von Neumann in [vNS41], where

they determined all metric transforms ϕ for which the transformed metric space

(En, | · |ϕ) embeds isometrically into E
m for given 1 ≤ m,n ≤ ∞.

Our aim is to investigate analogous types of questions in the context of Gromov

hyperbolic spaces. Recall that if (X, d) is a metric space and x, y, w ∈ X then the

Gromov product of x and y with respect to w is defined as

(x | y)w = 1
2 [d(x,w) + d(y, w)− d(x, y)] .

Given δ ≥ 0, the metric space (X, d) is said to be δ-hyperbolic if

(x | y)w ≥ min {(x | z)w, (y | z)w} − δ

for all x, y, z, w ∈ X . A metric space (X, d) is said to be Gromov hyperbolic if it is

δ-hyperbolic for some δ ≥ 0.

A basic example of a Gromov hyperbolic metric space is ([0,∞), | · |), the half

line with the Euclidean metric. In this case, the Gromov product based at 0 is

(t | s)0 = min{t, s} and the space is 0-hyperbolic. Another well-known example is

the hyperbolic plane, which is ln(3)-hyperbolic. Euclidean space E
n, n ≥ 2, is not

Gromov hyperbolic.

We say that a function is approximately nondecreasing if it is within bounded

distance from a nondecreasing function. Our first result gives a complete character-

ization of the class of approximately nondecreasing, unbounded metric transforms

ϕ such that ([0,∞), | · |ϕ) is Gromov hyperbolic. Some additional terminology will

be useful. Recall that a dilation on [0,∞) is a function of the form t 7→ λt where

λ is a positive constant. We say that the function ϕ is an approximate dilation

if it is within bounded distance from a dilation. Furthermore, we say that ϕ is

logarithm-like if the function t 7→ ϕ(2t)− ϕ(t) is bounded from above.

Theorem A. Let ϕ be an approximately nondecreasing, unbounded metric trans-

form. The transformed metric space ([0,∞), | · |ϕ) is Gromov hyperbolic if and only

if one of the following two mutually exclusive conditions holds:

(i) ϕ is an approximate dilation, or

(ii) ϕ is logarithm-like.

It is straightforward to show that if ϕ is a metric transform and also an ap-

proximate dilation then ϕ preserves Gromov hyperbolicity, that is, if (X, d) is any

Gromov hyperbolic space then (X, dϕ) is also Gromov hyperbolic (Proposition 3.4).

The function t 7→ ln(1 + t) is a metric transform and logarithm-like (as defined

above), indeed the inspiration for the terminology “logarithm-like”. Gromov ob-

served that if (X, d) is any metric space then (X, ln(1 + d)) is Gromov hyperbolic
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([Gro87, Example 1.2(c)]). More generally, we show that if an approximately non-

decreasing metric transform ϕ is logarithm-like then the transformed space (X, dϕ)

is “approximately ultrametric” and hence Gromov hyperbolic (Proposition 3.12).

(We say that a metric space (X, d) is approximately ultrametric if there exists δ ≥ 0

such that for all x, y, z ∈ X the inequality d(x, y) ≤ max {d(x, z), d(z, y)} + δ is

satisfied.) An unbounded, approximately ultrametric space fails to have the rough

midpoint property and so is never a rough geodesic metric space (Proposition 3.15).

A rough geodesic ray in a metric space (X, d) is a rough isometric embedding

of the Euclidean half line in X , that is, a function γ : [0,∞) → X and a constant

k ≥ 0 such that for all t, s ≥ 0, |t− s| − k ≤ d(γ(t), γ(s)) ≤ |t− s|+ k.

Theorem A has the following consequence.

Theorem B. Let (X, d) be a metric space containing a rough geodesic ray. Let ϕ be

an approximately nondecreasing, unbounded metric transform. If the transformed

space (X, dϕ) is Gromov hyperbolic then

(i) (X, d) is Gromov hyperbolic and ϕ is an approximate dilation, or

(ii) (X, dϕ) is approximately ultrametric.

Since an unbounded, approximately ultrametric space is never roughly geodesic,

Theorem B immediately yields the following corollary which can be viewed as a

type of rigidity with respect to metric transformation of roughly geodesic Gromov

hyperbolic spaces.

Corollary (Rigidity). Let (X, d) be a metric space containing a rough geodesic

ray. Let ϕ be an approximately nondecreasing, unbounded metric transform. If

the transformed space (X, dϕ) is Gromov hyperbolic and roughly geodesic then ϕ

is an approximate dilation and (X, d) is Gromov hyperbolic and roughly geodesic.

This paper is organized as follows. In Section 2 we recall some of the rele-

vant properties of metric transforms and concave functions. In Section 3, after

reviewing some useful facts concerning Gromov hyperbolic spaces, we introduce

approximately ultrametric spaces and discuss some of their immediate properties.

In Section 4 we give a complete characterization of all concave functions that trans-

form the Euclidean half line into a Gromov hyperbolic space (Theorem 4.18). We

extend this result to the case of approximately nondecreasing, unbounded metric

transforms in Section 5, where we prove Theorem A. The proof of Theorem B and

its application to roughly geodesic Gromov hyperbolic spaces is given in Section 6.

2. Metric Transforms, Concave and Approximately Concave Functions

We summarize properties of metric transforms, concave functions and approxi-

mately concave functions that will be needed in the sequel.
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2.1. Metric transforms.

Definition 2.1. A function ϕ : [0,∞) → [0,∞) is said to be a metric transform if

for every metric space (X, d) the space (X, dϕ) with dϕ(x, y) = ϕ(d(x, y)) is again

a metric space. We denote by M the class of all metric transforms.

For any ϕ ∈ M, since dϕ(x, y) = 0 if and only if x = y, we have that ϕ(t) = 0 if

and only if t = 0. Hence, a necessary condition for a function ϕ : [0,∞) → [0,∞)

to be a metric transform is that ϕ−1(0) = {0}.

A complete, albeit somewhat tautological, characterization of the elements of M

can be given as follows. A triplet (a, b, c) of nonnegative real numbers is called a

triangle triplet if a ≤ b+ c, b ≤ a+ c and c ≤ a+ b.

Proposition 2.2 ([Cor99, 2.6]). Assume ϕ : [0,∞) → [0,∞) satisfies ϕ−1(0) =

{0}. Then ϕ is a metric transform if and only if (ϕ(a), ϕ(b), ϕ(c)) is a triangle

triple whenever (a, b, c) is one. �

Proposition 2.2 implies the following properties of metric transforms.

Proposition 2.3. Assume ϕ ∈ M. Then

(i) ϕ is subadditive, that is, ϕ(t+ s) ≤ ϕ(t) + ϕ(s), for all t, s ≥ 0,

(ii) |ϕ(t) − ϕ(s)| ≤ ϕ(|t− s|), for all t, s ≥ 0,

(iii) ϕ(t) ≤ 2ϕ(s), for all 0 ≤ t ≤ 2s. �

While subadditivity and ϕ−1(0) = {0} are necessary conditions for a function

ϕ : [0,∞) → [0,∞) to be a metric transform, these conditions are, in general, not

sufficient (see Example 2.5). However, if ϕ is also nondecreasing then it follows

from Proposition 2.2 that ϕ ∈ M. We summarize this as follows.

Proposition 2.4 ([Cor99, 2.3]). Assume ϕ : [0,∞) → [0,∞) with ϕ−1(0) = {0} is

subadditive and nondecreasing. Then ϕ is a metric transform. �

Example 2.5. Let ϕ : [0,∞) → [0,∞) be given by ϕ(t) = at + b| sin(t)| with

a > 0 and b ≥ 0. Then ϕ−1(0) = {0}, and the subadditivity of ϕ follows from

| sin(t + s)| = | sin(t) cos(s) + sin(s) cos(t)| ≤ | sin(t)| + | sin(s)|. Note that if a ≥ b

then ϕ is nondecreasing and, by Proposition 2.4, ϕ is a metric transform. Also note

that ϕ is not concave unless b = 0. If a < b then ϕ is not monotonic and not a

metric transform.

