1710.05078v2 [math.MG] 16 Jul 2018

arXiv

METRIC TRANSFORMS YIELDING GROMOV HYPERBOLIC SPACES

GEORGE DRAGOMIR AND ANDREW NICAS

ABSTRACT. A real valued function ¢ of one variable is called a metric transform if for every metric
space (X, d) the composition d, = ¢ od is also a metric on X. We give a complete characterization
of the class of approximately nondecreasing, unbounded metric transforms ¢ such that the trans-
formed Euclidean half line ([0, 00), |- |,) is Gromov hyperbolic. As a consequence, we obtain metric
transform rigidity for roughly geodesic Gromov hyperbolic spaces, that is, if (X,d) is any metric
space containing a rough geodesic ray and ¢ is an approximately nondecreasing, unbounded met-
ric transform such that the transformed space (X, d,) is Gromov hyperbolic and roughly geodesic
then ¢ is an approximate dilation and the original space (X, d) is Gromov hyperbolic and roughly
geodesic.

1. INTRODUCTION

A function ¢: [0,00) — [0,00) is called a metric transform if for each metric space (X,d) the
composition d, = ¢ od is also a metric on X. A metric transform ¢ is necessarily subadditive and
satisfies ¢~1(0) = {0}. While these two conditions on ¢ are not sufficient for it to be a metric
transform, if we further require that ¢ is nondecreasing then it is a metric transform. In particular,
any nonconstant, nonnegative concave function ¢ with domain [0,00) and satisfying ¢(0) = 0 is a
metric transform.

A central question concerning metric transforms is whether there exist metric transforms ¢ for
which the transformed metric space (X, d,) has certain specified properties or preserves some of the
characteristics of the original metric space (X,d). Early results about transformed metric spaces
dealt with their “Euclidean” properties. Blumenthal [Blu43] showed that if 0 < a < § and (X, d) is
any metric space then the snowflake metric d* has the property that any four points of (X,d*) can
be isometrically embedded into Euclidean space. Wilson [Wil35] showed that the real line with the
snowflake metric |t —s|'/? embeds isometrically in a real Hilbert space, but cannot embed isometrically
in any finite dimensional Euclidean space. Remarkable results in this direction were obtained by
Schoenberg, independently in [Sch38a, Sch38b] and, together with von Neumann in [vNS41], where
they determined all metric transforms for which a transformed Euclidean space isometrically embeds
into another Euclidean space. See [DL10, Chapter 9]) for a discussion and [LDRW18] for some recent
developments.
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2 DRAGOMIR AND NICAS

Our aim is to investigate analogous types of questions in the context of Gromov hyperbolic spaces.
Recall that if (X,d) is a metric space and x,y,w € X then the Gromov product of x and y with
respect to w is defined as

(@ | y)w = 5 [d(@, w) + d(y, w) — d(z,y)].
Given § > 0, the metric space (X, d) is said to be d-hyperbolic if

(@ | Y)w = min{(z | 2)w, (y | 2)w} —0
for all z,y,z,w € X. A metric space (X,d) is said to be Gromov hyperbolic if it is §-hyperbolic for
some ¢ > 0.

A Dbasic example of a Gromov hyperbolic metric space is ([0,00),| - |), the half line with the
Euclidean metric. In this case, the Gromov product based at 0 is (¢t | s)o = min{¢, s} and the
space is 0-hyperbolic. More generally, any R-tree is 0-hyperbolic. Another well-known example is the
hyperbolic plane, which is log(3)-hyperbolic. A Euclidean space of dimension greater than 1 is not
Gromov hyperbolic. While Gromov hyperbolicity is a quasi-isometry invariant for intrinsic metric
spaces [VGS, Theorems 3.18 and 3.20], quasi-isometry invariance can fail for non-intrinsic spaces, see
[V05, Remark 3.19] and also [GdIH90, Remarque 13, p.89].

We say that a function is approximately nondecreasing if it is within bounded distance from a
nondecreasing function. Our first result gives a complete characterization of the class of approximately
nondecreasing, unbounded metric transforms ¢ such that ([0, 00),] - |,) is Gromov hyperbolic. Some
additional terminology will be useful. Recall that a dilation on [0,00) is a function of the form
t — At where ) is a positive constant. We say that the function ¢ is an approximate dilation if it is
within bounded distance from a dilation. Furthermore, we say that ¢ is logarithm-like if the function

t — ©(2t) — ¢(t) is bounded from above.

Theorem A. Let ¢ be an approximately nondecreasing, unbounded metric transform. The transformed
metric space ([0,00),| - |,) is Gromov hyperbolic if and only if one of the following two mutually

exclusive conditions holds:

(i) ¢ is an approzimate dilation, or

(13) @ is logarithm-like.

It is straightforward to show that if ¢ is a metric transform and also an approximate dilation then
¢ preserves Gromov hyperbolicity, that is, if (X, d) is any Gromov hyperbolic space then (X,d,) is
also Gromov hyperbolic (Proposition 3.4).

The function ¢ — log(l + t) is a metric transform and logarithm-like (as defined above), indeed
the inspiration for the terminology “logarithm-like”. Gromov observed that if (X, d) is any metric
space then (X, log(1 + d)) is Gromov hyperbolic ([Gro87, Example 1.2(c)]). More generally, we show
that if an approximately nondecreasing metric transform ¢ is logarithm-like then the transformed
space (X,d,) is “approximately ultrametric” and hence Gromov hyperbolic (Proposition 3.8). We
say that a metric space (X,d) is approzimately ultrametric if there exists § > 0 such that for all
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x,y,z € X the inequality d(z,y) < max {d(z, z),d(z,y)}+0¢ is satisfied. An unbounded, approximately
ultrametric space fails to have the rough midpoint property and so is never a rough geodesic metric
space (Proposition 3.10).

A rough geodesic ray in a metric space (X,d) is a rough isometric embedding of the Euclidean
half line in X, that is, a function v: [0,00) — X and a constant & > 0 such that for all ¢,s > 0,
[t —s[ =k <d(y(t),7(s)) <[t — 5[+ k.

Theorem A has the following consequence.

Theorem B. Let (X,d) be a metric space containing a rough geodesic ray. Let ¢ be an approximately
nondecreasing, unbounded metric transform. If the transformed space (X,d,) is Gromov hyperbolic
then

(1) (X,d) is Gromov hyperbolic and ¢ is an approzimate dilation, or
(it) (X,d,) is approximately ultrametric.

Conditions (i) and (ii) are mutually exclusive.

Since an unbounded, approximately ultrametric space is never roughly geodesic, Theorem B
immediately yields the following corollary which can be viewed as a type of rigidity with respect

to metric transformation of roughly geodesic Gromov hyperbolic spaces.

Corollary (Metric Transform Rigidity). Let (X,d) be a metric space containing a rough geodesic
ray. Let ¢ be an approximately nondecreasing, unbounded metric transform. If the transformed space
(X,dy,) is Gromov hyperbolic and roughly geodesic then ¢ is an approzimate dilation and (X,d) is
Gromov hyperbolic and roughly geodesic.

