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METRIC TRANSFORMS YIELDING GROMOV HYPERBOLIC
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ABSTRACT. A real valued function of one variable ¢ is called a metric trans-
form if for every metric space (X, d) the composition d, = ¢ od is also a met-
ric on X. We give a complete characterization of the class of approximately
nondecreasing, unbounded metric transforms ¢ such that the transformed Eu-
clidean half line ([0, 00),| - |,) is Gromov hyperbolic. A consequence of this
result is a type of rigidity with respect to metric transformation of roughly
geodesic Gromov hyperbolic spaces: If (X, d) is any metric space containing a
rough geodesic ray and ¢ is an approximately nondecreasing, unbounded met-
ric transform such that the transformed space (X, d,) is Gromov hyperbolic
and roughly geodesic then ¢ is an approximate dilation and (X, d) is Gromov
hyperbolic and roughly geodesic.

1. INTRODUCTION

A function ¢: [0,00) — [0,00) is called a metric transform if for each metric
space (X, d) the composition d, = ¢ od is also a metric on X. A metric transform
¢ is necessarily subadditive and satisfies ¢ ~1(0) = {0}. While these two conditions
on @ are not sufficient for it to be a metric transform, if we further require that
 is nondecreasing then it is a metric transform. In particular, any nonconstant,
nonnegative concave function ¢ with domain [0,00) and satisfying ¢(0) = 0 is a
metric transform.

A central question concerning metric transforms is whether there exist metric
transforms ¢ for which the transformed metric space (X, d,) has certain specified
properties or preserves some of the characteristics of the original metric space (X, d).
Early results about transformed metric spaces dealt with their “Euclidean” prop-
erties. Blumenthal [Blu43] showed that if 0 < o < £ and (X, d) is any metric space
then the snowflake metric d* is Ptolemaic, that is, any four points in (X, d®) can be
isometrically embedded into Euclidean space. Wilson [Wil35] showed that the real
line with the snowflake metric |t — s|*/2 embeds isometrically in real infinite dimen-

sional space, but cannot embed isometrically in any finite dimensional Euclidean

Date: October 17, 2017.

2010 Mathematics Subject Classification. Primary: 51K05, Secondary: 51F99, 51M10.

Key words and phrases. metric transform, §-hyperbolic, roughly geodesic, rigidity.

The second author was partially supported by a grant from the Natural Sciences and Engi-
neering Research Council of Canada.


http://arxiv.org/abs/1710.05078v1

2 DRAGOMIR AND NICAS

space E". Remarkable results in this direction were obtained by Schoenberg, inde-
pendently in [Sch38a, Sch38b] and, together with von Neumann in [vNS41], where
they determined all metric transforms ¢ for which the transformed metric space
(E™,|-|,) embeds isometrically into E™ for given 1 < m,n < co.

Our aim is to investigate analogous types of questions in the context of Gromov
hyperbolic spaces. Recall that if (X, d) is a metric space and z,y,w € X then the

Gromov product of x and y with respect to w is defined as

(@ | Y)w = 3 [d(z,w) + d(y,w) — d(z,y)].

Given ¢ > 0, the metric space (X, d) is said to be §-hyperbolic if

(| Y)w > min{(z | 2)w, (Y | 2)w} — 6

for all z,y, z,w € X. A metric space (X, d) is said to be Gromov hyperbolic if it is
0-hyperbolic for some ¢ > 0.

A basic example of a Gromov hyperbolic metric space is ([0,0),] - |), the half
line with the Euclidean metric. In this case, the Gromov product based at 0 is
(t | s)o = min{t, s} and the space is 0-hyperbolic. Another well-known example is
the hyperbolic plane, which is In(3)-hyperbolic. Euclidean space E™, n > 2, is not
Gromov hyperbolic.

We say that a function is approzimately nondecreasing if it is within bounded
distance from a nondecreasing function. Our first result gives a complete character-
ization of the class of approximately nondecreasing, unbounded metric transforms
¢ such that ([0, 00), |- |,) is Gromov hyperbolic. Some additional terminology will
be useful. Recall that a dilation on [0,00) is a function of the form ¢ — At where
A is a positive constant. We say that the function ¢ is an approximate dilation
if it is within bounded distance from a dilation. Furthermore, we say that ¢ is

logarithm-like if the function ¢t — ¢(2t) — ¢(t) is bounded from above.

Theorem A. Let ¢ be an approximately nondecreasing, unbounded metric trans-
form. The transformed metric space ([0,00),]|-|,) is Gromov hyperbolic if and only

if one of the following two mutually exclusive conditions holds:

(i) ¢ is an approzimate dilation, or

(ii) o is logarithm-like.

It is straightforward to show that if ¢ is a metric transform and also an ap-
proximate dilation then ¢ preserves Gromov hyperbolicity, that is, if (X, d) is any
Gromov hyperbolic space then (X, d,,) is also Gromov hyperbolic (Proposition 3.4).

The function ¢ +— In(1 + t) is a metric transform and logarithm-like (as defined
above), indeed the inspiration for the terminology “logarithm-like”. Gromov ob-

served that if (X, d) is any metric space then (X, In(1 + d)) is Gromov hyperbolic
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([Gro87, Example 1.2(c)]). More generally, we show that if an approximately non-
decreasing metric transform ¢ is logarithm-like then the transformed space (X, d,,)
is “approximately ultrametric” and hence Gromov hyperbolic (Proposition 3.12).
(We say that a metric space (X, d) is approximately ultrametric if there exists § > 0
such that for all z,y,z € X the inequality d(z,y) < max{d(z,z),d(z,y)} + 0 is
satisfied.) An unbounded, approximately ultrametric space fails to have the rough
midpoint property and so is never a rough geodesic metric space (Proposition 3.15).

A rough geodesic ray in a metric space (X,d) is a rough isometric embedding
of the Euclidean half line in X, that is, a function 7: [0,00) — X and a constant
k > 0 such that for all ¢,s > 0, |t —s| — k < d(v(¢),v(s)) < |t — s| + k.

Theorem A has the following consequence.

Theorem B. Let (X,d) be a metric space containing a rough geodesic ray. Let ¢ be
an approzimately nondecreasing, unbounded metric transform. If the transformed

space (X, dy) is Gromov hyperbolic then

(1) (X,d) is Gromov hyperbolic and ¢ is an approzimate dilation, or

(i7) (X,dy) is approzimately ultrametric.

Since an unbounded, approximately ultrametric space is never roughly geodesic,
Theorem B immediately yields the following corollary which can be viewed as a
type of rigidity with respect to metric transformation of roughly geodesic Gromov

hyperbolic spaces.

Corollary (Rigidity). Let (X,d) be a metric space containing a rough geodesic
ray. Let ¢ be an approximately nondecreasing, unbounded metric transform. If
the transformed space (X, d,) is Gromov hyperbolic and roughly geodesic then ¢

is an approximate dilation and (X, d) is Gromov hyperbolic and roughly geodesic.