Remark 2.6. In general, metric transforms need not be continuous. It follows from

part (ii) of Proposition 2.3 that if ϕ ∈ M is continuous at 0 from the right then ϕ

is continuous on [0,∞). Furthermore, a transformed space (X, dϕ) is topologically

equivalent to the original space (X, d) if and only if ϕ is continuous. The metric

topology on (X, dϕ) is discrete for every metric d if and only if ϕ is discontinuous
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at 0 (see [Cor99, 3.1]). Similarly, the differentiability of a metric transform is

influenced by its behaviour near 0. For any metric transform ϕ, the right derivative

ϕ′

+(0) exists in the extended sense and if ϕ′

+(0) <∞ then ϕ is ϕ′

+(0)-Lipschitz on

(0,∞) and therefore differentiable except possibly at countably many points (see

[Cor99, 4.7]).

Throughout this paper, unless otherwise specified, metric transforms are not

assumed to be continuous.

2.2. Concave functions. In this subsection, after a very brief review of some basic

properties of concave functions, we summarize some results concerning continuous

concave functions ϕ : [0,∞) → [0,∞) satisfying ϕ(0) = 0 that will be used in

Section 4.

Let ϕ : I → R be defined on some interval I ⊆ R, that is, a connected subset of

R. The function ϕ is concave if for all x, y ∈ I and all t ∈ [0, 1],

(1− t)ϕ(x) + tϕ(y) ≤ ϕ((1 − t)x+ ty).

Reversing the above inequality gives the definition of a convex function. Hence, ϕ

is concave if and only if −ϕ is convex.

Convex functions have been extensively studied and many of their properties are

well known. We recall some properties of concave functions that we need, omitting

the proofs as these can be found, for instance, in [RV73, Chapter I].

By definition, a function ϕ is concave if and only if any portion of its graph

lies on or above the chord connecting the end points of this portion of the graph.

Alternatively, ϕ is concave if and only if any of the following inequalities

ϕ(z)− ϕ(x)

z − x
≥
ϕ(y)− ϕ(x)

y − x
≥
ϕ(y)− ϕ(z)

y − z

hold for all x < z < y (see [RV73, Sec. I.10 (2)]).

The following elementary properties of concave functions (see [RV73, Theorems

I.10.A, B and C]) will be useful.

Proposition 2.7. Assume ϕ : [0,∞) → R is a concave function. Then ϕ satisfies a

Lipschitz condition on any compact interval contained in (0,∞) and it is therefore

continuous on (0,∞). The left derivative ϕ′

−
and the right derivative ϕ′

+ of ϕ exist

at every point in (0,∞) and

ϕ′

−
(x) ≥ ϕ′

+(x) ≥
ϕ(y)− ϕ(x)

y − x
≥ ϕ′

−
(y) ≥ ϕ′

+(y)

for all 0 < x < y. Hence both one-sided derivatives are nonincreasing on (0,∞)

and, at each point, the left derivative is no smaller than the right derivative. In par-

ticular, ϕ is differentiable on (0,∞) except possibly at countable many points. �
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The next two corollaries are direct consequences of Proposition 2.7. The first is

a version of the Fundamental Theorem of Calculus (see Remark I.12.B in [RV73]),

and the second uses the fact that any point of local maximum of a concave func-

tion is also a point of global maximum. Together with the assumption that ϕ is

nonnegative, this implies that if ϕ is unbounded then it must be increasing.

Corollary 2.8. If ϕ : [0,∞) → R is a continuous concave function on [0,∞) then

for any x, y ≥ 0,

ϕ(y)−ϕ(x) =

∫ y

x

ϕ′

−
(t)dt =

∫ y

x

ϕ′

+(t)dt. �

Corollary 2.9. Let ϕ : [0,∞) → [0,∞) be a concave function such that ϕ(0) = 0

and ϕ is not constant on (0,∞). Then either of the following holds:

(i) ϕ is strictly increasing, or

(ii) there exists a > 0 such that ϕ is strictly increasing on [0, a) and ϕ(x) = ϕ(a)

for all x ≥ a. �

Remark 2.10. Since the one-sided derivatives are nonincreasing and ϕ′

−
(x) ≥

ϕ′

+(x) ≥ 0 for all x > 0, there exists λ ≥ 0 such that

lim
x→∞

ϕ′

−
(x) = lim

x→∞

ϕ′

+(x) = λ.

Another important property of concave functions defined on a possibly infinite

open interval I ⊆ R is that they can be globally approximated by concave functions

which are real analytic on I. Azagra showed ([Aza13, Theorem 1.1]) that for every

convex function f : U → R defined on an open convex subset U ⊆ R
n, n ≥ 1,

and every ε > 0, there exists a real analytic convex function g : U → R such that

f − ε ≤ g ≤ f . We will only be interested in uniform approximations by functions

which are of class C1 and so the following weaker version of Azagra’s theorem for

concave functions is sufficient for our purpose.

Proposition 2.11 (cf. [Aza13, Theorem 1.1] ). Let U ⊆ R be an open connected

subset and let ϕ : U → R be a concave function. For every ε > 0 there exists a C1

concave function σ : U → R such that ϕ ≤ σ ≤ ϕ+ ε. �

If ϕ : [0,∞) → [0,∞) is a continuous concave function such that ϕ(0) = 0 then

Proposition 2.11 provides C1 concave approximations of ϕ on the open interval

(0,∞). To obtain an approximation of ϕ by a concave function which is continuous

on [0,∞) and of class C1 on (0,∞), we wish to extend ϕ to a continuous concave

function defined at the left of 0. Observe that this is not possible if the right deriv-

ative ϕ′

+(0) is undefined, but as the proof of the next result shows, we can slightly

modify the function ϕ near zero in order for such a continuous concave extension

to exist. The following corollary plays a key role in the proof of Proposition 4.7.
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Corollary 2.12. Let ϕ : [0,∞) → [0,∞) be a continuous concave function such that

ϕ(0) = 0. For every ε > 0 there exists a continuous concave function ψ : [0,∞) →

[0,∞) which is of class C1 on (0,∞), satisfies ψ(0) = 0 and |ϕ− ψ| ≤ ε.

Proof. Observe that, by concavity, if a > 0 and ϕ′

+(a) ≤ m ≤ ϕ′

−
(a) then ϕ(x) ≤

ϕ(a) +m(x− a) for all x ≥ 0, that is, the graph of ϕ lies on or under the line with

slope m and passing through (a, ϕ(a)). Replacing the portion of the graph of ϕ

above [0, a] by the line segment m(x − a) + ϕ(a) we obtain a continuous concave

function which extends indefinitely at the left of 0 and which is equal to ϕ on [a,∞).

Given ε > 0, we let a = ϕ−1(ε/2) and m = ϕ′

+(a), and define ϕ̃ε : R → R by

ϕ̃ε(x) =

{
ϕ(x) if x ≥ ϕ−1(ε/2)

ϕ′

+(ϕ
−1(ε/2))[x− ϕ−1(ε/2)] + ε/2 if x < ϕ−1(ε/2).

The function ϕ̃ε is concave and for all x ≥ 0 it satisfies ϕ(x) ≤ ϕ̃ε(x) ≤ ϕ(x)+ ε/2.

By Proposition 2.11, applied to the function ϕ̃ε : R → R and with ε = ε/2, there

exists a C1 concave function σ̃ : R → R such that ϕ̃ε ≤ σ̃ ≤ ϕ̃ε+ε/2. Furthermore,

if ϕε = ϕ̃ε|[0,∞) and σ = σ̃|[0,∞) then on [0,∞) we have

0 ≤ ϕ ≤ ϕε ≤ σ ≤ ϕε + ε/2 ≤ ϕ+ ε.