This paper is organized as follows. In Section 2 we recall some of the relevant properties of metric
transforms and concave functions. In Section 3, after reviewing some useful facts concerning Gromov
hyperbolic spaces, we introduce approximately ultrametric spaces and discuss some of their immediate
properties. In Section 4 we give a complete characterization of all concave functions that transform
the Euclidean half line into a Gromov hyperbolic space (Theorem 4.16). We extend this result to
the case of approximately nondecreasing, unbounded metric transforms in Section 5, where we prove
Theorem A. The proof of Theorem B and its application to roughly geodesic Gromov hyperbolic

spaces is given in Section 6.

2. METRIC TRANSFORMS AND APPROXIMATELY CONCAVE FUNCTIONS

We summarize some properties of metric transforms, concave functions and approximately concave

functions that will be needed in the sequel.

2.1. Metric transforms. General treatments of metric transforms can be found in [Cor99, DL10].

Translation invariant distances on the real line are studied in [LD13].
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Definition. A function ¢: [0,00) — [0, 00) is said to be a metric transform if for every metric space
(X, d) the space (X, d,) with d,(z,y) = ¢(d(z,y)) is again a metric space. We denote by M the class

of all metric transforms.

For any ¢ € M, since d,(z,y) = 0 if and only if = y, we have that ¢(t) = 0 if and only if
t = 0. Hence, a necessary condition for a function ¢: [0,00) — [0, 00) to be a metric transform is that
¢~1(0) = {0}

A complete, albeit somewhat tautological, characterization of the elements of M can be given
as follows. A triplet (a,b,c) of nonnegative real numbers is called a triangle triplet if a < b+ ¢,
b<a+cand c<a-+b.

Proposition 2.1 ([Cor99, 2.6]). Assume @: [0,00) — [0,00) satisfies ¢~1(0) = {0}. Then ¢ is a

metric transform if and only if (p(a), p(b), ¢(c)) is a triangle triple whenever (a,b,c) is one. O
Proposition 2.1 implies the following properties of metric transforms.

Proposition 2.2. Assume ¢ € M. Then
(1) ¢ is subadditive, that is, p(t + s) < p(t) + ¢(s), for all t,s >0,
(i2) lo(t) —@(s)| < @(|t — sl), for all t,s > 0. O

While subadditivity and ¢ ~1(0) = {0} are necessary conditions for a function ¢: [0,00) — [0, 00)
to be a metric transform, these conditions are, in general, not sufficient (see Example 2.4). However,
if ¢ is also nondecreasing then it follows from Proposition 2.1 that ¢ € M. We summarize this as

follows.

Proposition 2.3 ([Cor99, 2.3]). Assume @: [0,00) — [0,00) with ¢~ 1(0) = {0} is subadditive and

nondecreasing. Then ¢ is a metric transform. O

Example 2.4. Let ¢: [0,00) — [0,00) be given by ¢(t) = at + b|sin(¢)| with @ > 0 and b > 0. Then
©~1(0) = {0}, and the subadditivity of ¢ follows from |sin(t + s)| = |sin(t) cos(s) + sin(s) cos(t)| <
|sin(t)| 4 |sin(s)|. Note that if @ > b then ¢ is nondecreasing and, by Proposition 2.3, ¢ is a metric
transform. Also note that ¢ is not concave unless b = 0. If a < b then ¢ is not monotonic and not a

metric transform.

Remark 2.5. In general, metric transforms need not be continuous. It follows from part (ii) of
Proposition 2.2 that if ¢ € M is continuous at 0 from the right then ¢ is continuous on [0, c0).
Furthermore, a transformed space (X, d,) is topologically equivalent to the original space (X,d) if
and only if ¢ is continuous. The metric topology on (X, d,) is discrete for every metric d if and only
if ¢ is discontinuous at 0 (see [Cor99, 3.1]). Similarly, the differentiability of a metric transform is
influenced by its behaviour near 0. For any metric transform ¢, the right derivative ¢/, (0) exists in
the extended sense (we allow infinite values) and if ¢/, (0) < co then ¢ is ¢/, (0)-Lipschitz on (0, co)
and therefore differentiable except possibly at countably many points (see [Cor99, 4.7]).
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Throughout this paper, unless otherwise specified, metric transforms are not assumed to be con-

tinuous.

2.2. Concave functions. In this subsection, after a very brief review of some basic properties of
concave functions, we summarize some results concerning continuous concave functions ¢: [0,00) —
[0, 00) satisfying ©(0) = 0 that will be used in Section 4.

Let ¢: I — R be defined on some interval I C R, that is, a connected subset of R. The function ¢
is concave if for all z,y € I and all ¢ € [0, 1],

(1 =t)p(z) +te(y) < e((1 =tz + ty).
Reversing the above inequality gives the definition of a conver function. Hence, ¢ is concave if and
only if —¢ is convex.

Convex functions have been extensively studied and many of their properties are well known. We
recall some properties of concave functions that we need, omitting the proofs as these can be found,
for instance, in [RV73, Chapter I].

By definition, a function ¢ is concave if and only if any portion of its graph lies on or above the
chord connecting the end points of this portion of the graph. Alternatively, ¢ is concave if and only

if any of the following inequalities

p(2) —ol@) | ely) —el@)  ely) —»(2)
Z—x - Yy—x B Yy—z

hold for all < z < y (see [RV73, Sec. 1.10 (2)]).
The following elementary properties of concave functions (see [RV73, Theorems 1.10.A, B and C])

will be useful.

Proposition 2.6. Assume p: [0,00) — R is a concave function. Then ¢ satisfies a Lipschitz condition
on any compact interval contained in (0,00) and is therefore continuous on (0,00). The left derivative

@' and the right derivative ', of ¢ exist at every point in (0,00) and

% > o (y) > ¢, ()

for all 0 < x < y. Hence both one-sided derivatives are nonincreasing on (0,00) and, at each point,

¢ (x) > ¢\ (z) >

the left derivative is no smaller than the right derivative. In particular, ¢ is differentiable on (0,00)

except possibly at countably many points. O

The next two corollaries are direct consequences of Proposition 2.6. The first is a version of the
Fundamental Theorem of Calculus (see Remark 1.12.B in [RV73]), and the second uses the fact that
any local maximum of a concave function is also a global maximum. Together with the assumption

that ¢ is nonnegative, this implies that if ¢ is unbounded then it must be increasing.

Corollary. If ¢: [0,00) — R is a continuous concave function then for any z,y > 0,

o(y) —p(z) = /y ¢ (t)dt = /y @', (t)dt. O
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Corollary. Let ¢: [0,00) — [0,00) be a concave function such that ¢(0) = 0 and ¢ is not constant
on (0,00). Then either of the following holds:

(i) ¢ is strictly increasing, or

(17) there exists a > 0 such that ¢ is strictly increasing on [0, a) and constant on [a, 00). O

Remark 2.7. Since the one-sided derivatives are nonincreasing and ¢’ (x) > ¢/, (x) > 0 for all z > 0,
there exists A > 0 such that

lim ¢’ (z) = lim ¢/ (z) =\

Tr—r00 Tr—r00

Another important property of concave functions defined on a possibly infinite open interval I C R
is that they can be globally approximated by concave functions which are real analytic on I. Azagra
showed ([Azal3, Theorem 1.1]) that for every convex function f: U — R defined on an open convex
subset U C R™, n > 1, and every € > 0, there exists a real analytic convex function g: U — R such
that f —e < g < f. We will only be interested in uniform approximations by functions which are of
class C'' and so the following weaker version of Azagra’s theorem for concave functions is sufficient

for our purpose.

