THE QUASI-HYPERBOLICITY CONSTANT OF A METRIC SPACE

GEORGE DRAGOMIR AND ANDREW NICAS

ABSTRACT. We introduce the quasi-hyperbolicity constant of a metric space, a rough isometry in-
variant that measures how a metric space deviates from being Gromov hyperbolic. This number, for
unbounded spaces, lies in the closed interval [1,2]. The quasi-hyperbolicity constant of an unbounded
Gromov hyperbolic space is equal to one. For a CAT(0)-space, it is bounded from above by v/2.
The quasi-hyperbolicity constant of a Banach space that is at least two dimensional is bounded from
below by v/2, and for a non-trivial Lp-space it is exactly max{21/7’7 21*1/1’}. If 0 < a < 1 then the
quasi-hyperbolicity constant of the a-snowflake of any metric space is bounded from above by 2.
We give an exact calculation in the case of the a-snowflake of the Euclidean real line.

1. INTRODUCTION

Gromov hyperbolic spaces were introduced by Gromov in his seminal paper [Gro87] to study
infinite groups as geometric objects. For a metric space (X,d), we use the abbreviated notation
xy = d(x,y) where convenient. Recall that for three points z,y,w in a metric space (X,d), the
Gromov product of x and y with respect to w is defined as

(@ | Y)w =3 (2w +yw — zy).
Given a non-negative constant §, the metric space (X, d) is said to be d-hyperbolic if
(@ | Y)w = min{(z | 2)w, (y | 2)w} —0

for all z,y,z,w € X. A metric space (X,d) is said to be Gromov hyperbolic if it is §-hyperbolic for
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some 0. Any R-tree is O-hyperbolic. Another well-known example is the hyperbolic plane, which
is log(2)-hyperbolic, [NS16, Corollary 5.4]. Euclidean spaces of dimension greater than one are not

Gromov hyperbolic. While Gromov hyperbolicity is a quasi-isometry invariant for intrinsic metric
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spaces [V&i05, Theorems 3.18 and 3.20], quasi-isometry invariance can fail for non-intrinsic spaces, see
[V&i05, Remark 3.19] and also our examples in §3. In particular, a metric space that quasi-isometrically
embeds into a Gromov hyperbolic space need not be Gromov hyperbolic.
A metric space (X, d) is d-hyperbolic if and only if the the four-point inequality holds, that is, for
all z,y,z,w e X,
xy + zw < max{zz 4+ yw, yz + zw} + 24,
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see [V&i05, (2.12)].
We generalize the four-point inequality as follows. Let (X, d) be a metric space. Let p,d > 0. We
say that a metric space (X, d) satisfies the (u, d)-four-point inequality if for all x,y, z,w € X,

xy + zw < pmax{zz + yw, xw + yz} + 20.

In particular, (X, d) is d-hyperbolic if and only if it satisfies the (1,d)-four-point inequality.

We introduce the following numerical constants associated to a metric space.

Definition (Quasi-hyperbolicity constants). Let (X, d) be a metric space.
(i) The quasi-hyperbolicity constant of (X, d) is the number

C(X,d) = inf{u | there exists 6 > 0 such that (X, d) satisfies the (p, d)-four-point inequality}.
(ii) The restricted quasi-hyperbolicity constant of (X,d) is the number

Co(X,d) = inf{p | (X,d) satisfies the (u,0)-four-point inequality}.

Some basic properties of the quasi-hyperbolicity and restricted quasi-hyperbolicity constants of a
metric space (X, d) are readily derived, for example:
. C(X.d) < Co(X,d) <2,
e if (X,d) is bounded then C(X,d) = 0, otherwise C'(X,d) > 1,
e if (X, d) has at least two points then it is O-hyperbolic if and only if Cy(X,d) =1,
e if (X, d) is Gromov hyperbolic and unbounded then C(X,d) = 1.