This paper is organized as follows. In Section 2 we recall some of the rele-
vant properties of metric transforms and concave functions. In Section 3, after
reviewing some useful facts concerning Gromov hyperbolic spaces, we introduce
approximately ultrametric spaces and discuss some of their immediate properties.
In Section 4 we give a complete characterization of all concave functions that trans-
form the Euclidean half line into a Gromov hyperbolic space (Theorem 4.18). We
extend this result to the case of approximately nondecreasing, unbounded metric
transforms in Section 5, where we prove Theorem A. The proof of Theorem B and

its application to roughly geodesic Gromov hyperbolic spaces is given in Section 6.

2. METRIC TRANSFORMS, CONCAVE AND APPROXIMATELY CONCAVE FUNCTIONS

We summarize properties of metric transforms, concave functions and approxi-

mately concave functions that will be needed in the sequel.
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2.1. Metric transforms.

Definition 2.1. A function ¢: [0,00) — [0,00) is said to be a metric transform if
for every metric space (X, d) the space (X, d,) with d,(z,y) = ¢(d(z,y)) is again

a metric space. We denote by M the class of all metric transforms.

For any ¢ € M, since dy(x,y) = 0 if and only if x = y, we have that ¢(t) = 0 if
and only if ¢ = 0. Hence, a necessary condition for a function ¢: [0,00) — [0, 00)
to be a metric transform is that ¢~1(0) = {0}.

A complete, albeit somewhat tautological, characterization of the elements of M
can be given as follows. A triplet (a,b,c) of nonnegative real numbers is called a
triangle triplet if a <b+c¢, b<a+cand c<a+b.

Proposition 2.2 ([Cor99, 2.6]). Assume @: [0,00) — [0,00) satisfies ¢~ 1(0) =
{0}. Then ¢ is a metric transform if and only if (p(a),p(d),v(c)) is a triangle

triple whenever (a,b,c) is one. O
Proposition 2.2 implies the following properties of metric transforms.

Proposition 2.3. Assume ¢ € M. Then
(i) @ is subadditive, that is, o(t + s) < @(t) + ¢(s), for all t,s > 0,

(id) [o(t) = (s)] < (|t —s]), for all t,s >0,
(131) @(t) < 2¢(s), for all 0 <t < 2s. O

While subadditivity and ¢~1(0) = {0} are necessary conditions for a function
©: [0,00) — [0,00) to be a metric transform, these conditions are, in general, not
sufficient (see Example 2.5). However, if ¢ is also nondecreasing then it follows

from Proposition 2.2 that ¢ € M. We summarize this as follows.

Proposition 2.4 ([Cor99, 2.3]). Assume ¢: [0,00) — [0,00) with p~1(0) = {0} is

subadditive and nondecreasing. Then ¢ is a metric transform. O

Example 2.5. Let ¢: [0,00) — [0,00) be given by ¢(t) = at + b|sin(t)| with
a > 0and b > 0. Then ¢~ 1(0) = {0}, and the subadditivity of ¢ follows from
|sin(t + s)| = |sin(¢) cos(s) + sin(s) cos(t)| < |sin(t)| + |sin(s)|. Note that if a > b
then ¢ is nondecreasing and, by Proposition 2.4, ¢ is a metric transform. Also note
that ¢ is not concave unless b = 0. If a < b then ¢ is not monotonic and not a

metric transform.

Remark 2.6. In general, metric transforms need not be continuous. It follows from
part (i7) of Proposition 2.3 that if ¢ € M is continuous at 0 from the right then ¢
is continuous on [0, 00). Furthermore, a transformed space (X, d,,) is topologically
equivalent to the original space (X,d) if and only if ¢ is continuous. The metric

topology on (X, d,,) is discrete for every metric d if and only if ¢ is discontinuous
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at 0 (see [Cor99, 3.1]). Similarly, the differentiability of a metric transform is
influenced by its behaviour near 0. For any metric transform ¢, the right derivative
¢’ (0) exists in the extended sense and if ¢/, (0) < oo then ¢ is ¢, (0)-Lipschitz on
(0,00) and therefore differentiable except possibly at countably many points (see
[Cor99, 4.7]).

Throughout this paper, unless otherwise specified, metric transforms are not

assumed to be continuous.

2.2. Concave functions. In this subsection, after a very brief review of some basic
properties of concave functions, we summarize some results concerning continuous
concave functions ¢: [0,00) — [0,00) satisfying ¢(0) = 0 that will be used in
Section 4.

Let ¢: I — R be defined on some interval I C R, that is, a connected subset of
R. The function ¢ is concave if for all z,y € I and all ¢ € [0, 1],

(1 =t)e(x) +te(y) < o((1 —t)x + ty).

Reversing the above inequality gives the definition of a convexr function. Hence, ¢
is concave if and only if —¢ is convex.

Convex functions have been extensively studied and many of their properties are
well known. We recall some properties of concave functions that we need, omitting
the proofs as these can be found, for instance, in [RV73, Chapter IJ.

By definition, a function ¢ is concave if and only if any portion of its graph
lies on or above the chord connecting the end points of this portion of the graph.
Alternatively, ¢ is concave if and only if any of the following inequalities

p(2) — @)  wly) —elz) _ ely) = »(2)
z—x y—x y—2z
hold for all x < z <y (see [RVT73, Sec. 1.10 (2)]).

The following elementary properties of concave functions (see [RV73, Theorems

1.10.A, B and C]) will be useful.

Proposition 2.7. Assume ¢: [0,00) = R is a concave function. Then ¢ satisfies a

Lipschitz condition on any compact interval contained in (0,00) and it is therefore

continuous on (0,00). The left derivative ¢’ and the right derivative ', of ¢ exist

at every point in (0,00) and

p(y) — o)
y—x

for all 0 < & < y. Hence both one-sided derivatives are nonincreasing on (0,00)

¢ (x) > ¢y (z) > > ¢ (y) > ¢\ (y)

and, at each point, the left derivative is no smaller than the right derivative. In par-

ticular, ¢ is differentiable on (0,00) except possibly at countable many points. [
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The next two corollaries are direct consequences of Proposition 2.7. The first is
a version of the Fundamental Theorem of Calculus (see Remark 1.12.B in [RV73)),
and the second uses the fact that any point of local maximum of a concave func-
tion is also a point of global maximum. Together with the assumption that ¢ is

nonnegative, this implies that if ¢ is unbounded then it must be increasing.

Corollary 2.8. If p: [0,00) = R is a continuous concave function on [0,00) then

for any x,y 2 0;
Yy Yy
p(y)—p(z) = / ¢ (t)dt = / @y (t)dt. O

Corollary 2.9. Let ¢: [0,00) — [0,00) be a concave function such that ©(0) = 0
and ¢ is not constant on (0,00). Then either of the following holds:
(i) @ is strictly increasing, or
(1) there exists a > 0 such that ¢ is strictly increasing on [0, a) and ¢(z) = p(a)
for all x > a. O

Remark 2.10. Since the one-sided derivatives are nonincreasing and ¢’ ()
¢’ (x) >0 for all z > 0, there exists A > 0 such that

Y

lim ¢’ (z) = lim ¢/, (z) =\
Tr—r 00

Tr—r00

Another important property of concave functions defined on a possibly infinite
open interval I C R is that they can be globally approximated by concave functions
which are real analytic on I. Azagra showed ([Azal3, Theorem 1.1]) that for every
convex function f: U — R defined on an open convex subset U C R", n > 1,
and every € > 0, there exists a real analytic convex function g: U — R such that
f—e<g<f. Wewill only be interested in uniform approximations by functions
which are of class C! and so the following weaker version of Azagra’s theorem for

concave functions is sufficient for our purpose.