Proposition 2.8 ([Azal3, Theorem 1.1]). Let U C R be an open connected subset and let p: U — R
be a concave function. For every ¢ > 0 there exists a C' concave function o: U — R such that
p<o<p+te. 0

If ¢: [0,00) — [0,00) is a continuous concave function such that ¢(0) = 0 then Proposition 2.8
provides C! concave approximations of ¢ on the open interval (0, 00). To obtain an approximation of
¢ by a concave function which is continuous on [0, 00) and of class C'! on (0, 00), we wish to extend ¢
to a continuous concave function defined at the left of 0. Observe that this is not possible if the right
derivative ¢/, (0) is undefined, but as the proof of the next result shows, we can slightly modify the
function ¢ near zero in order for such a continuous concave extension to exist. The following corollary

plays a key role in the proof of Proposition 4.7.

Corollary. Let ¢: [0,00) — [0,00) be a continuous concave function such that ¢(0) = 0. For every
£ > 0 there exists a continuous concave function 1: [0,00) — [0,00) that is of class C'! on (0, c0),
satisfies ¥(0) = 0 and |p — ¢| < e.

Proof. Observe that, by concavity, if a > 0 and ¢/, (a) < m < ¢’ (a) then p(z) < ¢(a) + m(x — a)
for all x > 0, that is, the graph of ¢ lies on or under the line with slope m and passing through
(a,p(a)). Replacing the portion of the graph of ¢ above [0,a] by the line segment m(x — a) + ¢(a)
we obtain a continuous concave function which extends indefinitely at the left of 0 and which is equal
to ¢ on [a, o).

Assume ¢ is not identically 0. Let € > 0. By Corollary 2.2 and by possibly taking a smaller ¢ > 0,
we may assume that ¢ is strictly increasing on ¢~ *([0,¢]). Let a = ¢~ *(¢/2) and m = ¢/ (a), and
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define o.: R — R by
5. () o(x) if v > ¢~ 1(/2)
Pell) = _ _ . _
) Gl (e/2))lr — o7 (e/2)] + /2 it <pT(e/2).

The function @. is concave and for all z > 0 it satisfies p(z) < @.(x) < p(x)+¢e/2. By Proposition 2.8,

applied to the function @.: R — R and with ¢ = £/2, there exists a C! concave function 5: R — R

such that ¢. < 7 < . +¢/2. Furthermore, if p. = @ |j0,00) and 0 = 7|[g,«) then on [0, 00) we have
0<p<p.<o<pete/2<p+te.

Since 0 < 0(0) < ¢ and o is increasing, it follows that o(z) — ¢(0) > 0 and
o) — & < o(2) — o(0) < () + <

for all > 0. Define ¢(z) = o(x) — ¢(0). Then ¢: [0,00) — [0,00) is a continuous concave function

which is C* on (0, 00) and satisfies ¥(0) = 0 and |¢ — | < e. O

2.3. Approximately concave functions. In this subsection we show that approximately midpoint-
concave functions can be uniformly approximated by continuous concave functions (Corollary 2.3).

This result will be used in Section 5 and Section 6.

Definition. Let ¢: I — R be defined on some interval I C R, and let § > 0.

(i) ¢ is said to be d-concave if for all x,y € I and all ¢ € [0, 1],

(1 —=t)p(x) +to(y) < (1 —t)x +ty) + 4.

(13) @ is called d-midpoint-concave (or d-midconcave) if for all z,y € I,
20(@) + 30(y) < ¢ (554) + 6.

We say that the function ¢ is approzimately concave (respectively, approximately midpoint-concave)
if it is 0-concave (respectively, d-midpoint-concave) for some § > 0. Taking § = 0 recovers the definition
of a concave (respectively, midpoint-concave) function.

If ¢ is continuous (or locally bounded from below) then ¢ is concave if and only if ¢ is midpoint-
concave (see [RV73, Theorem VII.71.C]). Here we show that approximately midpoint-concave functions
©: [0,00) = [0,00) with ©(0) = 0 can be uniformly approximated on [0, 00) by continuous concave

functions v satisfying ¢(0) = 0. This is a consequence of the following two results.

Proposition 2.9 ([NN93, Theorem 1]). Let I C R be an open interval. If ¢: I — R is 6-midpoint-

concave and locally bounded from below at a point in I then ¢ is 26-concave. O

Proposition 2.10 ([HU52, Theorem 2]). Assume ¢: I — R is §-concave on an open interval
I C R. Then there exists a continuous concave function f: I — R such that |¢o(z) — f(z)] < §/2,
forallxz e 1. g
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Corollary. Assume ¢: [0,00) — [0, 00) is approximately midpoint-concave and ¢(0) = 0. Then there
exists a continuous concave function ¢ : [0, 00) — [0, 00) satisfying ¢/(0) = 0 and such that |p(x)—(z)]

is uniformly bounded on [0, c0).

Proof. Assume ¢: [0,00) — [0,00) is d-midpoint-concave, for some 6 > 0. Since ¢ is bounded from
below by 0 on (0,00) by Proposition 2.9, ¢ is 2d-concave on (0,00), and by Proposition 2.10, there
exists a continuous concave function f: (0,00) — R such that |p(z) — f(z)| < J, for all z > 0. Notice
that f is bounded from below by —¢§ on (0, 00) and since f is continuous, it is also nondecreasing (see
Corollary 2.2). Thus f can be extended by continuity at 0 and f(0) = lim, .o+ f(z) > —d. Define
1 [0,00) = [0,00) by (x) = f(x) — f(0). Then ¢ is continuous, concave, and satisfies 1(0) = 0 and
p(z) = (@) <o) = f(@)] +[f(0)] < 26 for all > 0. 0

3. GROMOV HYPERBOLIC SPACES

Gromov hyperbolic spaces were introduced by Gromov in his landmark paper [Gro87] to study
infinite groups as geometric objects. See [V05] for the basics of Gromov hyperbolic spaces for intrinsic
metric spaces. In this paper, unless otherwise specified, we do not assume that a metric space is

intrinsic or geodesic.
3.1. Gromov Hyperbolic Spaces.

Definition. Let (X, d) be a metric space and let w € X. For z,y € X, the Gromov product of  and
y with respect to w is defined to be

(@ | Y)w = 3 [d(z, ) +d(y,w) — d(z,y)].
Definition. Let § > 0. The metric space (X, d) is said to be d-hyperbolic if
(@ [ Y)w = min{(z | 2)w, (Y | 2)w} =9

for all x,y,z,w € X. A metric space (X,d) is said to be Gromov hyperbolic if it is d-hyperbolic for
some § > 0.

An inequality equivalent to that in Definition 3.1, known as the 4-point inequality, is given in the

following proposition.