Proofs of these and more properties are given in §2. In the absence of additional hypotheses, it is not
true that C'(X,d) = 1 implies (X, d) is Gromov hyperbolic. For example, given 0 < « < 1, consider the
graph, Yy, of y = 2%, x > 0, as a subspace of the Euclidean plane, (R?,dg). We show C(Y,,dg) = 1,
Proposition 3.4, however Y, is not Gromov hyperbolic if and only if 1/2 < « < 1, Propositions 3.1
and 3.3. Nevertheless, if (X,d) is a proper CAT(0)-space and C(X,d) = 1 then (X,d) is Gromov
hyperbolic, see Proposition 3.8 and Question 3.7.

The appearance of a possibly positive ¢ in a (u, §)-four-point inequality suggests that C'(X,d) can
be insensitive to small scales. Indeed, C(X,d) is a rough isometry invariant of (X, d), Corollary 2.15.
Quasi-isometry is a less stringent condition than rough isometry and C(X,d) is not a quasi-isometry
invariant of (X, d). Examples of this phenomenon are given in §3.

While the restricted quasi-hyperbolicity constant, Cy(X, d), is obviously an isometry invariant it is
not a rough isometry invariant; moreover, the constants Co(X, d) and C(X,d) need not coincide. For
example, if (H?,dy) is the hyperbolic plane then C(H?,dy) = 1 < /2 = Co(H?,dy), see Example
2.11. The intuition supporting this example is that very small quadrilaterals in H? are approximately
Euclidean and contribute to Co(H?, dgr) but not to C(H?,dy). For spaces (X, d) that are “four-point
scalable in the large” (Definition 2.7) we show, Proposition 2.9, that Cy(X,d) = C(X,d). Examples

of such spaces include Banach spaces and their metric snowflakes.
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A CAT(0)-space is a geodesic metric space whose geodesic triangles are not fatter than correspond-
ing comparison triangles in the Euclidean plane. Simply connected, complete Riemannian manifolds
of non-positive sectional curvature are familiar examples of CAT(0)-spaces. We show, Theorem 4.2,
that the restricted quasi-hyperbolicity constant of a metric space whose distance satisfies Ptolemy’s
inequality and the quadrilateral inequality, in particular any CAT(0)-space, is bounded from above by
V2. The quasi-hyperbolicity constant of any Euclidean space of dimension greater than one is equal
to \/5, Proposition 4.4.

Banach spaces are a particularly important class of metric spaces and their geometric properties
have been extensively studied, [JLO1]. For a Banach space B with the metric determined by its norm,
we write C'(B) for its quasi-hyperbolicity constant. We observe that C(B) > J(B) where J(B) is the
James constant of B, see (5.7). Strong results for the James constant of a Banach space due to Gao
and Lau, [GL90], and to Komuro, Saito and Tanaka, [KST16], lead to the following conclusion about
C(B).

Theorem (Theorem 5.8). If B is a Banach space with dim B > 1 then C(B) > v/2. If dim B > 3
and C(B) = v/2 then B is a Hilbert space.

Enflo [Enf69] introduced the notion of the roundness of a metric space, Definition 5.9, which is a

real number greater than or equal to one. We show:
Theorem (Theorem 5.11). If B is a Banach space with roundness r(B) then C(B) < 21/7(B),
This estimate allows us to calculate the quasi-hyperbolicity constant of a non-trivial L,-space.

Corollary (Corollary 5.12). For a separable measure space (2, %, ) and 1 < p < oo, let L,(Q, X, p)
be the corresponding L,-space. If dim L,(Q, %, 1) > 2 then C(L,(Q, %, 1)) = max{2'/?, 21-1/P}

If (X,d) is any metric space and 0 < « < 1 then (X,d%) is also a metric space, called the
a-snowflake of (X,d). We show, Theorem 6.2, that Co(X,d*) < 2%. Applying this estimate, we
calculate, Proposition 6.3, the quasi-hyperbolicity constant of the a-snowflake of (R",d.), where
doo is the Loo-metric (“max metric”) on R™: For n > 2, C(R™,d%) = 2*. The quasi-hyperbolicity
constant of the a-snowflake of of the Euclidean line (R!, d) can be determined by solving an associated

optimization problem, yielding the following calculation.

Theorem (Theorem 6.6). Let 0 < o < 1. Let m > 1 be the unique solution to the equation
(m —1)* 4 (m +1)* = 2. Then C(R',d%) = m®.