Proposition 2.11 (cf. [Azal3, Theorem 1.1] ). Let U C R be an open connected
subset and let ¢: U — R be a concave function. For every ¢ > 0 there exists a C*

concave function o: U — R such that p <o < ¢ +e. O

If ¢: [0,00) — [0,00) is a continuous concave function such that ¢(0) = 0 then
Proposition 2.11 provides C' concave approximations of ¢ on the open interval
(0, 00). To obtain an approximation of ¢ by a concave function which is continuous
on [0,00) and of class C' on (0,00), we wish to extend ¢ to a continuous concave
function defined at the left of 0. Observe that this is not possible if the right deriv-
ative ¢, (0) is undefined, but as the proof of the next result shows, we can slightly
modify the function ¢ near zero in order for such a continuous concave extension

to exist. The following corollary plays a key role in the proof of Proposition 4.7.
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Corollary 2.12. Let ¢: [0,00) — [0,00) be a continuous concave function such that
©(0) = 0. For every € > 0 there exists a continuous concave function 1: [0,00) —
[0, 00) which is of class C* on (0,00), satisfies 1(0) =0 and |¢ — | < €.

Proof. Observe that, by concavity, if @ > 0 and ¢/, (a) < m < ¢’ (a) then p(z) <
o(a) +m(z —a) for all x > 0, that is, the graph of ¢ lies on or under the line with
slope m and passing through (a,(a)). Replacing the portion of the graph of ¢
above [0, a] by the line segment m(z — a) + ¢(a) we obtain a continuous concave
function which extends indefinitely at the left of 0 and which is equal to ¢ on [a, 00).
Given € > 0, we let a = ¢~ *(¢/2) and m = ¢/, (a), and define o.: R — R by
Go(x) = 1 P9 if 2 > o7 (e/2)
) (@7 e/2)e — TN (e/2)] +e/2 itz <¢TM(e/2).
The function @, is concave and for all x > 0 it satisfies p(x) < @ (z) < p(z) + /2.
By Proposition 2.11, applied to the function @.: R — R and with ¢ = £/2, there
exists a C! concave function : R — R such that ¢. < & < @. +¢/2. Furthermore,
if Yo = @el[0,00) aNd 0 = 7[00y then on [0, 00) we have
0<p<ype<o<p.+e/2<p+e
Since 0 < ¢(0) < ¢ and o is increasing, it follows that o(z) — o(0) > 0 and
p(x) —e <o(x) —a(0) < p(x) +¢
for all 2 > 0. Define 9(x) = o(x) — o(0). Then ¢: [0,00) — [0, 00) is a continuous
concave function which is C* on (0, 00) and satisfies 1/(0) = 0 and |p — | <e. O

2.3. Approximately concave functions. In this subsection we show that ap-
proximately midpoint-concave functions can be uniformly approximated by contin-
uous concave functions (Corollary 2.16). This result will be used in Section 5 and

Section 6.
Definition 2.13. Let ¢: I — R be defined on some interval I C R, and let 6 > 0.
(i) ¢ is said to be d-concave if for all x,y € I and all ¢ € [0, 1],
(1 =p(x) +te(y) < (1 = ) + ty) + 6.
(i7) ¢ is called §-midpoint-concave (or §-midconcave) if for all z,y € I,
30(@) + 50(y) <o (F34) + 4.

We say that the function ¢ is approzimately concave (respectively, approzimately
midpoint-concave) if it is d-concave (respectively, d-midpoint-concave) for some
d > 0. Taking 6 = 0 recovers the definition of a concave (respectively, midpoint-
concave) function.

If ¢ is continuous (or locally bounded from below) then ¢ is concave if and
only if ¢ is midpoint-concave (see [RV73, Theorem VII.71.C]). Here we show that
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approximately midpoint-concave functions ¢: [0,00) — [0,00) with ¢(0) = 0 can
be uniformly approximated on [0, 00) by continuous concave functions v satisfying

1(0) = 0. This is a consequence of the following two results.

Proposition 2.14 ([NN93, Theorem 1]). Let I C R be an open interval. If
w: I — R is d-midpoint-concave and bounded from below at a point in I then ¢

is 20-concave. O

Proposition 2.15 ([HU52, Theorem 2|). Assume ¢: I — R is d-concave on an
open interval I C R. Then there exists a continuous concave function f: I — R

such that |o(z) — f(x)| < /2, for all x € I. O

Corollary 2.16. Assume ¢: [0,00) — [0,00) is approzimately midpoint-concave
and ©(0) = 0. Then there exists a continuous concave function 1: [0,00) — [0, 00)
satisfying ¥(0) = 0 and such that |o(x) — 1 (x)| is uniformly bounded on [0, 00).

Proof. Assume ¢: [0,00) — [0, c0) is §-midpoint-concave, for some § > 0. Since ¢ is
bounded from below by 0 on (0, 00) by Proposition 2.14, ¢ is 2§-concave on (0, 00),
and by Proposition 2.15, there exists a continuous concave function f: (0,00) — R
such that |¢o(x) — f(x)] <4, for all © > 0. Notice that f is bounded from below by
—d on (0,00) and since f is continuous, it is also nondecreasing (cf. Corollary 2.9).
Thus f can be extended by continuity at 0 and f(0) = lim,_,g+ f(2) > —d. Define
P: [0,00) = [0,00) by ¥(z) = f(x) — f(0). Then ¢ is continuous, concave, and
satisfies 1(0) = 0 and |¢(z) — ¥(x)| < |p(z) — f(x)|+|f(0)] <2 for all z > 0. O

3. GROMOV HYPERBOLIC SPACES

Gromov hyperbolic spaces were introduced by Gromov in his landmark paper
[Gro87] to study infinite groups as geometric objects. See [V05] for the basics
of Gromov hyperbolic spaces for intrinsic metric spaces. In this paper, unless

otherwise specified, we do not assume that a metric space is intrinsic or geodesic.
3.1. Gromov Hyperbolic Spaces.

Definition 3.1. Let (X,d) be a metric space and let w € X. For z,y € X, the

Gromov product of z and y with respect to w is defined to be
(@ | Y)w = 3 [d(z, ) +d(y,w) — d(z,y)].
Definition 3.2. Let § > 0. The metric space (X, d) is said to be §-hyperbolic if

(@ | Y)w > min{(z | 2)w, (Y | 2)w} — 0

for all z,y, z,w € X. A metric space (X, d) is said to be Gromov hyperbolic if it is
0-hyperbolic for some ¢ > 0.
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An inequality equivalent to that of 3.2, known as the 4-point inequality, is given
in the following proposition.
Proposition 3.3 ([Gro87, Lemma 1.1.A]). (X,d) is 0-hyperbolic if and only if
d(z,y) + d(z,w) < max{d(z, z) + d(y, w),d(y, z) + d(x,w)} + 2§
forall z,y, z,w € X. 1
Given constants A > 0 and k > 0, we say that a function ¢: [0,00) — [0,00) is

an (A, k)-approzimate dilation if |p(t) — At| < k for all z > 0. The function ¢ is an
approximate dilation if it is a (A, k)-approximate dilation for some A > 0 and k > 0.