Since 0 ≤ σ(0) ≤ ε and σ is increasing, it follows that σ(x) − σ(0) ≥ 0 and

ϕ(x)− ε ≤ σ(x) − σ(0) ≤ ϕ(x) + ε

for all x ≥ 0. Define ψ(x) = σ(x) − σ(0). Then ψ : [0,∞) → [0,∞) is a continuous

concave function which is C1 on (0,∞) and satisfies ψ(0) = 0 and |ϕ− ψ| ≤ ε. �

2.3. Approximately concave functions. In this subsection we show that ap-

proximately midpoint-concave functions can be uniformly approximated by contin-

uous concave functions (Corollary 2.16). This result will be used in Section 5 and

Section 6.

Definition 2.13. Let ϕ : I → R be defined on some interval I ⊆ R, and let δ ≥ 0.

(i) ϕ is said to be δ-concave if for all x, y ∈ I and all t ∈ [0, 1],

(1− t)ϕ(x) + tϕ(y) ≤ ϕ((1 − t)x+ ty) + δ.

(ii) ϕ is called δ-midpoint-concave (or δ-midconcave) if for all x, y ∈ I,

1
2ϕ(x) +

1
2ϕ(y) ≤ ϕ

(
x+y
2

)
+ δ.

We say that the function ϕ is approximately concave (respectively, approximately

midpoint-concave) if it is δ-concave (respectively, δ-midpoint-concave) for some

δ ≥ 0. Taking δ = 0 recovers the definition of a concave (respectively, midpoint-

concave) function.

If ϕ is continuous (or locally bounded from below) then ϕ is concave if and

only if ϕ is midpoint-concave (see [RV73, Theorem VII.71.C]). Here we show that
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approximately midpoint-concave functions ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 can

be uniformly approximated on [0,∞) by continuous concave functions ψ satisfying

ψ(0) = 0. This is a consequence of the following two results.

Proposition 2.14 ([NN93, Theorem 1]). Let I ⊂ R be an open interval. If

ϕ : I → R is δ-midpoint-concave and bounded from below at a point in I then ϕ

is 2δ-concave. �

Proposition 2.15 ([HU52, Theorem 2]). Assume ϕ : I → R is δ-concave on an

open interval I ⊂ R. Then there exists a continuous concave function f : I → R

such that |ϕ(x) − f(x)| ≤ δ/2, for all x ∈ I. �

Corollary 2.16. Assume ϕ : [0,∞) → [0,∞) is approximately midpoint-concave

and ϕ(0) = 0. Then there exists a continuous concave function ψ : [0,∞) → [0,∞)

satisfying ψ(0) = 0 and such that |ϕ(x)− ψ(x)| is uniformly bounded on [0,∞).

Proof. Assume ϕ : [0,∞) → [0,∞) is δ-midpoint-concave, for some δ ≥ 0. Since ϕ is

bounded from below by 0 on (0,∞) by Proposition 2.14, ϕ is 2δ-concave on (0,∞),

and by Proposition 2.15, there exists a continuous concave function f : (0,∞) → R

such that |ϕ(x)− f(x)| ≤ δ, for all x > 0. Notice that f is bounded from below by

−δ on (0,∞) and since f is continuous, it is also nondecreasing (cf. Corollary 2.9).

Thus f can be extended by continuity at 0 and f(0) = limx→0+ f(x) ≥ −δ. Define

ψ : [0,∞) → [0,∞) by ψ(x) = f(x) − f(0). Then ψ is continuous, concave, and

satisfies ψ(0) = 0 and |ϕ(x)−ψ(x)| ≤ |ϕ(x)− f(x)|+ |f(0)| ≤ 2δ for all x ≥ 0. �

3. Gromov Hyperbolic Spaces

Gromov hyperbolic spaces were introduced by Gromov in his landmark paper

[Gro87] to study infinite groups as geometric objects. See [V0̈5] for the basics

of Gromov hyperbolic spaces for intrinsic metric spaces. In this paper, unless

otherwise specified, we do not assume that a metric space is intrinsic or geodesic.

3.1. Gromov Hyperbolic Spaces.

Definition 3.1. Let (X, d) be a metric space and let w ∈ X . For x, y ∈ X , the

Gromov product of x and y with respect to w is defined to be

(x | y)w = 1
2 [d(x,w) + d(y, w)− d(x, y)] .

Definition 3.2. Let δ ≥ 0. The metric space (X, d) is said to be δ-hyperbolic if

(x | y)w ≥ min {(x | z)w, (y | z)w} − δ

for all x, y, z, w ∈ X . A metric space (X, d) is said to be Gromov hyperbolic if it is

δ-hyperbolic for some δ > 0.
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An inequality equivalent to that of 3.2, known as the 4-point inequality, is given

in the following proposition.

Proposition 3.3 ([Gro87, Lemma 1.1.A]). (X, d) is δ-hyperbolic if and only if

d(x, y) + d(z, w) ≤ max{d(x, z) + d(y, w), d(y, z) + d(x,w)} + 2δ

for all x, y, z, w ∈ X. �

Given constants λ > 0 and k ≥ 0, we say that a function ϕ : [0,∞) → [0,∞) is

an (λ, k)-approximate dilation if |ϕ(t)− λt| ≤ k for all x ≥ 0. The function ϕ is an

approximate dilation if it is a (λ, k)-approximate dilation for some λ > 0 and k ≥ 0.

Proposition 3.4. If (X, d) is a δ-hyperbolic metric space and ϕ ∈ M is a (λ, k)-

approximate dilation then (X, dϕ) is (λδ + 3k)-hyperbolic.

Proof. For each t ≥ 0 let f(t) = ϕ(t)− λt. Then

dϕ(x, y) = λd(x, y) + f(d(x, y))

and the Gromov product based at w ∈ X with respect to dϕ is

(x |ϕ y)w = 1
2 [dϕ(x,w) + dϕ(y, w)− dϕ(x, y)]

= 1
2 [λd(x,w) + λd(y, w)− λd(x, y) + f(d(x,w)) + f(d(y, w))− f(d(x, y))]

= λ(x | y)w + 1
2 [f(d(x,w)) + f(d(y, w))− f(d(x, y))]

where (x | y)w denotes the Gromov product at w with respect to the metric d.

Since |f | ≤ k,

λ(x | y)w − 3k/2 ≤ (x |ϕ y)w ≤ λ(x | y)w + 3k/2.

Furthermore, since (X, d) is δ-hyperbolic for all x, y, z, w ∈ X

(x | y)w ≥ min{(x |ϕ z)w, (y |ϕ z)w} − δ,

and thus

(x |ϕ y)w ≥ λ(x | y)w − 3k/2

≥ min{λ(x | z)w, λ(y | z)w} − λδ − 3k/2

= min{λ(x | z)w + 3k/2, λ(y | z)w + 3k/2} − λδ − 3k

≥ min{(x |ϕ z)w, (y |ϕ z)w} − λδ − 3k,

which shows that the transformed space (X, dϕ) is (λδ + 3k)-hyperbolic. �

Two metric spaces X and Y are said to be roughly similar if there exists a (not

necessarily continuous) map f : X → Y and constants λ > 0, k ≥ 0 such that

supy∈Y dY (y, f(X)) ≤ k and for all x, x′ ∈ X

λdX(x, x′)− k ≤ dY (f(x), f(x
′)) ≤ λdX(x, x′) + k.
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A straightforward argument shows that Gromov hyperbolicity is preserved by rough

similarity.

Proposition 3.5. If X and Y are roughly similar metric spaces then X is Gromov

hyperbolic if and only if Y is Gromov hyperbolic.