2. QUASI—HYPERBOLICITY AND RESTRICTED QUASI-HYPERBOLICITY CONSTANTS

We derive basic properties of the quasi-hyperbolicity constant and the restricted quasi-hyperbolicity
constant of a metric space and examine their general behavior with regard to quasi-isometric embed-
ding and, respectively, bilipschitz embedding.

Recall the following definition from the introduction.
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Definition 2.1. Let p,6 > 0. We say that a metric space (X,d) satisfies the (u,0d)-four-point
inequality if for all z,y, z,w € X,

2y + zw < pmax{xz + yw, zw + yz} + 24.
We make the following elementary observation concerning this definition.

Proposition 2.2. Let (X,d) be a metric space.
(i) (X,d) satisfies the (2,0)-four-point inequality,
(i) If (X, d) is unbounded and satisfies the (u,d)-four-point inequality then p > 1.
(iii) If (X,d) is bounded with diameter D then it satisfies the (0, D)-four-point inequality.

Proof. (i). Let z,y, z,w € X. Triangle inequality and symmetry of the metric yield:
oy <zz+yz, zy<zwt+yw, zwlzz4+zw, 2wl Y4+ yw.

Adding these four inequalities and dividing by 2 gives zy + zw < (zz 4+ yw) + (zw + zw). For real
numbers a,b we have a + b < 2max{a,b} and so xy + zw < 2max{zz + yw, zw + zw}, that is, the
(2, 0)-four-point inequality is satisfied.
(ii). Assume that X is unbounded and satisfies the (p,d)-four-point inequality. Let {z,} and {y,}
be sequences in X such that z,y, — oo as n — oo. By the (u,d)-four-point inequality, with x = x,,
and y = z = w = y,, we have x,y, < @y, + 26. Dividing by z,v, and taking the limit as n — oo
yields 1 < p.

Property (iii) is obvious. O

Given points x,y, z,w € X, not all identical, define
Ty + zw

2. A = .
(2:3) (29,2, w) max{zz + yw, zw + yz}

In the introduction, we defined the restricted quasi-hyperbolicity constant of (X, d) by
Co(X,d) = inf{p | (X,d) satisfies the (u,0)-four-point inequality}.
If X has at least two points then
(2.4) Co(X,d) =sup Az, y, z,w)
where the supremum is taken over all z,y, 2z, w € X, not all identical.
We also defined the quasi-hyperbolicity constant of (X, d) by
C(X,d) = inf{u | there exists 6 > 0 such that (X, d) satisfies the (p, §)-four-point inequality}.

The quasi-hyperbolicity constant and the restricted quasi-hyperbolicity constant have the following

elementary properties.

Proposition 2.5. Let (X,d) be a metric space.
(i) If AC X and d4 is the subspace metric then C(A,da) < C(X,d) and Cy(A,da) < Co(X,d).
(ii) If A > 0 then C(X,\d) = C(X,d) and Co(X,Ad) = Co(X,d).
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(X,d) < Co(X,d) <2.

) is unbounded then 1 < C(X,d).

) is bounded then C(X,d) = 0.

) has at least two distinct points then Co(X,d) > 1

,d') is a metric completion of (X, d) then C(X,d) = C(X',d') and Co(X,d) = Co (X', d').

===
[SHERSHENSH

Proof. Property (i) and the inequality C(X,d) < Cy(X,d) are clear from the definitions of C'(X,d)
and Cy(X,d). Note that for A > 0, (X,d) satisfies the (p,d)-four-point inequality if and only if
(X, A\d) satisfies the (u, A\d)-four-point inequality. This implies (ii). The inequality Co(X,d) < 2 in
(iil) is a consequence of Proposition 2.2(1); (iv) follows from Proposition 2.2(ii); and (v) follows from
Proposition 2.2(iii). If zg,yo are distinct points in X then A(zo,yo,yo,y0) = 1, see (2.3), and so
Co(X,d) > 1 by (2.4). Tt is straightforward that a metric space (X, d) satisfies the (u, d)-four-point
inequality if and only if a metric completion of (X, d) satisfies the (u,d)-four-point inequality. This
implies (vii). O

Proposition 2.6. Let (X,d) be a metric space.