Proposition 3.4. If (X, d) is a §-hyperbolic metric space and ¢ € M is a (A k)-
approzimate dilation then (X,d,) is (A0 + 3k)-hyperbolic.

Proof. For each t > 0 let f(t) = ¢(t) — A\t. Then
d‘/’(‘rv y) = )\d(,T, y) + f(d($, y))
and the Gromov product based at w € X with respect to d,, is
(@ lo Yw = 3ldp(z,w) + dp(y,w) = dy(2,y)]
= 3[Md(z,w) + Md(y, w) — Ad(z,y) + f(d(z,w)) + f(d(y,w)) - f(d(z,y))]
= XNz | y)w + 5(f(d(@,w) + f(d(y,w)) - f(d(z,y))]

where (z | y), denotes the Gromov product at w with respect to the metric d.
Since | f] < k,

M | Y)w —3k/2 < (2[4 Y)w SN | Y)w + 3K/2.
Furthermore, since (X, d) is d-hyperbolic for all z,y,z,w € X
(@ [ y)w = min{(z |y 2)w, (¥ [¢ 2)w} =9,
and thus
(@ o Yw = Mz | y)w — 3k/2

> min{ A\ | 2)w, Ay | 2)w} — A0 — 3k/2

=min{A(z | 2)w + 3k/2,A\(y | 2)w + 3k/2} — X0 — 3k

> min{(z |sa 2)ws (Y |sa 2)w} — A — 3k,

(
(

which shows that the transformed space (X, d,,) is (Ad + 3k)-hyperbolic. O

Two metric spaces X and Y are said to be roughly similar if there exists a (not
necessarily continuous) map f: X — Y and constants A > 0, & > 0 such that
sup,cy dy (y, f(X)) <k and for all z,2" € X

Mx(z,2") — k <dy(f(z), f(2')) < Mdx (x,2") + k.
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A straightforward argument shows that Gromov hyperbolicity is preserved by rough

similarity.

Proposition 3.5. If X and Y are roughly similar metric spaces then X is Gromouv

hyperbolic if and only if Y is Gromov hyperbolic.

Proof. Let f: X =Y be a (A, k)-rough similarity, with A > 0 and k¥ > 0. Assume
X is d-hyperbolic, § > 0. Since f(X) is k-cobounded in Y, for any z’,y’ € Y there
exist z,y € X such that d, (2, f(z)) < k and dy (v/, f(y)) < k. Thus dy (2/,y") <

dy (', f(x))+dy (f (@), f(¥) +dy (v, f(y) < dy (f(@), f(y))+2k < Adx (2, y)+3k.
For all 2,9/, 2',w’ € Y we have

dY(xlay/) + dY(Zlvy/) S A [dx(.’li,y) + dx(Z,’LU)] + 6k
< ANmax{dx(z,2) + dx (y,w),dx (z,w) + dx(y, 2)} + 20] + 6k
= max{\dx(z, z) + Mdx (y, w), Mdx (z,w) + Mdx (y,z)} + 26 + 6k

< max{dy (f(2), f(2)) + dy (f(y), f(w)), dy (f(z), f(w)) + dy (f (), f(2))} + 2A6 + 8k
< max{dy (z/,2") + dy (', w),dy (z', ") + dy (y', 2')} + 2X5 + 12k.

By Proposition 3.3, Y is (A0+6k)-hyperbolic. The proof of the converse is similar. [

Remark 3.6. If ¢ € M is a (A, k)-approximate dilation then (X,d) and (X,d,)
are (A, k)-roughly similar.

3.2. Approximately Ultrametric Spaces. Recall that a metric space (X, d) is
ultrametric if the metric d satisfies the inequality: for all z,y,z € X, d(z,y) <

max{d(z, z),d(y, 2)}, a condition which implies the triangle inequality.

Definition 3.7. Let 6 > 0. We say that a metric space (X,d) is §-ultrametric if
for all z,y,2z € X
d(z,y) < max{d(x,z),d(y,z)} + 9.

We say that (X, d) is approximately ultrametric if it is -ultrametric for some § > 0.

Let x,y,2z € X and let s, m and [ denote the smallest, medium and largest of the
distances d(x,y), d(y, z) and d(z, z). Then the d-ultrametric condition is equivalent
to Il —m < §. Note that if § = 0 this implies that [ = m, exhibiting a well-known
characteristic of ultrametric spaces, namely that triangles in such spaces are either
acute isosceles (that is, the equal sides are the larger sides) or equilateral. If § > 0
then any triangle triplet (I1,1l2,13) consisting of nonnegative numbers less or equal
to ¢ satisfy the d-ultrametric condition, and if one of the numbers I; is greater than
0 then there is at least one other number I;, j # ¢ in the triplet satisfying I; > [; — 0.
In other words, in §-ultrametric spaces “small triangles” (with side length less than
) can have any shape, and “large triangles” (with one side length at least §) are

acute d-almost isosceles or §-almost equilateral.
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The relationship between d-ultrametric and §-hyperbolic spaces is given by Propo-
sition 3.9 below. For this purpose, we need the following lemma.
Lemma 3.8. Let § > 0 and let a;; € R, 1,7 € {1,2,3,4}, be such that a;; = aj;.
(1) If a;; < max{ak,ar;} + 0 for all i,j, k then
aij + ar < max{ag + aji, ag + ajr} + 29,
(#7) If a;; > min{ag, ax;} — 6 for all i, 4,k then
a;j + ar > min{a;, + aji, ai + ajr} — 26.
Note that if L, M and S denote the largest, medium and smallest of the sums
aij + G, ix + aj; and ay + aji for some choice of 4, j, k,1 € {1,2,3,4}, then the

conclusion in part (i) of the lemma is equivalent to L — M < 24, and the one in
part (i) to M — S < 24.

Proof. (i) Fix 4,j,k,1 € {1,2,3,4}. Without loss of generality, assume that L =
a;j +ax is the largest sum and assume that ay < a;;. Since a;; < max{a;, ag; }+9
and a;; < max{a;,a;;} + 9, we have
aij + ap < 2a;; < max{aix + i, ai + ay, arj + @i, agg + ag )+ 20.

If a;, > a; and a;; > a; then

M = aix + ay; = max{ag + air, aix + aij, agj + i, agg + a}
and if a;; < ax; and ag; < ay then

M = ay; + ag = max{ag, + air, @i + aij, agj + i, arg + ag
In both cases, L — M < 26. Furthermore, if a;; > ai; and a;; < a; then a;; <
max{a,arj} +0 = aix + 0 and a;; < max{a,a;;} +9 = ay + 0, and since
ag; < max{akj, alj} + 5,
aij + ar < a;j + max{ag;, a;; } + 0 = max{a;; + ak;, a;j +a}+90

< max{ay + 9§ + agj, air + 0 + a;} + 6 = max{ay + akj, aix + a;} + 20.