Proof. Let f : X → Y be a (λ, k)-rough similarity, with λ > 0 and k ≥ 0. Assume

X is δ-hyperbolic, δ ≥ 0. Since f(X) is k-cobounded in Y , for any x′, y′ ∈ Y there

exist x, y ∈ X such that dy(x
′, f(x)) ≤ k and dY (y

′, f(y)) ≤ k. Thus dY (x
′, y′) ≤

dY (x
′, f(x))+dY (f(x), f(y))+dY (y

′, f(y)) ≤ dY (f(x), f(y))+2k ≤ λdX(x, y)+3k.

For all x′, y′, z′, w′ ∈ Y we have

dY (x
′, y′) + dY (z

′, y′) ≤ λ [dX(x, y) + dX(z, w)] + 6k

≤ λ [max{dX(x, z) + dX(y, w), dX(x,w) + dX(y, z)}+ 2δ] + 6k

= max{λdX(x, z) + λdX(y, w), λdX (x,w) + λdX(y, z)}+ 2λδ + 6k

≤ max{dY (f(x), f(z)) + dY (f(y), f(w)), dY (f(x), f(w)) + dY (f(y), f(z))}+ 2λδ + 8k

≤ max{dY (x
′, z′) + dY (y

′, w′), dY (x
′, w′) + dY (y

′, z′)}+ 2λδ + 12k.

By Proposition 3.3, Y is (λδ+6k)-hyperbolic. The proof of the converse is similar. �

Remark 3.6. If ϕ ∈ M is a (λ, k)-approximate dilation then (X, d) and (X, dϕ)

are (λ, k)-roughly similar.

3.2. Approximately Ultrametric Spaces. Recall that a metric space (X, d) is

ultrametric if the metric d satisfies the inequality: for all x, y, z ∈ X , d(x, y) ≤

max{d(x, z), d(y, z)}, a condition which implies the triangle inequality.

Definition 3.7. Let δ ≥ 0. We say that a metric space (X, d) is δ-ultrametric if

for all x, y, z ∈ X

d(x, y) ≤ max{d(x, z), d(y, z)}+ δ.

We say that (X, d) is approximately ultrametric if it is δ-ultrametric for some δ ≥ 0.

Let x, y, z ∈ X and let s,m and l denote the smallest, medium and largest of the

distances d(x, y), d(y, z) and d(x, z). Then the δ-ultrametric condition is equivalent

to l −m ≤ δ. Note that if δ = 0 this implies that l = m, exhibiting a well-known

characteristic of ultrametric spaces, namely that triangles in such spaces are either

acute isosceles (that is, the equal sides are the larger sides) or equilateral. If δ > 0

then any triangle triplet (l1, l2, l3) consisting of nonnegative numbers less or equal

to δ satisfy the δ-ultrametric condition, and if one of the numbers li is greater than

δ then there is at least one other number lj , j 6= i in the triplet satisfying lj ≥ li−δ.

In other words, in δ-ultrametric spaces “small triangles” (with side length less than

δ) can have any shape, and “large triangles” (with one side length at least δ) are

acute δ-almost isosceles or δ-almost equilateral.
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The relationship between δ-ultrametric and δ-hyperbolic spaces is given by Propo-

sition 3.9 below. For this purpose, we need the following lemma.

Lemma 3.8. Let δ ≥ 0 and let aij ∈ R, i, j ∈ {1, 2, 3, 4}, be such that aij = aji.

(i) If aij ≤ max{aik, akj}+ δ for all i, j, k then

aij + akl ≤ max{aik + ajl, ail + ajk}+ 2δ,

(ii) If aij ≥ min{aik, akj} − δ for all i, j, k then

aij + akl ≥ min{aik + ajl, ail + ajk} − 2δ.

Note that if L,M and S denote the largest, medium and smallest of the sums

aij + akl, aik + ajl and ail + ajk for some choice of i, j, k, l ∈ {1, 2, 3, 4}, then the

conclusion in part (i) of the lemma is equivalent to L −M ≤ 2δ, and the one in

part (ii) to M − S ≤ 2δ.

Proof. (i) Fix i, j, k, l ∈ {1, 2, 3, 4}. Without loss of generality, assume that L =

aij+akl is the largest sum and assume that akl ≤ aij . Since aij ≤ max{aik, akj}+δ

and aij ≤ max{ail, alj}+ δ, we have

aij + akl ≤ 2aij ≤ max{aik + ail, aik + alj , akj + ail, akj + alj}+ 2δ.

If aik ≥ akj and alj ≥ ail then

M = aik + alj = max{aik + ail, aik + alj , akj + ail, akj + alj}

and if aik ≤ akj and alj ≤ ail then

M = akj + ail = max{aik + ail, aik + alj , akj + ail, akj + alj}.

In both cases, L −M ≤ 2δ. Furthermore, if aik ≥ akj and alj ≤ ail then aij ≤

max{aik, akj} + δ = aik + δ and aij ≤ max{ail, alj} + δ = ail + δ, and since

akl ≤ max{akj , alj}+ δ,

aij + akl ≤ aij +max{akj , alj}+ δ = max{aij + akj , aij + alj}+ δ

≤ max{ail + δ + akj , aik + δ + alj}+ δ = max{ail + akj , aik + alj}+ 2δ.

Finally, if aik ≤ akj and alj ≥ ail then aij ≤ max{aik, akj} + δ = akj + δ and

aij ≤ max{ail, alj} + δ = alj + δ, and since akl ≤ max{aki, ail} + δ, we have

aij+akl ≤ aij+max{aki, ail}+δ ≤ max{alj+aki, akj+ail}+2δ, that is, L−M ≤ 2δ.

(ii) Follows from (i) by taking the negatives of aij . �

Proposition 3.9. If (X, d) is δ-ultrametric then (X, d) is δ-hyperbolic.

Proof. Let xi, i = 1, 2, 3, 4, be four points in X . By part (i) of Lemma 3.8, with

aij = d(xi, xj),

d(xi, xj) + d(xk, xl) ≤ max{d(xi, xk) + d(xj , xl), d(xi, xl) + d(xj , xk)}+ 2δ

and the conclusion follows from Proposition 3.3. �



12 DRAGOMIR AND NICAS

The case δ = 0 in Proposition 3.9, that is, the fact that ultrametric spaces are

0-hyperbolic, was observed in [Ibr12, (2.4)].

Remark 3.10. The converse of Proposition 3.9 is not true. For example, the

Euclidean half line ([0,∞), | · |) is 0-hyperbolic but not δ-ultrametric for any δ ≥ 0.

To see this, let x, y ≥ 0 and z = (x + y)/2. Then the δ-ultrametric condition is

equivalent to |x− y| ≤ 2δ, which cannot be valid for all x, y ≥ 0.

Definition 3.11. Let η ≥ 0. We say that a function ϕ : [0,∞) → R is η-

nondecreasing if t ≤ s implies ϕ(t) ≤ ϕ(s) + η.

Observe that if ϕ : [0,∞) → R is η-nondecreasing then the function ϕ+ given by

ϕ+(t) = sup{ϕ(s) | s ≤ t} is nondecreasing and satisfies 0 ≤ ϕ+(t)− ϕ(t) ≤ η.

We say that the function ϕ : [0,∞) → R is approximately nondecreasing if ϕ is

η-nondecreasing for some η ≥ 0. Note that ϕ is approximately nondecreasing if and

only if is within a bounded distance from a nondecreasing function.

Proposition 3.12. Let (X, d) be a metric space and let δ, η ≥ 0. If ϕ ∈ M is

η-nondecreasing and satisfies ϕ(2t)−ϕ(t) ≤ δ for all t ≥ 0 then (X, dϕ) is (δ+2η)-

ultrametric.