Proposition 3.1 ([Gro87, Lemma 1.1.A]). (X, d) is d-hyperbolic if and only if
d(z,y) + d(z,w) < max{d(z, z) + d(y, w),d(y, z) + d(x,w)} + 2§
for all z,y, z,w € X. O
Two metric spaces X and Y are said to be roughly similar if there exists a (not necessarily con-
tinuous) map f: X — Y and constants A\ > 0, & > 0 such that sup,cy dy (y, f(X)) < k and for all

7' € X
Mx (z,2") — k < dy(f(z), f(2") < Mdx (z,2) + k.
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A straightforward argument shows that Gromov hyperbolicity is preserved by rough similarity.

Proposition 3.2. If X and Y are roughly similar metric spaces then X is Gromov hyperbolic if and
only if Y is Gromov hyperbolic.

Proof. Let f: X =Y be a (), k)-rough similarity, with A > 0 and k& > 0. Assume X is §-hyperbolic,
d > 0. Since f(X) is k-cobounded in Y, for any ',y € Y there exist z,y € X such that

dy(2', f(x)) < kand dy (¢, f(y)) < k. Thus dy (2',¢') < dy (2, f(2))+dy (f(z), f(y)+dv (', f(y)) <
dy (f(x), f(y)) + 2k < Mdx (z,y) + 3k. For all 2/, ¢/, 2/, w’ € Y we have

dy (2',y) +dy (2',y") < XNdx(z,y) + dx(z,w)] + 6k
< AN max{dx(z,z) 4+ dx(y,w),dx (x,w) + dx(y,2)} + 24] + 6k
= max{Adx (x,2) + Mdx (y,w), \dx (z,w) + Mdx (y, 2)} + 20 + 6k
< max{dy (f(z), f(2)) + dy (f(y), f(w)), dy (f (x), f(w)) + dy (f(y), f(2))} + 2X6 + 8k
< max{dy (z/,2') +dy (y,w'),dy (z',w) + dy (3, 2')} + 2\ + 12k.
By Proposition 3.1, Y is (Ad + 6k)-hyperbolic. The proof of the converse is similar. O
Given constants A > 0 and k > 0, we say that a function ¢: [0,00) — [0, 00) is a (A, k)-approzimate

dilation if |p(t) — M| < k for all ¢ > 0. The function ¢ is an approzimate dilation if it is a
(A, k)-approximate dilation for some A > 0 and k > 0.

Remark 3.3. If ¢ € M is a (A, k)-approximate dilation then (X,d) and (X,d,) are (A, k)-roughly

similar.
Remark 3.3 and Proposition 3.2 have the following consequence.

Proposition 3.4. If (X,d) is a Gromov hyperbolic metric space and ¢ € M is an approzimate
dilation then (X,d,) is Gromov hyperbolic. O

3.2. Approximately Ultrametric Spaces. Recall that a metric space (X, d) is ultrametric if the
metric d satisfies the inequality: for all z,y,2 € X, d(z,y) < max{d(z, z),d(y, z)}, a condition which

implies the triangle inequality.
Definition. Let 6 > 0. We say that a metric space (X, d) is d-ultrametric if for all x,y,z € X
d(z,y) < max{d(z, z),d(y,z)} + 6.

We say that (X, d) is approzimately ultrametric if it is é-ultrametric for some § > 0.

Let z,y,z € X and let s, m and [ denote the smallest, medium and largest of the distances d(z,y),
d(y,z) and d(x, z). Then the d-ultrametric condition is equivalent to I —m < 4. Note that if § = 0 this
implies that [ = m, exhibiting a well-known characteristic of ultrametric spaces, namely that triangles

in such spaces are either acute isosceles (that is, the equal sides are the larger sides) or equilateral.
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If § > 0 then any triangle triplet (I, ls,l3) consisting of nonnegative numbers less or equal to § satisfy
the d-ultrametric condition, and if one of the numbers [; is greater than 0 then there is at least one
other number [;, j # 4 in the triplet satisfying {; > [; — 6. In other words, in J-ultrametric spaces
“small triangles” (with side length less than §) can have any shape, and “large triangles” (with one
side length at least 0) are acute d-almost isosceles or d-almost equilateral.

The relationship between J-ultrametric and d-hyperbolic spaces is given by Proposition 3.6 below.

For this purpose, we need the following lemma.
Lemma 3.5. Let § > 0 and let a;; € R, 1,7 € {1,2,3,4}, be such that a;; = aj;.
(1) If a;; < max{ak,ar;} + 0 for all i,j,k then
aij + ar < max{a; + a1, ay + a;i} + 20,
(1) If a;; > min{a;x, ax;} — 6 for all 1,5,k then
aij + ag > min{a;, + aji, ay + ajk} — 26.
Note that if L, M and S denote the largest, medium and smallest of the sums a;; + ax, air + aj

and a; + aj for some choice of 4, j, k, 1 € {1,2, 3,4}, then the conclusion in part (i) of the lemma is
equivalent to L — M < 2§, and the one in part (i) to M — S < 20.

Proof. (i) Fix i,7,k,1l € {1,2,3,4}. Without loss of generality, assume that L = a;; + ax; is the largest

sum and assume that ay; < a;;. Since a;; < max{a;x, ar;} + 6 and a;; < max{a;,a;;} + 6, we have
aij + ap < 2a;; < max{ai, + i, @i + ay, arj + @i, agg + ag )+ 20.

If a;, > a; and a;; > a; then

M = air + ay; = max{ag, + air, aix + aij, agj + i, agg + a}
and if a;;, < ag; and aj; < ay then

M = ap; + ay = max{aix + ai, aix + arj, arj + air, arj + ag}.
In both cases, L — M < 26. Furthermore, if a;; > ax; and a;; < a; then a;; < max{a;y, ar;} + 06 =
a;r + 6 and a;; < max{a;,a;;} + 6 = ay + 0, and since ay < max{ay;, a;;} + 9,

aij + ar < a;; + max{ag;, a;; } + 6 = max{a;; + ax;, a;; +a+6

< max{ay + 9§ + agj, air + 0 + ay; } + 6 = max{ay + akj, aix + a;} + 20.
Finally, if a;;, < ax; and a;; > a; then a;; < max{a;y, ax;}+0 = ag; +0 and a;; < max{a;, a;;}+9 =
aij + 0, and since ay; < max{ag;, @i} + 9, we have a;; + awm < a;; + max{ag;, a;} + 9 < max{a;; +
Qkiy Qkj + au} + 26, that is, L — M < 26.
(i7) Follows from (7) by taking the negatives of a;;. O

Proposition 3.6. If (X,d) is d-ultrametric then (X, d) is d-hyperbolic.
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Proof. Let z;,i =1,2,3,4, be four points in X. By part (i) of Lemma 3.5, with a;; = d(z;, z;),
d(zi,xj) + d(xg, z) < max{d(x;, k) + d(z;, x1), d(xi, x) + d(x;, 26) } + 20

and the conclusion follows from Proposition 3.1. 0

The case 6 = 0 in Proposition 3.6, that is, the fact that ultrametric spaces are 0-hyperbolic, was
observed in [Ibr12, (2.4)].

Remark 3.7. The converse of Proposition 3.6 is not true. For example, the Euclidean half line
([0,00),] - |) is O-hyperbolic but not d-ultrametric for any 6 > 0. To see this, let x,y > 0 and
z = (z +y)/2. Then the J-ultrametric condition is equivalent to |z — y| < 24, which cannot be valid
for all x,y > 0.