Finally, if a;x < ag; and a;; > ay then a;; < max{ar,ar;j} + 9 = ap; + 0 and
a;; < max{a;,a;;} + 0 = a;; + 0, and since ap; < max{ag;,a;y} + 0, we have
aij+ap < ajj+max{ar;, ay}+0 < max{a;j+ak;, arj+ay}+29, that is, L—M < 24.
(17) Follows from (i) by taking the negatives of a;;. O

Proposition 3.9. If (X,d) is d-ultrametric then (X, d) is 0-hyperbolic.

Proof. Let x;,i = 1,2,3,4, be four points in X. By part (i) of Lemma 3.8, with
aij = d(xi,xj),
d(zi, xj) + d(xg, x1) < max{d(z;, zx) + d(z;, x1), d(xi, x1) + d(z;, z) } + 26

and the conclusion follows from Proposition 3.3. O
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The case 6 = 0 in Proposition 3.9, that is, the fact that ultrametric spaces are
O-hyperbolic, was observed in [Ibr12, (2.4)].

Remark 3.10. The converse of Proposition 3.9 is not true. For example, the
Euclidean half line ([0, 00), | -|) is O-hyperbolic but not d-ultrametric for any ¢ > 0.
To see this, let 2,y > 0 and z = (z + y)/2. Then the d-ultrametric condition is
equivalent to |x — y| < 2§, which cannot be valid for all ,y > 0.

Definition 3.11. Let n > 0. We say that a function ¢: [0,00) — R is 7-
nondecreasing if t < s implies p(t) < p(s) + 7.

Observe that if ¢: [0,00) — R is n-nondecreasing then the function @™ given by
o1 (t) = sup{p(s) | s <t} is nondecreasing and satisfies 0 < o™ (t) — @(t) < n.

We say that the function ¢: [0,00) — R is approzimately nondecreasing if ¢ is
n-nondecreasing for some 1 > 0. Note that ¢ is approximately nondecreasing if and

only if is within a bounded distance from a nondecreasing function.

Proposition 3.12. Let (X,d) be a metric space and let 6,n > 0. If ¢ € M is
n-nondecreasing and satisfies p(2t) —(t) <6 for allt > 0 then (X, dy) is (6+2n)-

ultrametric.
Proof. For any z,y,z € X,
dy(2,y) = p(d(z,y))
< p(d(z,z) +d(y,z)) +n since p is p-nondecreasing
< p(max{2d(x, 2), 2d(y, 2)}) + 27
< max{p(2d(z, 2)), ¢(2d(y, 2))} + 21
< max{p(d(z,2)) + 9, p(d(y,z)) +d} +2n since p(2t) — ¢(t) <d
= max{dy(z, 2), d,(y,2)} + 5+ 2n
which shows that (X, d) is (0 + 2n)-ultrametric. O
Corollary 3.13 ([Gro87, Example 1.2(c)]). Let o(t) (1+1t),t>0. For any

=In
metric space (X, d), the transformed metric space (X,d,) is In(2)-ultrametric and

so by Proposition 3.9 is In(2)-hyperbolic.

Proof. p(2t) —p(t) =In(1+2t) —In(1+¢) =1n (11"’—3) =In ( — %th) < In(2) for

all ¢ > 0. This inequality is sharp since In (2 — %th) is increasing on [0, 00) and

limy_,o0 In (2 - %H) = In(2). O

Let k > 0. Recall that a k-rough geodesic in a metric space (X,d) is a k-rough
isometric embedding of an interval I C R into X. That is, a map v: I — X (not

necessarily continuous) such that for all ¢, s € I,

[t — sl =k < d(y(D),7(s)) < [t — 8| + .
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The space X is called k-roughly geodesic if for every xz,y € X there exists a k-
roughly geodesic segment joining x and y; and X is called roughly geodesic if it is
k-roughly geodesic for some k > 0. Furthermore, we say that a metric space (X, d)
has the k-rough midpoint property if for every x,y € X there exists z € X such that

max{d(z,z),d(y, 2)} < 3d(z,y) + k.

A space has the rough midpoint property if it has the k-rough midpoint property
for some k£ > 0. The following lemma asserts that the rough midpoint property is

a necessary condition for a space to be roughly geodesic.
Lemma 3.14. If (X, d) is roughly geodesic then it has the rough midpoint property.

Proof. Assume (X, d) is k-roughly geodesic, k > 0. Let 2,y € X and ¢ = d(x,y).
If v: [0,/] — X is a k-rough geodesic segment joining x and y, let z = ~(£/2).
Then (/2 — k < d(x, 2),d(y, z) < £/2 + k which shows that (X, d) has the k-rough
midpoint property. O

Our next result asserts that an unbounded, approximately ultrametric space

cannot be roughly geodesic.

Proposition 3.15. If (X,d) is unbounded and approximately ultrametric then X

s not roughly geodesic.

Proof. Suppose (X, d) is unbounded, d-ultrametric and k-roughly geodesic for some
fixed 0,k > 0. By Lemma 3.14, X has the k-rough midpoint property. Thus, for
any z,y € X, there exists z € X such that max{d(z, z),d(y, 2)} < id(z,y) + k.
From the d-ultrametric inequality (3.7), it follows that

d(z,y) < max{d(z,2),d(y,2)} + 0 < 5d(z,y) + k + 9,
which implies that d(z,y) < 2(k+6), contradicting the fact that X has unbounded

diameter. O

4. CONCAVE METRIC TRANSFORMS OF THE EUCLIDEAN HALF LINE

Let C denote the class of unbounded concave functions ¢: [0,00) — [0, 00) sat-
isfying lim; g+ p(t) = ¢(0) = 0. Note that if ¢ € C then ¢ is strictly increasing,
continuous on [0,00), and differentiable on (0, 00) except possibly at a countable
number of points. In this section we give a simple characterization of all func-
tions ¢ € C for which the transformed Euclidean half line ([0, c0),| - |,) is Gromov
hyperbolic (Theorem 4.18).

For ¢ € C, the Gromov product based at 0 for the transformed FEuclidean metric

|z — y|, = ¢(]z — y|) on the half line [0, 00) is given by

(4.1) (@ lo y) = (@ ] y)o = 5le(@) +0(y) — ¢(lz —y)).



14 DRAGOMIR AND NICAS

Let 6 > 0 and assume that (X, d,) is 6-hyperbolic. Then
(4.2) (x| y) > min{(x |, 2), (y |, 2)} — 6, for all x,y,z > 0.
We investigate the restrictions on ¢ imposed by the inequality (4.2).
Lemma 4.3. Let ¢ € C and fir a > 0. The function
v (al, ) = 5lp(a) + o(z) — @(la - )]
is strictly increasing on [0,a], and decreasing on [a, c0).
Proof. f 0 < 21 < x5 < a then
2(a | m2) = 2(al, 1) = p(22) — @(21) + pla —21) — pla —z2) >0
since ¢ is strictly increasing. Thus x — (a |, x) is strictly increasing on [0,a]. If
0<a<x <zo then

) p(r2) —p(z1)  @(r2 —a) —p(z1 —a)
T — X1 (r2 —a) — (x1 — a)

since the quantity in the square brackets is nonpositive by concavity. Thus x +—

<0

2(a |, x2) —2(a |, x1) = (22 — 21

(a |, ) is decreasing on [a, c0). O

By the Lemma 4.3, for given x,y > 0, the minimum in the right side of (4.2) is
attained at max{z,y} when z < z,y and at min{z,y} when x,y < z. For the case
when z < z <y, or y < z < x, we consider the equation (z |, z) = (y |, 2). The

solution of this equation is the objective of our next lemma.