(i) If (X, d) unbounded and Gromov hyperbolic then C(X,d) = 1.
(i) If (X,d) has at least two points then it is 0-hyperbolic if and only if Co(X,d) = 1.

Proof. (i). By Proposition 2.5(iv), C'(X,d) > 1. Since, by definition, a Gromov hyperbolic space
satisfies a (1, ¢)-four-point inequality for some § > 0 we have C(X,d) < 1. Hence C(X,d) = 1.

(ii). If (X, d) is O-hyperbolic then it satisfies the (1, 0)-four-point inequality and so Cy(X,d) < 1. By
Proposition 2.5(vi), Co(X,d) > 1. Hence Cy(X,d) = 1. If Cy(X,d) = 1 then for every z,y,z,w € X,
not all identical, A(z,y, z,w) < 1 and so (X, d) satisfies the (1,0)-four-point inequality, that is, (X, d)
is 0-hyperbolic. O

Without additional hypotheses, the converse of Proposition 2.6(i) need not be true, in §3.2 we give
examples of unbounded metric spaces with C(X,d) = 1 that are not Gromov hyperbolic (also see

Question 3.7 and Proposition 3.8).

Definition 2.7. We say that a metric space (X,d) is four-point scalable in the large if for every
T1,T2,73,74 € X and for every A > 0 there exists 27,25, 73,24 € X and A > A such that d(x}, ) =
Ad(z;, ;) for 1 <i4,7 <4.

Example 2.8. Let V be a real vector space with a given norm || - ||. The norm determines a metric
on V given by d(z,y) = || — y||. For any 0 < o < 1 the function d* is also metric on V. The metric
space (V,d*) is called the a-snowflake of (V,d). Note that d*(Az, \y) = A*d“(z,y) for any A > 0
from which it easily follows that (V, d®) is four-point scalable in the large. Let S C V' be a nonempty
subset such that Az € S for all A > 0 and all x € S. Then S, viewed as a metric subspace of (V,d®),

is also four-point scalable in the large.
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Proposition 2.9. If (X, d) is four-point scalable in the large then C'(X,d) = Co(X,d).

Proof. Tt suffices to show that if (X, d) satisfies the (p, d)-four-point inequality for a particular (p,d)
then it also satisfies the (u, 0)-four-point inequality. Assume that (X, d) satisfies the (u, §)-four-point
inequality for some g > 1 and 6 > 0. Let a1, z2, 23,24 € X. For each A > 0, let A > X and =} € X be
such that zjz, = Ax;z;, 1 <4, < 4. Note that the (u,d)-four-point inequality for the points {z}}
implies the (u,d/A)-four-point inequality for {x;}. Since A can be chosen to be arbitrarily large, it
follows that {z;} satisfies the (u, 0)-four-point inequality. O

Corollary 2.10. Let V be a real vector space with a given norm || - || and corresponding metric,
d(z,y) = ||lx —y||. Let S CV be a nonempty subset such that A\x € S for all A > 0 and all x € S.
Then for all 0 < a < 1, C(S,d*) = Cy(S,d™).

Proof. From Example 2.8, (.5, d®) is four-point scalar in the large and so the conclusion follows from

Proposition 2.9. O

Example 2.11 (Hyperbolic space). Let n > 1 be an integer and let (H", dy) denote n-dimensional
real hyperbolic space. For this space, C(H",dy) = 1 < /2 = Co(H™,dy) and so Proposition 2.9
implies (H™, dp) is not four-point scalable in the large. The space (H",dy) is Gromov hyperbolic and
unbounded, hence C'(H",dg) = 1 by Proposition 2.6(i). Since H™ has negative sectional curvature
as a Riemannian manifold, Co(H",dg) = +/2 by Corollary 7.3.

Definition 2.12. Let C1,C3 > 0 and L1, Ly > 0. A map f: X — Y between metric spaces (X, dx)
and (Y,dy) is a ((C1, L1), (Ca, L2))-quasi-isometric embedding if for all u,v € X,

Cidx (u,v) — L1 < dy(f(u), f(v)) < Cadx(u,v)+ Lo.