Definition. Let n > 0. We say that a function ¢: [0,00) — R is n-nondecreasing if t < s implies
o(t) < p(s) +n.

Observe that if p: [0,00) — R is -nondecreasing then the function ¢ given by ¢ (¢) = sup{p(s) |
s <t} is nondecreasing and satisfies 0 < ot (t) — ¢(t) < 7.

We say that the function ¢: [0,00) — R is approzimately nondecreasing if ¢ is n-nondecreasing for
some 1) > 0. Note that ¢ is approximately nondecreasing if and only if ¢ is within a bounded distance

from a nondecreasing function.

Proposition 3.8. Let (X,d) be a metric space and let 6,n > 0. If ¢ € M is n-nondecreasing and
satisfies ¢(2t) — (t) < 6 for allt > 0 then (X,dy) is (0 + 2n)-ultrametric.

Proof. For any z,y,z € X,

d() (z,9))

(x,2) +d(y,z)) +n since ¢ is -nondecreasing

p(d
p(d

| A

p(max{2d(x, 2), 2d(y, 2)}) + 27

< max{p(2d(z, 2)), ¢(2d(y, 2))} + 21

< max{¢(d(z, 2)) + 0, p(d(y, 2)) + 0} +2n  since p(2t) — ¢(t) < 0
= max{dy(z, 2), d,(y,2)} + 6+ 2n

which shows that (X, d,) is (0 + 2n)-ultrametric. O

Corollary ([Gro87, Example 1.2(c)]). Let ¢(t) =log(1 +¢), t > 0. For any metric space (X,d), the
transformed metric space (X, dy,) is log(2)-ultrametric and so by Proposition 3.6 is log(2)-hyperbolic.

1+t

sharp since lim;_, o, log (11"’—3) = log(2). O

Proof. o(2t) — ¢(t) = log(1 + 2t) — log(1 + t) = log (1+2t) < log(2) for all ¢ > 0. This inequality is
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Let k > 0. Recall that a k-rough geodesic in a metric space (X, d) is a k-rough isometric embedding
of an interval I C R into X. That is, a map v: I — X (not necessarily continuous) such that for all
t,sel,

[t —s| =k < d(y(t),7(s)) < [t — s[ + k.
The space X is called k-roughly geodesic if for every z,y € X there exists a k-roughly geodesic
segment joining = and y; and X is called roughly geodesic if it is k-roughly geodesic for some k > 0.
Furthermore, we say that a metric space (X, d) has the k-rough midpoint property if for every z,y € X
there exists z € X such that

max{d(z,z),d(y,2)} < 3d(z,y) + k.

A space has the rough midpoint property if it has the k-rough midpoint property for some k£ > 0. The
following lemma asserts that the rough midpoint property is a necessary condition for a space to be

roughly geodesic.
Lemma 3.9. If (X, d) is roughly geodesic then it has the rough midpoint property.

Proof. Assume (X, d) is k-roughly geodesic for some k > 0. Let xz,y € X. Let v: [0,b] = X be a
k-rough geodesic segment joining  and y where b > 0. Note that |b— d(z,y)| < k. Let z = y(3b).
Then

d(z,2), d(y,2) < %b-f— k < %d(x7y) + %k

Hence X has the %k-rough midpoint property. O

Our next result asserts that an unbounded, approximately ultrametric space cannot be roughly

geodesic.
Proposition 3.10. If (X, d) is unbounded and approzimately ultrametric then X is not roughly geodesic.

Proof. Suppose (X, d) is unbounded, §-ultrametric and k-roughly geodesic for some given 4, k > 0. By
Lemma 3.9 and its proof, X has the %k-rough midpoint property. Thus, for any z,y € X, there exists
z € X such that max{d(z, z),d(y,2)} < 3d(z,y) + 3k. The §-ultrametric inequality (3.2) implies that

d(z,y) < max{d(x, 2),d(y, 2)} + 6 < 3d(z,y) + 3k + 9,

hence d(z,y) < 3k + 20, contradicting the hypothesis that X is unbounded. 0

4. CONCAVE METRIC TRANSFORMS OF THE EUCLIDEAN HALF LINE

Let C denote the class of unbounded concave functions ¢: [0, 00) — [0, 00) satisfying lim, g+ ©(t) =
©(0) = 0. Note that if ¢ € C then ¢ is strictly increasing, continuous on [0, c0), and differentiable on
(0, 00) except possibly at a countable number of points. In this section we give a simple characteri-
zation of all functions ¢ € C for which the transformed Euclidean half line ([0, o), | - |,) is Gromov
hyperbolic (Theorem 4.16).
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For ¢ € C, the Gromov product based at 0 for the transformed Euclidean metric [z —y|, = ¢(|Jz—y|)
on the half line [0, 00) is given by

(4.1) (@ lo ) = (@ | v)o = 5le(@) + @(y) — ¢(lz — y|)].
Let 6 > 0 and assume that (X,d,) is -hyperbolic. Then
(4.2) (z|e y) > min{(z |, 2), (y |, 2)} — 0, for all z,y,z > 0.

We investigate the restrictions on ¢ imposed by the inequality (4.2).
Lemma 4.3. Let ¢ € C and fir a > 0. The function

v (alp ) = 5lp(a) + o(z) — @(la - )]
is strictly increasing on [0,a], and decreasing on [a,0).
Proof. f 0 < 21 < 29 < a then
2(a |, x2) = 2(a |, x1) = @(x2) — @(x1) + @la — 1) — p(a — z2) > 0

since ¢ is strictly increasing. Thus = — (a |, x) is strictly increasing on [0,a]. If 0 < a < 21 < z9
then

) p(r2) —p(z1) (@2 —a) —p(z1 —a)
T — X1 (x2 —a) — (x1 — a)

since the quantity in the square brackets is nonpositive by concavity. Thus = — (a |, ) is decreasing

<0

2(a |, x2) —2(a |, x1) = (w2 — 21

on [a, 00). O

By Lemma 4.3, for given x,y > 0, the minimum in the right side of (4.2) is attained at max{z,y}
when z < z,y and at min{z,y} when z,y < z. For the case when < 2z < y, or y < z < z, we
consider the equation (z |, 2z) = (y |, z). The solution of this equation is the objective of our next

lemma.

Lemma 4.4. Let ¢ € C. For each 0 < x < y, there exists a unique w = w(x,y) with x < w <
min { & 22} such that (z |, w) = (y |, w). Moreover, w(x,y) =z for all 0 < z <y if and only if ¢
is a dilation, that is, if p(x) = Az for some A > 0.