Proof. For any x, y, z ∈ X ,

dϕ(x, y) = ϕ(d(x, y))

≤ ϕ(d(x, z) + d(y, z)) + η since ϕ is η-nondecreasing

≤ ϕ(max{2d(x, z), 2d(y, z)}) + 2η

≤ max{ϕ(2d(x, z)), ϕ(2d(y, z))}+ 2η

≤ max{ϕ(d(x, z)) + δ, ϕ(d(y, z)) + δ}+ 2η since ϕ(2t)− ϕ(t) ≤ δ

= max{dϕ(x, z), dϕ(y, z)}+ δ + 2η

which shows that (X, dϕ) is (δ + 2η)-ultrametric. �

Corollary 3.13 ([Gro87, Example 1.2(c)]). Let ϕ(t) = ln(1 + t), t ≥ 0. For any

metric space (X, d), the transformed metric space (X, dϕ) is ln(2)-ultrametric and

so by Proposition 3.9 is ln(2)-hyperbolic.

Proof. ϕ(2t)− ϕ(t) = ln(1 + 2t)− ln(1 + t) = ln
(

1+2t
1+t

)
= ln

(
2− 1

1+t

)
< ln(2) for

all t ≥ 0. This inequality is sharp since ln
(
2− 1

1+t

)
is increasing on [0,∞) and

limt→∞ ln
(
2− 1

1+t

)
= ln(2). �

Let k ≥ 0. Recall that a k-rough geodesic in a metric space (X, d) is a k-rough

isometric embedding of an interval I ⊆ R into X . That is, a map γ : I → X (not

necessarily continuous) such that for all t, s ∈ I,

|t− s| − k ≤ d(γ(t), γ(s)) ≤ |t− s|+ k.
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The space X is called k-roughly geodesic if for every x, y ∈ X there exists a k-

roughly geodesic segment joining x and y; and X is called roughly geodesic if it is

k-roughly geodesic for some k ≥ 0. Furthermore, we say that a metric space (X, d)

has the k-rough midpoint property if for every x, y ∈ X there exists z ∈ X such that

max{d(x, z), d(y, z)} ≤ 1
2d(x, y) + k.

A space has the rough midpoint property if it has the k-rough midpoint property

for some k ≥ 0. The following lemma asserts that the rough midpoint property is

a necessary condition for a space to be roughly geodesic.

Lemma 3.14. If (X, d) is roughly geodesic then it has the rough midpoint property.

Proof. Assume (X, d) is k-roughly geodesic, k ≥ 0. Let x, y ∈ X and ℓ = d(x, y).

If γ : [0, ℓ] → X is a k-rough geodesic segment joining x and y, let z = γ(ℓ/2).

Then ℓ/2− k ≤ d(x, z), d(y, z) ≤ ℓ/2 + k which shows that (X, d) has the k-rough

midpoint property. �

Our next result asserts that an unbounded, approximately ultrametric space

cannot be roughly geodesic.

Proposition 3.15. If (X, d) is unbounded and approximately ultrametric then X

is not roughly geodesic.

Proof. Suppose (X, d) is unbounded, δ-ultrametric and k-roughly geodesic for some

fixed δ, k ≥ 0. By Lemma 3.14, X has the k-rough midpoint property. Thus, for

any x, y ∈ X , there exists z ∈ X such that max{d(x, z), d(y, z)} ≤ 1
2d(x, y) + k.

From the δ-ultrametric inequality (3.7), it follows that

d(x, y) ≤ max{d(x, z), d(y, z)}+ δ ≤ 1
2d(x, y) + k + δ,

which implies that d(x, y) ≤ 2(k+ δ), contradicting the fact that X has unbounded

diameter. �

4. Concave Metric Transforms of the Euclidean Half Line

Let C denote the class of unbounded concave functions ϕ : [0,∞) → [0,∞) sat-

isfying limt→0+ ϕ(t) = ϕ(0) = 0. Note that if ϕ ∈ C then ϕ is strictly increasing,

continuous on [0,∞), and differentiable on (0,∞) except possibly at a countable

number of points. In this section we give a simple characterization of all func-

tions ϕ ∈ C for which the transformed Euclidean half line ([0,∞), | · |ϕ) is Gromov

hyperbolic (Theorem 4.18).

For ϕ ∈ C, the Gromov product based at 0 for the transformed Euclidean metric

|x− y|ϕ = ϕ(|x− y|) on the half line [0,∞) is given by

(4.1) (x |ϕ y) = (x |ϕ y)0 = 1
2 [ϕ(x) + ϕ(y)− ϕ(|x − y|)].
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Let δ ≥ 0 and assume that (X, dϕ) is δ-hyperbolic. Then

(4.2) (x |ϕ y) ≥ min{(x |ϕ z), (y |ϕ z)} − δ, for all x, y, z ≥ 0.

We investigate the restrictions on ϕ imposed by the inequality (4.2).

Lemma 4.3. Let ϕ ∈ C and fix a ≥ 0. The function

x 7→ (a |ϕ x) =
1
2 [ϕ(a) + ϕ(x) − ϕ(|a− x|)]

is strictly increasing on [0, a], and decreasing on [a,∞).

Proof. If 0 ≤ x1 < x2 ≤ a then

2(a |ϕ x2)− 2(a |ϕ x1) = ϕ(x2)− ϕ(x1) + ϕ(a− x1)− ϕ(a− x2) > 0

since ϕ is strictly increasing. Thus x 7→ (a |ϕ x) is strictly increasing on [0, a]. If

0 ≤ a ≤ x1 < x2 then

2(a |ϕ x2)− 2(a |ϕ x1) = (x2 − x1)

[
ϕ(x2)− ϕ(x1)

x2 − x1
−
ϕ(x2 − a)− ϕ(x1 − a)

(x2 − a)− (x1 − a)

]
≤ 0

since the quantity in the square brackets is nonpositive by concavity. Thus x 7→

(a |ϕ x) is decreasing on [a,∞). �

By the Lemma 4.3, for given x, y ≥ 0, the minimum in the right side of (4.2) is

attained at max{x, y} when z ≤ x, y and at min{x, y} when x, y ≤ z. For the case

when x ≤ z ≤ y, or y ≤ z ≤ x, we consider the equation (x |ϕ z) = (y |ϕ z). The

solution of this equation is the objective of our next lemma.

Lemma 4.4. Let ϕ ∈ C. For each 0 ≤ x < y, there exists a unique ω = ω(x, y)

with x ≤ ω ≤ min
{
x+y
2 , 2x

}
such that (x |ϕ ω) = (y |ϕ ω). Moreover, ω(x, y) = x

if and only if ϕ is a dilation, that is, ϕ(x) = λx for some λ > 0.

Proof. For z ∈ [x, y], the equation (x |ϕ z) = (y |ϕ z) rewrites as

(4.5) ϕ(x)− ϕ(y) + ϕ(y − z)− ϕ(z − x) = 0.

Let f(z) = 2[(x |ϕ z)− (y |ϕ z)] = ϕ(x) − ϕ(y) + ϕ(y − z)− ϕ(z − x). By Lemma

4.3, z 7→ (x |ϕ z) is decreasing and z 7→ (y |ϕ z) is strictly increasing, and so the

function f(z) is strictly decreasing on [x, y]. Furthermore,

f(x) = ϕ(x) − ϕ(y) + ϕ(y − x) ≥ 0

since ϕ is subadditive, and

f(y) = ϕ(x)− ϕ(y)− ϕ(y − x) < 0

since ϕ is strictly increasing. The function f(z) is continuous and one-to-one on

the interval [x, y] and, by the Intermediate Value Theorem, there exists a unique

w ∈ [x, y] such that f(ω) = 0. Observe that

f
(
x+y
2

)
= ϕ(x) − ϕ(y) ≤ 0
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and, if y ≥ 2x then

f(2x) = ϕ(y − 2x)− ϕ(y) ≤ 0,

hence x ≤ ω ≤ min
{
x+y
2 , 2x

}
. In order to prove the last part of the lemma, assume

that ω = x satisfies (4.5). Then ϕ(y) = ϕ(x) + ϕ(y − x), for all 0 ≤ x ≤ y, which

shows that ϕ is additive. Consequently, ϕ(rx) = rϕ(x) for any nonnegative rational

number r and all x ≥ 0. Since ϕ is continuous, it follows that ϕ(tx) = tx for all

t, x ≥ 0, which shows that ϕ is also homogenous. Thus ϕ is linear and, since ϕ is

unbounded, ϕ(x) = λx for some λ > 0. The converse is evident. �

Lemma 4.6. Assume ϕ ∈ C is not a dilation. If ϕ is of class C1 on (0,∞) then

the solution ω = ω(x, y) given by Lemma 4.4 is increasing as function of y.