Some useful special cases of this definition include:

(i) A ((C1,0),(Cq,0))-quasi-isometric embedding f: X — Y is also known as a (Cy, C2)-bilipschitz
embedding.

(ii) A ((1,%), (1, k))-quasi-isometric embedding f: X — Y is also known as a k-rough isometric
embedding. This condition is equivalent to: for all u,v € X, |dy (f(u), f(v)) — dx(u,v)| < k.

Lemma 2.13. If f: X — Y s a ((C1,L1),(Cq, La))-quasi-isometric embedding between metric
spaces and (Y, dy) satisfies the (u,d)-four-point inequality for some (u,0) then (X,dx) satisfies the
(g—fu, Cll(uLg + L+ 6)) -four-point inequality.
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Proof. Let x,y,z,w € X and let Z,y, Z,w € Y be their respective images under f: X — Y. Then

dx(z,y) + dx(z,w)

C%(dy(fc, y) +dy(z,w)) + %

& (pmax {dy (2, 2) + dy (y, ), dy (Z,0) + dy (5, 2)} + 20) + 2

-nmax {Cy (dx (7, 2) + dx (y,w)) + 2La, Ca(dx (v, w) + dx (y,2)) + 2L} + 22 + 22

g_iﬂmax{dX(xvz) + dX(va)v dx(.’L',’LU) + dX(y,Z)} + % + é_(i + %

INIA

which shows that (X, d) satisfies the (%u, C%(MLQ + L1+ 6))—f0ur—point inequality. O
Lemma 2.13 has the following immediate consequence.

Proposition 2.14. Let f: X =Y be a map between metric spaces (X,dx) and (Y,dy).

(i) If f is a ((Cy, Ly), (Cq, La))-quasi-isometric embedding then C(X,dx) < (Cy/Cy) C(Y,dy).
(i) If f is a (Cy1,C2)-bilipschitz embedding then Co(X,dx) < (C3/Cy) Co(Y,dy). O

A map f: X — Y between metric spaces (X, dx) and (Y, dy) is a rough isometry if it is a k-rough
isometric embedding for some k > 0 and there exists R > 0 such that f(X) is R-dense in Y, that
is, for every y € Y there exists z € X such that dy (f(z),y) < R. Two metric spaces are roughly
isometric if there exists a rough isometry between them. Note that rough isometry is a generally a
stronger condition than quasi-isometry. Recall that f is a quasi-isometry if it is a ((C1, L1), (Ca, L2))-
quasi-isometric embedding for some (C4, L1), (Ca, L2) and also f(X) is R-dense for some R.

Corollary 2.15. If (X,dx) and (Y,dy) are roughly isometric then C(X,dx) = C(Y,dy).

Proof. Since (X,dx) and (Y, dy) are assumed to be roughly isometric, there exists kK > 0 and R > 0
and a k-rough isometric embedding f: X — Y such that f(X)is R-dense in Y. By Proposition 2.14(i),
C(X,dx) < C(Y,dy). Define g: Y — X as follows. For each y € Y we can choose z € X such that
dy (f(x),y) < Rand declare g(y) = x. Observe that forally € Y, dy (f(g(y)),y) < R. Forallu,v € Y,
ldy (F(g(w)), £(g(0)))—dx(9(w), 9(0))] < k. Hence, for all u,v € Y, [dy-(u, v) —dx (9(w), g(v))| < k-+2R
and so g is a (k 4+ 2R)-rough embedding. By Proposition 2.14(i), C(Y,dy) < C(X,dx). It follows
that C(X,dx) = C(Y, dy). O