Proof. For z € [z,y], the equation (z |, 2) = (y |, ) rewrites as
(4.5) p(x) —y) + vy —2) —p(z —2) = 0.
Let f(2) = 2[( [, 2) = (v o 2)] = @(x) = @(y) + ¢(y — 2) — ¢(z — z). By Lemma 4.3, 2 = (z |, 2)

is decreasing and z — (y |, 2) is strictly increasing, and so the function f(z) is strictly decreasing on
[,y]. Furthermore,
f(@) =¢(@) —o(y) + oy —2) =20

since ¢ is subadditive, and
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since ¢ is strictly increasing. The function f(z) is continuous and one-to-one on the interval [z, y]
and, by the Intermediate Value Theorem, there exists a unique w € [z, y] such that f(w) = 0. Observe
that
F(5Y) = (@) —oy) <0
and, if y > 2z then
f(2z) =y — 22) — o(y) <0,

hence z < w < min {ITJ”“’, 290}. In order to prove the last part of the lemma, assume that w = x satisfies
(4.5). Then p(y) = ¢(x) + ¢(y — x), for all 0 < z < y, which shows that ¢ is additive. Consequently,
o(rz) = ro(x) for any nonnegative rational number 7 and all 2 > 0. Since ¢ is continuous, it follows
that @(tx) = te(x) for all t,x > 0, which shows that ¢ is also homogenous. Thus ¢ is linear and,

since ¢ is unbounded, ¢(x) = Az for some A > 0. The converse is evident. O

Lemma 4.6. Assume ¢ € C is not a dilation. If ¢ is of class C* on (0,00) then the solution

w = w(z,y) given by Lemma 4.4 is increasing as function of y.

Proof. Let F(x,y,2) = ¢(x) —¢(y) + ¢(y — 2) — ¢(z — ). Then F is of class C* on the open subset
{(z,y,2) € R3 |0 < 2 < 2 < y} and by Lemma 4.4 there exists z < w < y such that F(z,y,w) = 0.

Furthermore, since r < w < min{%, 2z} and ¢’ is strictly decreasing, we have
0 Fl(z,yw) = ¢'(2) + ¢ (w—2) >0,
Oy F (@) = —¢'(y) +¢'(y —w) >0,
0:F|(z,yw) = —¢'(y —w) —¢'(w —x) <0.
Then, by the Implicit Function Theorem the solution w = w(z,y) is of class C'. Taking the derivative
with respect to y in F(x,y,w) = 0 gives

' () +¢'(y —w)(1 = Oyw) — ¢'(w — x)0yw = 0.

Thus , ,
%w:/w@—wwﬁﬁw >0
o'y —w)+ ¢ (w—z)
which shows that w = w(z,y) is increasing as a function of y for all 0 < z < y. ]

Proposition 4.7. Let ¢ € C and let X = limy_ oo ¢" (t). For each x > 0 there erists a unique

W= w(z) with r <& < 2z such that
(4.8) ox) — p(@—1x) = A\0.

Proof. Note that if p(z) = Az then by Lemma 4.4, & = w = x. For the remainder of the proof we

assume that ¢ is not a dilation. Fix z > 0. For each y > x, let w = w(z,y) be the solution of

fw) =¢@) = oy) + ¢y —w) —plw—2) =0
given by Lemma 4.4. We show that & = &(z) = lim,_,oc w(z, y). To prove that this limit exists, we

use of the uniform approximation of ¢ given by Corollary 2.2. For this, let € > 0 and let 1. : [0,00) —
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[0,00) be a continuous concave function, which is of class C! on (0,00) and satisfies ¥.(0) = 0 and
o — ] < e. Note that limy oo L(t) = limi_oo ¢’ (t) = A\. We can assume that 1. is not linear
(not a dilation), for otherwise if . were linear for arbitrarily small ¢ then ¢ would be a dilation.

By Lemma 4.6, there exists a unique v, = v.-(z,y) such that z < v, < min{zTﬂ’, 2z} and satisfying

ga(Ua) = wa(x) - "/’a(y) +be(y —ve) — wa(va - .’L‘) =0.

Let U = Ue(z) = limy 00 ve(z, y). This limit exists because v, is increasing as a function of y and
it is bounded from above by 2z as y — oo. Taking the limit as y — oo in the expression g.(v:) =0
yields
0= ylggo[i/fs(ﬂﬁ) = Ve(y) + Ve (y — ve) — Ye (v — )]

= Ulggo[wa(x) —Ye(ve —x) — Ua'@[]‘lg (12)]

= 1/}6(17) - 1/15(175 - :E) - /\{)\5
where y—v. < 1. < y is given by the Mean Value Theorem, and 7. — 0o as y — 0o. Since |p—1):| < e,
we have that |g. — f| < 4e and in particular, |f(w) — f(ve)| = |f(ve)| < 4e. Taking the limit as € — 0
and using the fact that f is one-to-one on [z,y], it follows that w(z,y) = lim._,o ve(z, y). Taking the
limit as y — oo gives

W= 51% U = ylg{)low(:v, Y)

satisfying ¢(z) — p(@ — z) — Ao = 0. 0
The above observations allow us to show the following.

Proposition 4.9. Let § > 0 and let ¢ € C be such that ([0,00), |- |,) is 0-hyperbolic. Then ¢ satisfies
(4.10) o) — (W — ) < Ax + 26

for all x > 0, where A = limy_, o ¢” (t) and @ = W(z), x < w < 2z is the unique solution of

(4.11) o(x) — p(w — x) = Aw.

Proof. Let ¢ and ¢ be as in the statement of the proposition. Recall that if the space ([0, 00), |- |,) is
d-hyperbolic then ¢ satisfies the inequality (4.2)

( | y) =2 min{(z |, 2), (y [ 2)} =0

for all z,y,z > 0. We show that this condition implies (4.10). Without loss of generality, we assume
that 0 <z < y. Then there are three possible cases for z.

Case 1. Assume z < z < y. By Lemma 4.3, (z |, y) < (2 |, @) and (z |, y) > (2 |, y). Hence,
(x|, y) > min{(z |, 2), (y |, #)}, that is, the condition (4.2) holds with § = 0 and for all .

Case 2. Assume = < y < z. By Lemma 4.3, (z |, 2) < (z |, y) and (y |, 2) < (« |, y), which implies
that (x |, y) > min{(z |, 2), (¥ |, 2)}. As before, the condition (4.2) holds with ¢ = 0 and for all ¢.
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Case 3. Assume z < z < y. Let w = w(x,y) be the unique value x < w < min {ITJ”“’, 290} satisfying
(4.5) as given by Lemma 4.4.

Consider the following two possible situations.
Case 3(a). Assume z < z < w < y. Then min{(z |, 2),(y |¢ 2)} = (v |, 2) and the inequality (4.2)
becomes (z |, y) > (y |, z) — 6, or equivalently

o(z) —p(x) + oy —x) — oy — 2) < 26.

For 2 € [i,], let g(=) = 20(y |y 2) — (¥ |y )] = 9(2) — 0(z) + 9(y — ) — oy — 2). From Lemma 4.3,
the function g(z) is increasing on [z,w], and hence max.c[, ) 9(2) = g(w). Thus it suffices to find

conditions on ¢ such that
9(w) = p(w) = w(x) + oy —2) —ply —w) <26

for all 0 < x < y. Taking the limit as y — oo in the above inequality and letting A\ = limy_, o ¢’ (¢)
yields

P(@) —p(z) + Mo —x) <26
where & = @(x) is given by Proposition 4.7. Combining with (4.8), this gives

P(W) — (0 —x) < Az + 20.
Case 3(b). Assume z < w < z <y. Then min{(x |, 2),(y |, 2)} = (¢ |, 2) and the inequality (4.2)
becomes (z |, y) > (z |, 2) — J, or equivalently

p(2) = o) + oy —2) —p(z —x) <26.