Lemma 4.4. Let ¢ € C. For each 0 < x < y, there exists a unique w = w(x,y)
with v < w < min {2, 2z} such that (z |, w) = (y |, w). Moreover, w(z,y) = x
if and only if v is a dilation, that is, p(x) = Az for some XA > 0.

Proof. For z € [z,y], the equation (z |, 2) = (y |, z) rewrites as
(4.5) p(x) —¢y) + vy —2) —p(z —2) = 0.

Let f(z) = 2[(z [, 2) = (y |¢ 2)] = () = ¢(y) + (y — 2) = ¢(z — 2). By Lemma
4.3, z = (z |, z) is decreasing and z — (y |, z) is strictly increasing, and so the

function f(z) is strictly decreasing on [z,y]. Furthermore,

f@)=e(@) —ely) + oy —2) 20
since ¢ is subadditive, and
fy) =¢(@) —oly) — oy —2) <0
since ¢ is strictly increasing. The function f(z) is continuous and one-to-one on

the interval [x,y] and, by the Intermediate Value Theorem, there exists a unique
w € [z,y] such that f(w) = 0. Observe that

() = o) —oly) <0
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and, if y > 2z then

f2z) = ¢y — 22) — ¢(y) <0,
hence z < w < min {%, 23:}. In order to prove the last part of the lemma, assume
that w = x satisfies (4.5). Then ¢(y) = p(z) + ¢(y — ), for all 0 < z < y, which
shows that ¢ is additive. Consequently, ¢(rz) = re(z) for any nonnegative rational
number 7 and all z > 0. Since ¢ is continuous, it follows that ¢(tz) = ta for all
t,x > 0, which shows that ¢ is also homogenous. Thus ¢ is linear and, since ¢ is

unbounded, ¢(z) = Az for some A > 0. The converse is evident. O

Lemma 4.6. Assume ¢ € C is not a dilation. If ¢ is of class C* on (0,00) then

the solution w = w(x,y) given by Lemma 4.4 is increasing as function of y.

Proof. Let F(x,y,2) = ¢(x) — o(y) + p(y — 2) — p(z — ). Then F is of class C*
on the open subset {(z,y,2) € R® | 0 < 2 < 2 < y} and by Lemma 4.4 there exists
z < w < y such that F(z,y,w) = 0. Furthermore, since z < w < min{Z}¥ 2z} and
¢ is strictly decreasing, we have

02 F|(zyw) = ¢ (@) + ¢ (w—12) >0,

OyF|(@yw) = —¢'(y) +¢'(y —w) >0,

0 Fl (o) = —¢' (y —w) + ¢ (w—1z) > 0.
Then, by the Implicit Function Theorem the solution w = w(w,y) is of class C?.
Taking the derivative with respect to y in F(x,y,w) = 0 gives

—¢'(y) +¢'(y —w)(1 = Oyw) — ¢'(w — x)0yw = 0.

Thus
b LU=—w =)
Yy —w) ¢ (w—a)
which shows that w = w(x,y) is increasing as function of y for all 0 < x < y. O

Proposition 4.7. Let ¢ € C and let A = limy_,o0 ¢’ (t). For each x > 0 there

exists a unique © = W(x) with x < © < 2x such that
(4.8) ox) — p(@—1x) = A\0.

Proof. Note that if ¢(2) = Az then by Lemma 4.4, @ = w = x. For the remainder
of the proof we assume that ¢ is not a dilation. Fix x > 0. For each y > =z, let

w = w(z,y) be the solution of

fw) =) —oy) + oy —w) —plw —z) =0
given by Lemma 4.4. We show that & = &(z) = lim,_, . w(x,y). To prove that this
limit exists, we use of the uniform approximation of ¢ given by Corollary 2.12. For
this, let € > 0 and let . : [0,00) — [0, 00) be a continuous concave function, which

is of class C! on (0, 00) and satisfies ¥.(0) = 0 and |¢ — .| < . We can assume
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that 1. is not linear (not a dilation), for otherwise if ¥ were linear for each e > 0
then ¢ would be a dilation. By Lemma 4.6, there exists a unique v, = v.(z,y) such
that z < v. < min{Z}¥ 22} and satisfying

ge(ve) = e () — e (y) + e (y — ve) — Ye(ve —x) = 0.
Since |¢ — .| < e, we have that |g. — f| < 4e and in particular, |f(w) — f(ve)| =
|f(ve)| < 4e. Taking the limit as e — 0 and using the fact that f is one-to-one on

[x,y], it follows that w(z,y) = lim._,0 ve(z,y). Taking the limit as y — oo gives

w=lim 0. = lim w(z,y)
e—0 Yy—r00

satisfying ¢(z) — (0 — z) — A& = 0. 0
The above observations allow us to show the following.

Proposition 4.9. Let 6 > 0 and let ¢ € C be such that ([0,00),]| - |,) is
d-hyperbolic. Then ¢ satisfies

(4.10) (W) —p(w — ) < Ax + 26

for all z > 0, where A = lim;_,oo ¢’ (t) and @ = W(x), * < w < 2z is the unique

solution of
(4.11) o(x) — p(w —x) = M.

Proof. Without loss of generality, we assume that 0 < 2 < y. Then there are three

possible cases for z.

Case 1. Assume z < x <y. By Lemma 4.3, (2 |, ¥) < (2 |, ) and (z |, ¥) > (2 |,
y). Hence, (z |, y) > min{(z |, 2), (y |, 2)}, that is, the condition (4.2) holds with
0 =0 and for all ¢.

Case 2. Assume = <y < z. By Lemma 4.3, (z |, 2) < (2 |, y) and (y |, 2) < (z |,
y), which implies that (z |, y) > min{(z |, 2), (y |, 2)}. As before, the condition
(4.2) holds with § = 0 and for all ¢.

Case 3. Assume z < z < y. Let w = w(,,) be the unique value v < w <
min {%, 290} satisfying (4.5) as given by Lemma 4.4.

Consider the following two possible situations.
Case 3(a). Assume z < z < w < y. Then min{(z |, 2), (¥ |x 2)} = (¥ |, #) and the
inequality (4.2) becomes (x |, y) > (y |, 2) — 0, or equivalently

p(z) — (@) + ¢y — ) — oy — 2) < 20.

For z € [x,w], let g(2) = 2[(y |, 2)=(y lo 2)] = p(2)—p(2)+p(y—2)—p(y—2). From
Lemma 4.3, the function g(z) is increasing on [z, w], and hence max.¢(; ., 9(2) =

g(w). Thus it suffices to find conditions on ¢ such that

pw) — (@) + 9y — ) — oy —w) <26
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for all 0 < z < y. Taking the limit as y — oo in the above inequality and letting
A =limy, o0 @' (1) yields
P(@) — o) + A(@ —x) <26
where & = @(x) is given by Proposition 4.7. Combining with (4.8), this gives
P(@) — (0 —x) < Az + 26.