Proof. Let F (x, y, z) = ϕ(x) − ϕ(y) + ϕ(y − z) − ϕ(z − x). Then F is of class C1

on the open subset {(x, y, z) ∈ R
3 | 0 < x < z < y} and by Lemma 4.4 there exists

x < ω < y such that F (x, y, ω) = 0. Furthermore, since x < ω < min{x+y2 , 2x} and

ϕ′ is strictly decreasing, we have

∂xF |(x,y,ω) = ϕ′(x) + ϕ′(ω − x) > 0,

∂yF |(x,y,ω) = −ϕ′(y) + ϕ′(y − ω) > 0,

∂zF |(x,y,ω) = −ϕ′(y − ω) + ϕ′(ω − x) > 0.

Then, by the Implicit Function Theorem the solution ω = ω(x, y) is of class C1.

Taking the derivative with respect to y in F (x, y, ω) = 0 gives

−ϕ′(y) + ϕ′(y − ω)(1 − ∂yω)− ϕ′(ω − x)∂yω = 0.

Thus

∂yω =
ϕ′(y − ω)− ϕ′(y)

ϕ′(y − ω) + ϕ′(ω − x)
> 0

which shows that ω = ω(x, y) is increasing as function of y for all 0 < x < y. �

Proposition 4.7. Let ϕ ∈ C and let λ = limt→∞ ϕ′

−
(t). For each x ≥ 0 there

exists a unique ω̂ = ω̂(x) with x ≤ ω̂ ≤ 2x such that

(4.8) ϕ(x) − ϕ(ω̂ − x) = λω̂.

Proof. Note that if ϕ(x) = λx then by Lemma 4.4, ω̂ = ω = x. For the remainder

of the proof we assume that ϕ is not a dilation. Fix x ≥ 0. For each y > x, let

ω = ω(x, y) be the solution of

f(ω) = ϕ(x) − ϕ(y) + ϕ(y − ω)− ϕ(ω − x) = 0

given by Lemma 4.4. We show that ω̂ = ω̂(x) = limy→∞ ω(x, y). To prove that this

limit exists, we use of the uniform approximation of ϕ given by Corollary 2.12. For

this, let ε > 0 and let ψε : [0,∞) → [0,∞) be a continuous concave function, which

is of class C1 on (0,∞) and satisfies ψε(0) = 0 and |ϕ − ψε| ≤ ε. We can assume
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that ψε is not linear (not a dilation), for otherwise if ψε were linear for each ε > 0

then ϕ would be a dilation. By Lemma 4.6, there exists a unique υε = υε(x, y) such

that x < υε < min{x+y2 , 2x} and satisfying

gε(υε) = ψε(x)− ψε(y) + ψε(y − υε)− ψε(υε − x) = 0.

Since |ϕ − ψε| ≤ ε, we have that |gε − f | ≤ 4ε and in particular, |f(ω) − f(υε)| =

|f(υε)| ≤ 4ε. Taking the limit as ε → 0 and using the fact that f is one-to-one on

[x, y], it follows that ω(x, y) = limε→0 υε(x, y). Taking the limit as y → ∞ gives

ω̂ = lim
ε→0

υ̂ε = lim
y→∞

ω(x, y)

satisfying ϕ(x)− ϕ(ω̂ − x)− λω̂ = 0. �

The above observations allow us to show the following.

Proposition 4.9. Let δ ≥ 0 and let ϕ ∈ C be such that ([0,∞), | · |ϕ) is

δ-hyperbolic. Then ϕ satisfies

(4.10) ϕ(ŵ)− ϕ(ŵ − x) ≤ λx+ 2δ

for all x ≥ 0, where λ = limt→∞ ϕ′

−
(t) and ŵ = ŵ(x), x ≤ ŵ ≤ 2x is the unique

solution of

(4.11) ϕ(x) − ϕ(ŵ − x) = λŵ.

Proof. Without loss of generality, we assume that 0 ≤ x ≤ y. Then there are three

possible cases for z.

Case 1. Assume z ≤ x ≤ y. By Lemma 4.3, (z |ϕ y) ≤ (z |ϕ x) and (x |ϕ y) ≥ (z |ϕ

y). Hence, (x |ϕ y) ≥ min{(x |ϕ z), (y |ϕ z)}, that is, the condition (4.2) holds with

δ = 0 and for all ϕ.

Case 2. Assume x ≤ y ≤ z. By Lemma 4.3, (x |ϕ z) ≤ (x |ϕ y) and (y |ϕ z) ≤ (x |ϕ

y), which implies that (x |ϕ y) ≥ min{(x |ϕ z), (y |ϕ z)}. As before, the condition

(4.2) holds with δ = 0 and for all ϕ.

Case 3. Assume x ≤ z ≤ y. Let ω = ω(x,y) be the unique value x ≤ ω ≤

min
{
x+y
2 , 2x

}
satisfying (4.5) as given by Lemma 4.4.

Consider the following two possible situations.

Case 3(a). Assume x ≤ z ≤ ω ≤ y. Then min{(x |ϕ z), (y |ϕ z)} = (y |ϕ z) and the

inequality (4.2) becomes (x |ϕ y) ≥ (y |ϕ z)− δ, or equivalently

ϕ(z)− ϕ(x) + ϕ(y − x)− ϕ(y − z) ≤ 2δ.

For z ∈ [x, ω], let g(z) = 2[(y |ϕ z)−(y |ϕ x)] = ϕ(z)−ϕ(x)+ϕ(y−x)−ϕ(y−z). From

Lemma 4.3, the function g(z) is increasing on [x, ω], and hence maxz∈[x,ω] g(z) =

g(ω). Thus it suffices to find conditions on ϕ such that

ϕ(ω)− ϕ(x) + ϕ(y − x)− ϕ(y − ω) ≤ 2δ
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for all 0 ≤ x ≤ y. Taking the limit as y → ∞ in the above inequality and letting

λ = limt→∞ ϕ′

−
(t) yields

ϕ(ω̂)− ϕ(x) + λ(ω̂ − x) ≤ 2δ

where ω̂ = ω̂(x) is given by Proposition 4.7. Combining with (4.8), this gives

ϕ(ω̂)− ϕ(ω̂ − x) ≤ λx + 2δ.

Case 3(b). Assume x ≤ ω ≤ z ≤ y. Then min{(x |ϕ z), (y |ϕ z)} = (x |ϕ z) and the

inequality (4.2) becomes (x |ϕ y) ≥ (x |ϕ z)− δ, or equivalently

ϕ(z)− ϕ(y) + ϕ(y − x)− ϕ(z − x) ≤ 2δ.

For z ∈ [w, y], let h(z) = 2[(x |ϕ z)− (y |ϕ x)] = ϕ(z)−ϕ(y) +ϕ(y− x)−ϕ(z − x).

By Lemma 4.3, the function h(z) is decreasing on [ω, y] and since maxz∈[ω,y] h(z) =

h(ω) it suffices to find conditions on ϕ such that

ϕ(ω)− ϕ(y) + ϕ(y − x) − ϕ(ω − x) ≤ 2δ

for all 0 ≤ x ≤ y. Taking the limit as y → ∞ yields

ϕ(ω̂)− ϕ(ω̂ − x)− λx ≤ 2δ

where, as before, ω̂ = ω̂(x) is given by Proposition 4.7. �

As noted in Remark 2.10, if λ = limx→∞ ϕ′

−
(x) then λ ≥ 0, and as we will next

see the cases λ = 0 and λ > 0 define mutually disjoint classes of functions.