3. TWO FAMILIES OF EXAMPLES

In §3.1, we exhibit spaces that are quasi-isometric to the Euclidean line yet with quasi-hyperbolicity
constants that are greater than one and, consequently, are not Gromov hyperbolic. In §3.2, we give
examples of metric spaces whose quasi-hyperbolicity constants are equal to one, yet are not Gromov
hyperbolic. However, these are examples are not roughly geodesic. We show, using Bridson’s “Flat
Plane Theorem”, that a proper CAT(0)-space whose quasi-hyperbolicity constant is equal to one is

necessarily Gromov hyperbolic, see Proposition 3.8.
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3.1. The graph of y = m|z| in the Euclidean plane.
Let m > 0. Consider the space X,,, = {(z,y) € R? | y = m ||} as a subspace of the Euclidean plane.
The metric on X, is given by
1/2

dp ((w,mul), (v,m [o]) = [(u = v)? + m?(ju] - [v))*]"/*.
Let (R,dg) be the Euclidean line, dg(u,v) = |u — v|. Let p: X,, — R be projection to the first
coordinate, that is, p(z,y) = x. For u,v € R, ||u| — |[v|| < |u — v|, and so, for u # v,
1/2

2
[(u — )% +m?(|u| - |’U|)2]1/2 = |u—v| [14+m? (M) ] < (m?4+1D)Y2 ju -,

u—"v

and thus for all u, v
(m® +1)"2dg ((u,mu]), (v,m |v])) < [u—v| < dp ((u,m[u]), (v,m][v])).

Hence p is a ((m? + 1)~'/2,1)-bilipschitz embedding of X,, into R. Since p is surjective, it is also a
bilipschitz homeomorphism. In particular, (X,,,dg) and (R, dg) are quasi-isometric.

Note that, since (R, dg) is 0-hyperbolic, we have C(R,dg) = Co(R,dg) = 1 by Proposition 2.6.
For m > 0, let u,, = %zziii A straightforward calculation yields

A ((= iy ftmn ), (1,m), (=1,m), (foms ) = (2 = (m? +1)71)?

and so Co(Xp,dp) > (2 — (m* + 1)_1)1/2. Note that if (x,y) € X,, and A > 0 then A(z,y) € X,
and so Corollary 2.10 gives Co(X,,,dg) = C(Xyn,dg). Hence C(Xp,dg) > (2 — (m? + 1)*1)1/2 > 1
for m > 0. It follows from Proposition 2.6(i) that (X,,,dg) is not Gromov hyperbolic when m > 0.
Combining Propositions 2.14 and 4.3 yields the non-sharp upper bound:

C(Xm,dr) < min {\/57 (m? + 1)1/2} .
However, numerical calculations strongly suggest that the configuration (=i, tm m), (1,m), (—=1,m),

(fm pan m) of four points in X, is optimal, that is, C(Xp,dg) = (2 — (m? + 1)’1)1/2 for all m > 0.

3.2. The graph of y = 2, where 0 < a < 1, in the Euclidean plane.
For 0 < o < 1, let d,, be the metric on the half-line, [0, 00), given by

do(z,y) = ((x —y)* + (=" —y*)?)

Let Y, = {(z,y) € R? | y = 2% x > 0} as a subspace of the Euclidean plane. Projection to

1/2

the first coordinate, (z,y) — z, gives an isometry (Y,,dg) — ([0,00),ds). The metric behavior of
([0,0), do) separates into two distinct cases, namely 0 < o < 1/2 and 1/2 < a < 1.

Proposition 3.1. If 0 < a < 1/2 then for all x,y > 0, 0 < do(z,y) — |z — y| < 1. Consequently,
for 0 < a < 1/2, ([0,00),dn) is roughly isometric to the Fuclidean half-line and is thus Gromov
hyperbolic.
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Proof. We first show that if 0 < o < 1/2 then for u > 0, (u* + u2°‘)1/2 —u <1 Ifu<1then
(u2 4 u2oz)

If u >1and a < 1/2 then u?* < u and

1/2—u < (u4u)—u = u* < 1.