For z € [w,yl, let h(z) = 2[(z |, 2) — (¥ |, 2)] = ¢(2) — p(y) + ¢(y — z) — p(z — z). By Lemma 4.3,
the function h(z) is decreasing on [w,y] and since max_ ¢, 1 h(2) = h(w) it suffices to find conditions
on ¢ such that
hw) = ¢w) = ¢(y) + oy —2) = plw —z) <20
for all 0 <z <y. Taking the limit as y — oo yields
P(W) —p(@—a) — Az <26

where, as before, @ = @(x) is given by Proposition 4.7. O

As noted in Remark 2.7, if A = lim, o ¢’ (x) then A > 0, and as we will next see the cases A =0
and A > 0 define mutually disjoint classes of functions.

Consider first the case A = 0. Then, from (4.11), p(z) = ¢(@ — ) and since ¢ is one-to-one, this
implies that & = 2z. In this case, the condition (4.10) becomes p(2z) — ¢(x) < 26, and we have the

following.

Corollary. Let § > 0. Let ¢ € C be such that lim, o ¢’ (2) = 0 and ([0, 00), | - |,) is d-hyperbolic.
Then for all z > 0,

(4.12) ©(2x) — p(x) < 20.
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Condition (4.12) is equivalent to ¢’ (z) < M/x for all x > 0, where M > 0 is a constant depending
on §. We say that a function satisfying (4.12) is logarithm-like. The constants 6 and M are related as

follows.

Proposition 4.13 (Characterization of logarithm-like concave functions). Let ¢ € C. Then
(1) If o(22) — p(x) <26 for all x > 0 then ¢’ (x) < 46/x for all x > 0,
(i7) If ¢ (z) < M/x for all z > 0 then o(2z) — p(z) < M log(2) for all x > 0.

Proof. (i) If x > 0 then by Proposition 2.6,
p22) — plx) _ 20

/ 2 <
SD_( 7)< 20 —x T
or equivalently, ¢’ (z) < 4§/z, for all z > 0.
(17) If ¢ (t) < M/t for all t > 0 then, by Corollary 2.2, integration over [z,2x] with x > 0 yields
¢(22) — p(z) < Mlog(2). O

We now consider the case A > 0. In this case (4.10) together with (4.11) implies that
p(@) — p(x) < Mz — ) +26
and since ¢ is increasing and x < @, this yields A(z — @) + 2§ > 0, or equivalently 0 < & — x < 2§/ .
Together with (4.10) this gives
@) <A+ o@—x)+20 < Ax+p(20/X) +26
which implies
o(z) < Az + @(20/X) + 26.

Furthermore, since ¢ is concave, the condition A > 0 implies that Az < ¢(x) for all > 0. Thus we

have the following.

Corollary. Let 6 > 0. Let ¢ € C be such that A = lim,_, ¢’ (2) > 0 and ([0, 00), |-|,) is 6-hyperbolic.
Then for all x > 0

(4.14) Az < p(x) < Az + @(20/X\) + 26.

Remark 4.15. If a function ¢ € C satisfies the conditions of the preceding corollary then p(z) =
Az + f(x), where f: [0,00) — [0,00) is a bounded continuous concave function satisfying f(0) = 0
and 0 < f(z) < ¢(20/X) + 2§ for all x > 0. In particular, ¢ is a (), k)-approximate dilation with
k= p(20/X\) + 20.

Consequently, we obtain the following characterization of unbounded continuous concave functions
@: [0,00) = [0, 00) satisfying ¢(0) = 0 for which the transformed Euclidean metric |z —y|, = ¢(|z—y|)

on [0, 00) is Gromov hyperbolic.

Theorem 4.16. Let ¢ € C and let A = limg oo ¢’ (x). The transformed Euclidean half line
([0,00),| - |p) is Gromov hyperbolic if and only if ¢ has of one of the following forms:
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(i) A>0 and o(x) = Ax + f(x), where f is a nonnegative, bounded, continuous concave function
satisfying f(0) =0, or
(17) A =0 and p(2x) — p(x) is bounded.

Proof. Let ¢ € C and let A = lim, o ¢’ (x). If ([0,00),]| - |,) is d-hyperbolic for some § > 0, then
the conclusion follows from Corollary 4 and Remark 4.15 if A\ > 0, and from Corollary 4 if A = 0.
Conversely, if ¢ has form (i) then ¢ is an approximate dilation and since the Euclidean half line is
0-hyperbolic, the transformed space ([0, 00), |- |,) is Gromov hyperbolic by Proposition 3.4. If ¢ is of
form (77) then ¢ is logarithm-like and ([0, 00), | - |,) is approximately ultrametric by Proposition 3.8
and therefore Gromov hyperbolic by Proposition 3.6. 0

5. APPROXIMATELY NONDECREASING METRIC TRANSFORMS OF THE EUCLIDEAN HALF LINE

In this section we extend Theorem 4.16 to the more general class of approximately nondecreasing
metric transforms (Theorem 5.3).

Recall M is the class of all metric transforms. Observe that since for all 0 < s < ¢ the triplets

(HTS, t_TS, s) and (HTS, t_TS, t) are triangle triplets, any ¢ € M satisfies the inequality

o (52) = (F8)] < 30(0) + 50(5) <0 (5°) + 9 (7).
Our next proposition shows that the requirement that the transformed Euclidean half line ([0, c0), | - |,)
is Gromov hyperbolic imposes additional conditions on the metric transform ¢.
Proposition 5.1. Let § > 0. If ¢ € M is such that ([0,00), |-|,) is 6-hyperbolic then for all0 < s < t,
o (%) — ¢ (522)] < 39(8) + 39(s) <max {p (55) .0 (F°) } + 0
Proof. Let § > 0 and let ¢ € M be such that ([0, 00), |- |,) is 0-hyperbolic. The four point condition
for the transformed metric | - |, (see Proposition 3.1), implies that ¢ satisfies the following inequality
e(lz —yl) + ¢(lz —wl) < max{e(jz — 2]) + (ly — wl), o(lz —wl) +o(ly — 2} + 26

for all x,y, z,w > 0. Taking w =0 and z = x + y yields

o(lz —yl) + o(@ +y) < max{2¢(y), 2¢0(x)} + 20,

and by letting ¢t = 2+ y and s = |x — y|, we have that 0 < s <t and
p(s) +(t) < 2max {p (52) ¢ (5°)} + 20 =

The following proposition shows that approximately nondecreasing metric transforms ¢ € M for
which ([0,00),]| - |,) is Gromov hyperbolic are approximately midpoint-concave and therefore, by
Corollary 2.3, approximately concave.