Consider first the case λ = 0. Then, from (4.11), ϕ(x) = ϕ(ω̂ − x) and since ϕ

is one-to-one, this implies that ω̂ = 2x. In this case, the condition (4.10) becomes

ϕ(2x)− ϕ(x) ≤ 2δ, and we have the following.

Corollary 4.12. Let δ ≥ 0. Let ϕ ∈ C be such that limx→∞ ϕ′

−
(x) = 0 and

([0,∞), | · |ϕ) is δ-hyperbolic. Then for all x ≥ 0,

(4.13) ϕ(2x)− ϕ(x) ≤ 2δ.

Condition (4.13) is equivalent to ϕ′

−
(x) ≤ M/x for all x > 0, where M ≥ 0 is a

constant depending on δ. We say that a function satisfying (4.13) is logarithm-like.

The precise relationship between the δ and M is given as follows.

Proposition 4.14 (Characterization of logarithm-like concave functions).

Let ϕ ∈ C. Then

(i) If ϕ(2x)− ϕ(x) ≤ 2δ for all x ≥ 0 then ϕ′

−
(x) ≤ 4δ/x for all x > 0,

(ii) If ϕ′

−
(x) ≤M/x for all x > 0 then ϕ(2x)− ϕ(x) ≤M ln(2) for all x ≥ 0.

Proof. (i) If x > 0 then by Proposition 2.7,

ϕ′

−
(2x) ≤

ϕ(2x) − ϕ(x)

2x− x
≤

2δ

x
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or equivalently, ϕ′

−
(x) ≤ 4δ/x, for all x > 0.

(ii) If ϕ′

−
(t) ≤ M/t for all t > 0 then, by Corollary 2.8, integration over [x, 2x]

with x > 0 yields ϕ(2x) − ϕ(x) ≤M ln(2). �

We now consider the case λ > 0. In this case (4.10) together with (4.11) implies

that

ϕ(ω̂)− ϕ(x) ≤ λ(x − ω̂) + 2δ

and since ϕ is increasing and x ≤ ω̂, this yields λ(x − ω̂) + 2δ ≥ 0, or equivalently

0 ≤ ω̂ − x ≤ 2δ/λ. Together with (4.10) this gives

ϕ(ω̂) ≤ λx+ ϕ(ω̂ − x) + 2δ ≤ λx+ ϕ(2δ/λ) + 2δ

which implies

ϕ(x) ≤ λx+ ϕ(2δ/λ) + 2δ.

Furthermore, since ϕ is concave, the condition λ > 0 implies that λx ≤ ϕ(x) for all

x ≥ 0. Thus we have the following.

Corollary 4.15. Let δ ≥ 0. Let ϕ ∈ C be such that λ = limx→∞ ϕ′

−
(x) > 0 and

([0,∞), | · |ϕ) is δ-hyperbolic. Then for all x ≥ 0

(4.16) λx ≤ ϕ(x) ≤ λx + ϕ(2δ/λ) + 2δ.

Remark 4.17. If a function ϕ ∈ C satisfies the conditions of the preceding corollary

then ϕ(x) = λx+ f(x), where f : [0,∞) → [0,∞) is a bounded continuous concave

function satisfying f(0) = 0 and 0 ≤ f(x) ≤ ϕ(2δ/λ) + 2δ for all x ≥ 0. In

particular, ϕ is an (λ, k)-approximate dilation with k = ϕ(2δ/λ) + 2δ.

Consequently, we obtain the following characterization of unbounded continuous

concave functions ϕ : [0,∞) → [0,∞) satisfying ϕ(0) = 0 for which the transformed

Euclidean metric |x− y|ϕ = ϕ(|x − y|) on [0,∞) is Gromov hyperbolic.

Theorem 4.18. Let ϕ ∈ C and let λ = limx→∞ ϕ′

−
(x). The transformed Euclidean

half line ([0,∞), | · |ϕ) is Gromov hyperbolic if and only if ϕ has of one of the

following forms:

(i) λ > 0 and ϕ(x) = λx+f(x), where f is a nonnegative, bounded, continuous

concave function satisfying f(0) = 0, or

(ii) λ = 0 and ϕ(2x)− ϕ(x) is bounded.

Proof. Let ϕ ∈ C and let λ = limx→∞ ϕ′

−
(x). If ([0,∞), | · |ϕ) is δ-hyperbolic for

some δ ≥ 0, then the conclusion follows from Corollary 4.15 and Remark 4.17 if

λ > 0, and from Corollary 4.12 if λ = 0. Conversely, if ϕ has form (i) then ϕ

is an approximate dilation and since the Euclidean half line is 0-hyperbolic, the

transformed space ([0,∞), | · |ϕ) is Gromov hyperbolic by Proposition 3.4. If ϕ is

of form (ii) then ϕ is logarithm-like and ([0,∞), | · |ϕ) is approximately ultrametric

by Proposition 3.12 and therefore Gromov hyperbolic by Proposition 3.9. �
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5. Approximately Nondecreasing Metric Transforms of the

Euclidean Half Line

In this section we extend Theorem 4.18 to the more general class of approximately

nondecreasing metric transforms (Theorem 5.3).

RecallM is the class of all metric transforms. Observe that since for all 0 ≤ s ≤ t

the triplets ( t+s2 , t−s2 , s) and ( t+s2 , t−s2 , t) are triangle triplets, any ϕ ∈ M satisfies

the inequality

∣∣ϕ
(
t+s
2

)
− ϕ

(
t−s
2

)∣∣ ≤ 1
2ϕ(t) +

1
2ϕ(s) ≤ ϕ

(
t+s
2

)
+ ϕ

(
t−s
2

)
.

Our next proposition shows that the requirement that the transformed Euclidean

half line ([0,∞), | · |ϕ) is Gromov hyperbolic imposes additional conditions on the

metric transform ϕ.

Proposition 5.1. Let δ ≥ 0. If ϕ ∈ M is such that ([0,∞), | · |ϕ) is δ-hyperbolic

then for all 0 ≤ s ≤ t,

∣∣ϕ
(
t+s
2

)
− ϕ

(
t−s
2

)∣∣ ≤ 1
2ϕ(t) +

1
2ϕ(s) ≤ max

{
ϕ
(
t+s
2

)
, ϕ

(
t−s
2

)}
+ δ.

Proof. Let δ ≥ 0 and let ϕ ∈ M be such that ([0,∞), | · |ϕ) is δ-hyperbolic. The

four point condition for the transformed metric | · |ϕ (see Proposition 3.3), implies

that ϕ satisfies the following inequality

ϕ(|x− y|) +ϕ(|z −w|) ≤ max{ϕ(|x− z|) +ϕ(|y−w|), ϕ(|x−w|) +ϕ(|y− z|)}+2δ

for all x, y, z, w ≥ 0. Taking w = 0 and z = x+ y yields

ϕ(|x − y|) + ϕ(x+ y) ≤ max{2ϕ(y), 2ϕ(x)} + 2δ,

and by letting t = x+ y and s = |x− y|, we have that 0 ≤ s ≤ t and

ϕ(s) + ϕ(t) ≤ 2max
{
ϕ
(
t+s
2

)
, ϕ

(
t−s
2

)}
+ 2δ. �

The following proposition shows that approximately nondecreasing metric trans-

forms ϕ ∈ M for which ([0,∞), | · |ϕ) is Gromov hyperbolic are approximately

midpoint-concave and therefore, by Corollary 2.16, approximately concave.

Recall that a function ϕ : [0,∞) → R is approximately nondecreasing if there

exists η ≥ 0 such that ϕ(t) ≤ ϕ(s) + η whenever 0 ≤ t ≤ s. The function ϕ is

approximately midpoint-concave if there exists δ ≥ 0 such that 1
2ϕ(t) +

1
2ϕ(s) ≤

ϕ
(
t+s
2

)
+ δ for all t, s ≥ 0.