Case 3(b). Assume x < w < z <y. Then min{(x |, 2), (¥ |, 2)} = (x |, #) and the
inequality (4.2) becomes (z |, y) > (2 |, 2) — d, or equivalently

p(2) =) + oy —2) —p(z —x) <26.
For z € [w, y, let h(z) = 2[(z |, 2) = (y [¢ 2)] = (2) = @(y) + ¢y — ) — p(z —2).
By Lemma 4.3, the function h(z) is decreasing on [w, y] and since max_¢j,, 4 h(2) =

h(w) it suffices to find conditions on ¢ such that

p(w) — oY) + oy —2) —plw—1) <20

for all 0 < z < y. Taking the limit as y — oo yields

~

P(W) —p(@—ax) — Az <26
where, as before, & = @(x) is given by Proposition 4.7. O

As noted in Remark 2.10, if A = lim, o ¢" (2) then A > 0, and as we will next
see the cases A = 0 and A > 0 define mutually disjoint classes of functions.

Consider first the case A = 0. Then, from (4.11), ¢(x) = p(@ — z) and since ¢
is one-to-one, this implies that @ = 2x. In this case, the condition (4.10) becomes

v(2x) — p(x) < 26, and we have the following.

Corollary 4.12. Let 6 > 0. Let ¢ € C be such that lim, - ¢ (x) = 0 and
([0,00),| - |p) is d-hyperbolic. Then for all x > 0,

(4.13) ©(2x) — p(x) < 26.

Condition (4.13) is equivalent to ¢’ (x) < M/z for all x > 0, where M > 0 is a
constant depending on 0. We say that a function satisfying (4.13) is logarithm-like.

The precise relationship between the § and M is given as follows.

Proposition 4.14 (Characterization of logarithm-like concave functions).
Let ¢ € C. Then
(1) If o(22) — p(x) <26 for all x > 0 then ¢’ (x) < 46/x for all x > 0,
(1) If ¢' () < M/z for all x > 0 then ¢(2z) — ¢(x) < M In(2) for all x > 0.

Proof. (i) If 2 > 0 then by Proposition 2.7,

¢ (27) < #(22) — () <Y

20 —x T
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or equivalently, ¢’ (z) < 44/x, for all x > 0.

(1) If ¢ (t) < M/t for all t > 0 then, by Corollary 2.8, integration over [z, 2z]
with « > 0 yields ¢(22) — ¢(x) < M In(2). O

We now consider the case A > 0. In this case (4.10) together with (4.11) implies
that
P(@) —p(z) < Mz —©) +20
and since ¢ is increasing and x < @, this yields Az — &) + 2§ > 0, or equivalently
0 <©—x<2§/\ Together with (4.10) this gives

(@) <A+ (@0 — ) +25 < Az + p(26/N) + 26

which implies
o(x) < Az + @(20/X) + 26.
Furthermore, since ¢ is concave, the condition A > 0 implies that Az < ¢(x) for all

x > 0. Thus we have the following.

Corollary 4.15. Let § > 0. Let ¢ € C be such that A = lim, o ¢’ () > 0 and
([0,00),| - |p) is d-hyperbolic. Then for all x > 0

(4.16) Az < p(x) < Az + @(20/X\) + 26.

Remark 4.17. If a function ¢ € C satisfies the conditions of the preceding corollary
then ¢(x) = Az + f(x), where f: [0,00) — [0, 00) is a bounded continuous concave
function satisfying f(0) = 0 and 0 < f(z) < ©(26/\) + 26 for all z > 0. In
particular, ¢ is an (A, k)-approximate dilation with k& = ©(2d/\) + 20.

Consequently, we obtain the following characterization of unbounded continuous
concave functions ¢: [0,00) — [0, 00) satisfying ¢(0) = 0 for which the transformed

Euclidean metric |z — y|, = ¢(]z — y|) on [0, 00) is Gromov hyperbolic.

Theorem 4.18. Let ¢ € C and let A = lim,_, oo ¢’_(x). The transformed Euclidean
half line ([0,00),]| - |,) is Gromov hyperbolic if and only if ¢ has of one of the

following forms:

(i) A >0 and p(x) = Ax+ f(x), where f is a nonnegative, bounded, continuous
concave function satisfying f(0) =0, or
(15) A =0 and p(2z) — p(x) is bounded.

Proof. Let ¢ € C and let A = lim, o0 @' (). If ([0,00), ] |,) is d-hyperbolic for
some 6 > 0, then the conclusion follows from Corollary 4.15 and Remark 4.17 if
A > 0, and from Corollary 4.12 if A = 0. Conversely, if ¢ has form (¢) then ¢
is an approximate dilation and since the Euclidean half line is 0-hyperbolic, the
transformed space ([0, 0),| - |,) is Gromov hyperbolic by Proposition 3.4. If ¢ is
of form (i¢) then ¢ is logarithm-like and ([0, 00), | -|,) is approximately ultrametric

by Proposition 3.12 and therefore Gromov hyperbolic by Proposition 3.9. O
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5. APPROXIMATELY NONDECREASING METRIC TRANSFORMS OF THE
EucLIDEAN HALF LINE

In this section we extend Theorem 4.18 to the more general class of approximately
nondecreasing metric transforms (Theorem 5.3).

Recall M is the class of all metric transforms. Observe that since for all0 < s <t
the triplets (12,552, s) and (2, 552, t) are triangle triplets, any ¢ € M satisfies

the inequality

[ (52) =0 ()] < 3o+ 3ol <0 (552) +0 ()

Our next proposition shows that the requirement that the transformed Euclidean
half line ([0, 00), | - |,) is Gromov hyperbolic imposes additional conditions on the

metric transform .

Proposition 5.1. Let 6 > 0. If ¢ € M is such that ([0,00),| - |,) is 6-hyperbolic
then for all 0 < s <'t,

o (552) — @ (152)] < g0(t) + ge(s) < max {p (H£2) o (53°) } +6.

Proof. Let 6 > 0 and let ¢ € M be such that ([0,00),] - |,) is d-hyperbolic. The
four point condition for the transformed metric | - |, (see Proposition 3.3), implies

that ¢ satisfies the following inequality

el —yl) +¢(lz —wl) < max{p(|z = 2[) + ¢(|ly — w]), p(j —w]) + ¢y — 2])} + 26

for all x,y, z,w > 0. Taking w =0 and z = x + y yields

o(lz —yl) + o(@ +y) < max{2¢(y), 2¢0(x)} + 20,

and by letting t = 2+ y and s = |2 — y|, we have that 0 < s <t and
p(s) +o(t) < 2max{p (F2) ¢ (5%)} +20. O

The following proposition shows that approximately nondecreasing metric trans-
forms ¢ € M for which ([0,00),]| - |,) is Gromov hyperbolic are approximately
midpoint-concave and therefore, by Corollary 2.16, approximately concave.