2c
(w2 +u2) '~y = - < - <1

(u2+u2a)1/2+u - (u2+u2a)1/2+u
For 0 <a<1landz,y>0,z*—y* <|z—y/* Hence for 0 < a <1/2 and z,y > 0, and using the

inequality (u? + u?®) Y2y <1 with u = |z — y|, we have
0< ((@—9)?+ @ =y")?) " —lo—yl < (lo =yl + o —y[**) " — o —y[ <1,
establishing the conclusion of the Proposition. 0

In [BH99, 1.23 Exercise, p.412] it is asserted that ([0, 00),d,/2) is not Gromov hyperbolic. This is
not accurate as demonstrated by Proposition 3.1, however, we show in Proposition 3.3 that ([0, o), dq,)

is not Gromov hyperbolic if 1/2 < o < 1.
Lemma 3.2. Let f(a) =222+ 1(1—2%)? — 1(1 —22)? —2%73_ [f0<a <1 then f(a) >0 and
lim (do(t,4t) + da (0,2t) — do(t,2t) — duo(0,4t)) /12271 = f(a).

t—o0
Proof. Consider the polynomial g(z) = &a? — Sa? + 2 — 2 = L (z — 2)?(2® + 4o — 2). Using the
factored expression for g(z), we see that g(z) > 0 for 1 < x < 2. Note that f(a) = g(2%). Hence

fla) >0for 0 < < 1. For s > 0, let

hs) = (32 + (1 — 4%)25) '/ 1z

1/2 1/2

+(224+2%%s) 7 — (14 (1—2%)%) 7 — (4% +4%%)
A straightforward calculation reveals that, for ¢ > 0,
0(t) = (du(t,4t) + do(0,2t) — dy(t,2t) — da(0,4t)) /12071 = h(t2*2) /12272,

Since 2a — 2 < 0, limy_y00 t2*72 = 0 and so

. o ) oy
Jim, 60) = iy =% =10 = f(@)
yielding the conclusion of the Lemma. O

Proposition 3.3. If1/2 < a < 1 then ([0,0),d) is not Gromov hyperbolic.

Proof. For x,y,z,w € [0,00) and 0 < a < 1, let
Gra(xayu 2, w) = da(‘ru y) + da(Z,’LU) — max {da(xu Z) + da(yu ’U}), doz(xaw) + da(y7 2)} .

Note that ([0, 00),ds) is not Gromov hyperbolic if and only if sup, , . ., Gra(,y, 2, w) = oco.

For t > 0, let
ht) = do(t,2t) +do(0,4t) (14 (1~ go)2 2o-2)1/2 | (42 | 2o 20-2) 12
du (0, t) + da(2t74t) (1+ t2a—2)1/2 + (22 + (20 — 4a)2 t20‘_2)1/2
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Since 2a — 2 < 0, limy_, 1272 = 0 and so the above expression for h(t) yields lim;_ o h(t) =
5/3. Hence do(t,2t) + do(0,4t) > do(0,t) + do(2t,4t) for sufficiently large ¢ which implies that
Gro(t,4t,0,2t) = do(t,4t) + da (0, 2t) — do (1, 2t) — do (0, 4t) for sufficiently large ¢. If 1/2 < av < 1 then
2a—1 > 0 and so Lemma 3.2 implies that lim;_,o, Gro, (¢, 4t, 0, 2t) = oco. ]

Proposition 3.4. If0 < a <1 then C(]0,00),d,) = 1.
Proof. Let L > 0. If x,y > 0 and |x — y| > L then

o o _ [e%
|‘T| y|| < |T: y|| _ |x_y|a71 < La717
T=Y T=Y

and so for |v —y| > L,

1/2
da(w,y) < (Jo =y + (Lo —yl)") < (042273 o -y,

If 2,y > 0 and |z — y| < L then

do(z,y) < (Jo— > + o —y2) 2 < (L2 + 122)? = L (14 £2272)2,

It follows that for all =,y >0

(3.5) @ —y| < dalz,y) < 1+ L2722 1z —y|+ L (1 4+ 122°2)" 2

Let dg(z,y) = |z — y|, the Euclidean metric on [0,00). By Proposition 2.6(i), C([0,00),dg) = 1.
Proposition 2.14(i) and (3.5) imply that C([0,00),d,) < (1 + L2°‘—2)1/2
that limyz,_ . (1 +L20¢*2) Y2 _ { Hence C([0,00),ds) < 1. Furthermore, by Proposition 2.5(iv),
C([0,0),ds) > 1 and so C([0,0),d,) = 1. -

. Since 2a — 2 < 0, we have

Remark 3.6. It follows from the inequality (3.5) that the identity map ([0, 00),dr) — ([0, 00),ds)
is a quasi-isometry. In this inequality, there is a trade-off between the “distortion”, (1 4 1;20472)1/27
and the “roughness”, L (1 + L2a72)1/2

distortion small (close to 1) makes the roughness large and vice versa.