Recall that a function ¢: [0,00) — R is approximately nondecreasing if there exists 7 > 0 such
that ¢(t) < p(s) +n whenever 0 < ¢ < s. The function ¢ is approximately midpoint-concave if there
exists § > 0 such that 2o(t) + Fp(s) < ¢ (L42) + 6 for all t,5 > 0.
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Proposition 5.2. Assume ¢ € M is a n-nondecreasing metric transform such that ([0,00),] - |,) is

d-hyperbolic. Then there exists a continuous concave metric transform ¥ € C such that |p—1| < n+26.
Proof. Since ¢ is n-nondecreasing, if 0 < s <t then ¢ (5%) < ¢ (42) + 7 and thus

max {o (52) ¢ (%)} < 0 (5°) + 7.

Since ([0,00), |- |e) is 0-hyperbolic, by Proposition 5.1,
30(t) + 390(s) < @ (5F°) + 30+,

which shows that ¢ is (%77 + 5)-midpoint—concave. The existence of a continuous concave metric
transform ¢ € C with |¢ — ¥| < n+ 26 is given by Corollary 2.3. O

The following result shows that the characterization given by Theorem 4.16 extends to approxi-

mately nondecreasing metric transforms.

Theorem 5.3 (Theorem A). Let ¢ be an approximately nondecreasing, unbounded metric transform.
The transformed metric space ([0,00), |- |,) is Gromov hyperbolic if and only if one of the following

two mutually exclusive conditions holds:

(i) @ is an approximate dilation, or

(i1) @ is logarithm-like.

Proof. Fix n,0 > 0. Assume ¢ € M is an unbounded n-nondecreasing metric transform such that
([0,00), |- |,) is 6-hyperbolic. By Proposition 5.2, there exists a continuous concave metric transform
1 € C such that |p(t) — ()] < n+ 2§ for all ¢ > 0. Notice that 1) is an unbounded continuous
concave metric transform and the transformed Euclidean half line ([0, 00), |-|y) is (274 6d)-hyperbolic.
By Theorem 4.16, v is either an approximate dilation or a logarithm-like metric transform. Since ¢

is within bounded distance from v, the conclusion follows. 0

6. PROOF OF THEOREM B

In this section we prove Theorem B (Theorem 6.4) and its corollary (Corollary 6) as stated in the
introduction.

Recall that a rough isometric embedding between two metric spaces X and Y is given by a map
f: X =Y and a constant £ > 0 such that for all z,y € X

dX(xvy) —k< dy(f(l'),f(y)) < dx(l',y) + k.

Lemma 6.1. Assume that f: X — Y is a k-rough isometric embedding. If Y is 6-hyperbolic then X
is (0 + 2k)-hyperbolic.
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Proof. We use the 4-point inequality in Proposition 3.1. Let x,y, z,w € X. Then

dx (z,y) + dx (z,w) < dy (f(2), f(y)) + dv (f(2), f(w)) + 2k
< max{dy (f(x), f(2)) + dy (f (), f(w)), dy (f(2), f(w)) + dy (f(y), f(2))} + 26 + 2k
< max{dx (z, 2) + dx (y,w) + 2k, dx (z,w) + dx (y, z) + 2k} + 26 + 2k
= max{dx (z,2) + dx (y,w),dx (z,w) + dx (y,z)} + 2(§ + 2k).
which shows that (X, dx) is (6 + 2k)-hyperbolic. O

)
)

Theorem 6.2. Let ¢ € M be an unbounded, approximately nondecreasing metric transform. The
transformed Euclidean half line ([0,00),| - |,) can be roughly isometrically embedded in a Gromov
hyperbolic space (X, d) if and only if ¢ is of one of the following forms:

(i) ¢ is an approzimate dilation,

(i) ¢ is logarithm-like.

Proof. If ([0,00), | - |) admits a rough isometric embedding into a Gromov hyperbolic space then by

Lemma 6.1 it is Gromov hyperbolic and the conclusion follows from Theorem 5.3. O

Recall that a rough geodesic ray in a metric space (X, d) is a rough isometric embedding of the
Euclidean half line [0, 00) into X.

Lemma 6.3. Let v: [0,00) — (X, d) be a k-rough geodesic ray and let ¢ € M be a n-nondecreasing,
unbounded metric transform. Then ~: ([0,00),| - |o) = (X,dy) is a (p(k) + n)-rough isometric
embedding.
Proof. Since 7: [0,00) = (X, d) is a k-rough geodesic ray for all ¢,s > 0

t—s| =k <d(y(t),7(s)) < [t —s| + k&
and since ¢ is n-nondecreasing

et = sl = k) < p(d(y(8),7(s))) + 1 < (|t = s| + k) + 2.

Since ¢ is subadditive

(It = s[) = w(k) < @(d(r(1),7(s)) +1 < @[t = 5]) + @(k) + 21
or equivalently |t — s|, — (k) —n < dy((t),7(s)) < [t — s|e + ©(k) + 1. O

Theorem 6.4 (Theorem B). Let (X,d) be a metric space containing a rough geodesic ray. Let ¢
be an approzimately nondecreasing, unbounded metric transform. If the transformed space (X, dy) is

Gromov hyperbolic then
(1) (X,d) is Gromov hyperbolic and ¢ is an approximate dilation, or
(i7) (X,d,) is approzimately ultrametric.

Conditions (i) and (ii) are mutually exclusive.
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Proof. Let 7:[0,00) — X be a rough geodesic ray in (X,d). Then by Lemma 6.3, the map
v: ([0,00),] - |o) = (X,dy) is a rough isometric embedding, and since (X,d,) is Gromov hyper-
bolic, by Lemma 6.1, the transformed Euclidean half line ([0, 00),] - |,) is Gromov hyperbolic. By
Theorem 5.3, this occurs if and only if the metric transform ¢ is either an approximate dilation or
logarithm-like. In the former case (X,d) is roughly similar to (X, d,) by Remark 3.3 and therefore
Gromov hyperbolic by Proposition 3.2, and in the latter case (X, d,) is approximately ultrametric by
Proposition 3.8.

Suppose that both (i) and (ii) both hold. In particular, ¢ is an approximate dilation and hence,
because (X, d,) is approximately ultrametric, (X, d) must also be approximately ultrametric. This is

impossible since (X, d) contains a rough geodesic ray. O

The following corollary of Theorem 6.4 can be viewed as a type of rigidity with respect to metric

transformation of roughly geodesic Gromov hyperbolic spaces.

Corollary (Metric Transform Rigidity). Let (X,d) be a metric space containing a rough geodesic
ray. Let ¢ be an approximately nondecreasing, unbounded metric transform. If the transformed space
(X,d,) is Gromov hyperbolic and roughly geodesic then ¢ is an approximate dilation and (X, d) is
Gromov hyperbolic and roughly geodesic.

Proof. Since (X, d) contains a rough geodesic and the transformed space (X, d,,) is Gromov hyperbolic,
it follows as in the proof of Theorem 6.4 that ([0, 00), |- |,) is Gromov hyperbolic and by Theorem 5.3
that ¢ is either an approximate dilation or a logarithm-like metric transform. However, ¢ cannot be a
logarithm-like since Proposition 3.8 would then imply that (X, d,) is approximately ultrametric and
by Proposition 3.10 this would contradict the assumption that (X,d,) is roughly geodesic. Thus ¢
has to be an approximate dilation and by Remark 3.3 (X, d) is roughly similar to (X,d,), hence the
metric space (X, d) is Gromov hyperbolic and roughly geodesic. O
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