Recall that a function ¢: [0,00) — R is approximately nondecreasing if there
exists 7 > 0 such that ¢(t) < ¢(s) +n whenever 0 < ¢ < s. The function ¢ is
approximately midpoint-concave if there exists § > 0 such that Fo(t) + 3¢(s) <
cp(HTS) + 6 for all t,s > 0.

Proposition 5.2. Assume ¢ € M is a n-nondecreasing metric transform such
that ([0,00),| - |,) is 6-hyperbolic. Then there exists a continuous concave metric
transform v € C such that | — | < n+ 20.



20 DRAGOMIR AND NICAS

Proof. Since ¢ is n-nondecreasing, if 0 < s < t then ¢ (52) < ¢ (42) 4+ 1 and
thus max {¢ (52) ¢ (52) } < ¢ (52) + 7. Since ([0,00), |- |,) is 6-hyperbolic, by
Proposition 5.1,

30(t) + 30(s) <@ (5°) + g0 + 9,
which shows that ¢ is (%n + 6)—midpoint-concave. The existence of a continuous

concave metric transform ¢ € C with |p—¢| < n+24 is given by Corollary 2.16. O

The following result shows that the characterization given by Theorem 4.18

extends to the approximately nondecreasing metric transforms.

Theorem 5.3 (Theorem A). Let ¢ be an approximately nondecreasing, unbounded
metric transform. The transformed metric space ([0, 00), |-|,) is Gromov hyperbolic
if and only if one of the following two mutually exclusive conditions holds:

(i) @ is an approzimate dilation, or

(1i) ¢ is logarithm-like.

Proof. Fix n,6 > 0. Assume ¢ € M is an unbounded n-nondecreasing metric
transform such that ([0, 00), |- |,) is d-hyperbolic. By Proposition 5.2, there exists
a continuous concave metric transform ¢ € C such that |p(t) — ¥ (t)| < n+ 26 for all
t > 0. Notice that 1 is an unbounded continuous concave metric transform and the
transformed Euclidean half line ([0, 00), | - |4) is (27 + 66)-hyperbolic. By Theorem
4.18, 1) is either an approximate dilation or a logarithm-like metric transform. Since

0 is within bounded distance from 1, the conclusion follows. 0

6. PROOF OF THEOREM B

In this section we prove Theorem B (Theorem 6.4) and its corollary (Corollary
6.5) as stated in the introduction.
Recall that a rough isometric embedding between two metric spaces X and Y is

given by a map f: X — Y and a constant k > 0 such that for all z,y € X
dx(z,y) =k < dy(f(z), f(y)) < dx(z,y) + k.

Lemma 6.1. Assume that f: X — Y is a k-rough isometric embedding. If Y is
d-hyperbolic then X is (§ + 2k)-hyperbolic.

Proof. We use the 4-point inequality in Proposition 3.3. Let x,y, z,w € X. Then

dx (z,y) + dx(z,w) < dy (f(x), f(y)) + dv (f(2), f(w)) + 2k
< max{dy (f(x), f(2)) + dy (f (), f(w)), dy (f(2), f(w)) + dy (f(y), f(2))} + 26 + 2k
< max{dx(x,z) + dx (y,w) + 2k, dx (z,w) + dx(y, z) + 2k} + 26 + 2k
= max{dx(z, z) + dx (y, w),dx (z,w) + dx(y,2)} + 2(6 + 2k).

which shows that (X, dx) is (6 4+ 2k)-hyperbolic. O
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Theorem 6.2. Let ¢ € M be an unbounded, approrimately nondecreasing metric
transform. The transformed Euclidean half line ([0,00),| - |,) can be roughly iso-
metrically embedded in a Gromov hyperbolic space (X, d) if and only if ¢ is of one
of the following forms:

(i) ¢ is approzimate dilation,

(ii) @ is logarithm-like.

Proof. If ([0, 00),| - |,) admits a rough isometric embedding into a Gromov hyper-
bolic space then by Lemma 6.1 it is Gromov hyperbolic and the conclusion follows
from Theorem 5.3. O

Recall that a rough geodesic ray in a metric space (X,d) is a rough isometric
embedding of the Euclidean half line [0, 00) into X.

Lemma 6.3. Let v: [0,00) — (X, d) be a k-rough geodesic ray and let ¢ € M be
a n-nondecreasing, unbounded metric transform. Then ~v: ([0,00), |- |,) = (X, dy)

is a (w(k) + n)-rough isometric embedding.

Proof. Since 7: [0,00) — (X, d) is a k-rough geodesic ray for all t,s >0
[t —s|—k <d(v(t),v(s) <[t —s[+Fk
and since ¢ is n-nondecreasing

o1t — 5| — k) < G(dr(E), () +7 < pllt — 51 + k) + 21,
Since ¢ is subadditive
oIt = s]) — (k) < e(d(v(t),7(5))) + 1 < (|t = s|) + (k) + 21
or equivalently [t — s|, — p(k) —n < d(Y(t),7(s)) < |t — 5|, + ©(k) + 1. O

Theorem 6.4 (Theorem B). Let (X, d) be a metric space containing a rough geo-
desic ray. Let ¢ be an approximately nondecreasing, unbounded metric transform.

If the transformed space (X, dy) is Gromov hyperbolic then

(1) (X,d) is Gromov hyperbolic and ¢ is an approzimate dilation, or

(i7) (X,dy) is approzimately ultrametric.

Proof. Let v: [0,00) — X be a rough geodesic ray in (X,d). Then by Lemma 6.3,
the map v: ([0,00),] - |o) = (X,dy,) is a rough isometric embedding, and since
(X,d,) is Gromov hyperbolic, by Lemma 6.1, the transformed Euclidean half line
([0,00),| - |x) is Gromov hyperbolic. By Theorem 5.3, this occurs if and only if
the metric transform ¢ is either an approximate dilation or logarithm-like. In the
former case (X, d) is roughly similar to (X, d,) by Remark 3.6 and therefore Gro-
mov hyperbolic by Proposition 3.5, and in the latter case (X, d,) is approximately
ultrametric by Proposition 3.12. O
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The following corollary of Theorem 6.4 can be viewed as a type of rigidity with

respect to metric transformation of roughly geodesic Gromov hyperbolic spaces.

Corollary 6.5. Let (X, d) be a metric space containing a rough geodesic ray. Let ¢
be an approximately nondecreasing, unbounded metric transform. If the transformed
space (X, dy) is Gromov hyperbolic and roughly geodesic then ¢ is an approzimate

dilation and (X, d) is Gromov hyperbolic and roughly geodesic.

Proof. Since (X, d) contains a rough geodesic and the transformed space (X, d) is
Gromov hyperbolic, it follows as in the proof of Theorem 6.4 that ([0,00), |- |,) is
Gromov hyperbolic and by Theorem 5.3 that ¢ is either an approximate dilation
or a logarithm-like metric transform. However, ¢ cannot be a logarithm-like since
Proposition 3.12 would then imply that (X,d,) is approximately ultrametric and
by Proposition 3.15 this would contradict the assumption that (X, d,) is roughly
geodesic. Thus ¢ has to be an approximate dilation and by Remark 3.6 (X,d) is
roughly similar to (X, d,), hence the metric space (X, d) is Gromov hyperbolic and
roughly geodesic. 0
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