Proposition 5.2. Assume ϕ ∈ M is a η-nondecreasing metric transform such

that ([0,∞), | · |ϕ) is δ-hyperbolic. Then there exists a continuous concave metric

transform ψ ∈ C such that |ϕ− ψ| ≤ η + 2δ.
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Proof. Since ϕ is η-nondecreasing, if 0 ≤ s ≤ t then ϕ
(
t−s
2

)
≤ ϕ

(
t+s
2

)
+ η and

thus max
{
ϕ
(
t+s
2

)
, ϕ

(
t−s
2

)}
≤ ϕ

(
t+s
2

)
+ η. Since ([0,∞), | · |ϕ) is δ-hyperbolic, by

Proposition 5.1,
1
2ϕ(t) +

1
2ϕ(s) ≤ ϕ

(
t+s
2

)
+ 1

2η + δ,

which shows that ϕ is
(
1
2η + δ

)
-midpoint-concave. The existence of a continuous

concave metric transform ψ ∈ C with |ϕ−ψ| ≤ η+2δ is given by Corollary 2.16. �

The following result shows that the characterization given by Theorem 4.18

extends to the approximately nondecreasing metric transforms.

Theorem 5.3 (Theorem A). Let ϕ be an approximately nondecreasing, unbounded

metric transform. The transformed metric space ([0,∞), | · |ϕ) is Gromov hyperbolic

if and only if one of the following two mutually exclusive conditions holds:

(i) ϕ is an approximate dilation, or

(ii) ϕ is logarithm-like.

Proof. Fix η, δ ≥ 0. Assume ϕ ∈ M is an unbounded η-nondecreasing metric

transform such that ([0,∞), | · |ϕ) is δ-hyperbolic. By Proposition 5.2, there exists

a continuous concave metric transform ψ ∈ C such that |ϕ(t)−ψ(t)| ≤ η+2δ for all

t ≥ 0. Notice that ψ is an unbounded continuous concave metric transform and the

transformed Euclidean half line ([0,∞), | · |ψ) is (2η+ 6δ)-hyperbolic. By Theorem

4.18, ψ is either an approximate dilation or a logarithm-like metric transform. Since

ϕ is within bounded distance from ψ, the conclusion follows. �

6. Proof of Theorem B

In this section we prove Theorem B (Theorem 6.4) and its corollary (Corollary

6.5) as stated in the introduction.

Recall that a rough isometric embedding between two metric spaces X and Y is

given by a map f : X → Y and a constant k ≥ 0 such that for all x, y ∈ X

dX(x, y)− k ≤ dY (f(x), f(y)) ≤ dX(x, y) + k.

Lemma 6.1. Assume that f : X → Y is a k-rough isometric embedding. If Y is

δ-hyperbolic then X is (δ + 2k)-hyperbolic.

Proof. We use the 4-point inequality in Proposition 3.3. Let x, y, z, w ∈ X . Then

dX(x, y) + dX(z, w) ≤ dY (f(x), f(y)) + dY (f(z), f(w)) + 2k

≤ max{dY (f(x), f(z)) + dY (f(y), f(w)), dY (f(x), f(w)) + dY (f(y), f(z))}+ 2δ + 2k

≤ max{dX(x, z) + dX(y, w) + 2k, dX(x,w) + dX(y, z) + 2k}+ 2δ + 2k

= max{dX(x, z) + dX(y, w), dX(x,w) + dX(y, z)}+ 2(δ + 2k).

which shows that (X, dX) is (δ + 2k)-hyperbolic. �
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Theorem 6.2. Let ϕ ∈ M be an unbounded, approximately nondecreasing metric

transform. The transformed Euclidean half line ([0,∞), | · |ϕ) can be roughly iso-

metrically embedded in a Gromov hyperbolic space (X, d) if and only if ϕ is of one

of the following forms:

(i) ϕ is approximate dilation,

(ii) ϕ is logarithm-like.

Proof. If ([0,∞), | · |ϕ) admits a rough isometric embedding into a Gromov hyper-

bolic space then by Lemma 6.1 it is Gromov hyperbolic and the conclusion follows

from Theorem 5.3. �

Recall that a rough geodesic ray in a metric space (X, d) is a rough isometric

embedding of the Euclidean half line [0,∞) into X .

Lemma 6.3. Let γ : [0,∞) → (X, d) be a k-rough geodesic ray and let ϕ ∈ M be

a η-nondecreasing, unbounded metric transform. Then γ : ([0,∞), | · |ϕ) → (X, dϕ)

is a (ϕ(k) + η)-rough isometric embedding.

Proof. Since γ : [0,∞) → (X, d) is a k-rough geodesic ray for all t, s ≥ 0

|t− s| − k ≤ d(γ(t), γ(s)) ≤ |t− s|+ k

and since ϕ is η-nondecreasing

ϕ(|t− s| − k) ≤ ϕ(d(γ(t), γ(s))) + η ≤ ϕ(|t− s|+ k) + 2η.

Since ϕ is subadditive

ϕ(|t− s|)− ϕ(k) ≤ ϕ(d(γ(t), γ(s))) + η ≤ ϕ(|t− s|) + ϕ(k) + 2η

or equivalently |t− s|ϕ − ϕ(k)− η ≤ dϕ(γ(t), γ(s)) ≤ |t− s|ϕ + ϕ(k) + η. �

Theorem 6.4 (Theorem B). Let (X, d) be a metric space containing a rough geo-

desic ray. Let ϕ be an approximately nondecreasing, unbounded metric transform.

If the transformed space (X, dϕ) is Gromov hyperbolic then

(i) (X, d) is Gromov hyperbolic and ϕ is an approximate dilation, or

(ii) (X, dϕ) is approximately ultrametric.

Proof. Let γ : [0,∞) → X be a rough geodesic ray in (X, d). Then by Lemma 6.3,

the map γ : ([0,∞), | · |ϕ) → (X, dϕ) is a rough isometric embedding, and since

(X, dϕ) is Gromov hyperbolic, by Lemma 6.1, the transformed Euclidean half line

([0,∞), | · |ϕ) is Gromov hyperbolic. By Theorem 5.3, this occurs if and only if

the metric transform ϕ is either an approximate dilation or logarithm-like. In the

former case (X, d) is roughly similar to (X, dϕ) by Remark 3.6 and therefore Gro-

mov hyperbolic by Proposition 3.5, and in the latter case (X, dϕ) is approximately

ultrametric by Proposition 3.12. �
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The following corollary of Theorem 6.4 can be viewed as a type of rigidity with

respect to metric transformation of roughly geodesic Gromov hyperbolic spaces.

Corollary 6.5. Let (X, d) be a metric space containing a rough geodesic ray. Let ϕ

be an approximately nondecreasing, unbounded metric transform. If the transformed

space (X, dϕ) is Gromov hyperbolic and roughly geodesic then ϕ is an approximate

dilation and (X, d) is Gromov hyperbolic and roughly geodesic.

Proof. Since (X, d) contains a rough geodesic and the transformed space (X, dϕ) is

Gromov hyperbolic, it follows as in the proof of Theorem 6.4 that ([0,∞), | · |ϕ) is

Gromov hyperbolic and by Theorem 5.3 that ϕ is either an approximate dilation

or a logarithm-like metric transform. However, ϕ cannot be a logarithm-like since

Proposition 3.12 would then imply that (X, dϕ) is approximately ultrametric and

by Proposition 3.15 this would contradict the assumption that (X, dϕ) is roughly

geodesic. Thus ϕ has to be an approximate dilation and by Remark 3.6 (X, d) is

roughly similar to (X, dϕ), hence the metric space (X, d) is Gromov hyperbolic and

roughly geodesic. �
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