, that is, an attempt to adjust the parameter L to make the

We showed that for 1/2 < ao < 1 the space ([0, 0), d) is not Gromov hyperbolic but, nevertheless,
C(]0,00),dy) = 1.

Question 3.7. Assume that (X,d) is a geodesic metric space or, more generally, roughly geodesic.
Does C(X,d) = 1 imply that (X, d) is Gromov hyperbolic?

For 1/2 < o < 1, the space ([0,00),ds) is not roughly geodesic and so does not provide a negative
answer to this question. Some evidence in favor of an affirmative answer to Quesition 3.7 is given by

the following result (see §4 for a discussion of CAT(0)-spaces).

Proposition 3.8. Let (X,d) be a proper CAT(0)-space. If C(X,d) = 1 then (X,d) is Gromov
hyperbolic.
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Proof. Assume the proper CAT(0)-space (X,d) is not Gromov hyperbolic. Bridson’s Flat Plane
Theorem, [Bri95, Theorem A], asserts that there exists an isometric embedding of a Euclidean plane,
(V,dg), into X. Hence C(V,dg) < C(X,d). By Proposition 4.4, C(V,dg) = v/2 and so C(X,d) > /2.
In particular, C(X,d) # 1. O

4. THE PTOLEMY AND QUADRILATERAL INEQUALITIES, CAT(0)-SPACES

The notion of a CAT(0)-space generalizes the concept of a simply connected, complete Riemannian
manifold of non-positive sectional curvature to geodesic metric spaces. We show that the restricted
quasi-hyperbolicity constant of a CAT(0)-space is bounded from above by v/2. Indeed, the restricted
quasi-hyperbolicity constant of any metric space whose distance satisfies Ptolemy’s inequality and the
quadrilateral inequality, in particular any CAT(0)-space, is bounded from above by v/2, Theorem 4.2.
The quasi-hyperbolicity constant of any Euclidean space of dimension greater than one is equal to
\/5, Proposition 4.4.

Definition 4.1. Let (X, d) be a metric space.
(i) The metric d satisfies Ptolemy’s inequality if for all z,y,z,w € X,
(zy)(zw) < (22)(yw) + (zw)(y=).

In this case we say (X, d) is Ptolemaic.

ii) The metric d satisfies the quadrilateral inequality if for all x,y, z,w € X,
Y Y
(2y)? + (2w)? < (22)* + (yw)? + (zw)? + (y2)*.
In this case we say (X, d) is 2-round (see Definition 5.9).
Recall that a Fuclidean space is a real vector space V together with a positive definite inner product,
(u,v) = (u,v). The inner product yields a Euclidean norm, ||z|| = (x,z)'/? and a corresponding

FEuclidean metric, d(u,v) = |l — y||. It is classical mathematics that a Euclidean space with its

Euclidean metric is Ptolemaic and 2-round.
Theorem 4.2. If the metric space (X, d) is Ptolemaic and 2-round then Co(X,d) < /2.

Proof. Assume (X, d) is Ptolemaic and 2-round. Then for z,y, z,w € X,

(zy)(zw) < (2z)(yw) + (zw)(yz) and
(2y)” + (zw)* < (22)" + (yw)? + (2w)” + (y2)*.

Multiplying the first inequality by 2 and adding it to the second one yields:
(zy + 2w)? < (zz + yw)? + (2w + yz)*

For non-negative real numbers a,b we have v/a? + b < /2 max{a,b} and so the above inequality
implies

zy + 2w < V2 max{zz + yw, zw + yz}
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from which it follows that Co(X,d) < v/2. O

Informally, a CAT(0)-space is a geodesic metric space whose geodesic triangles are are not fatter
than corresponding comparison triangles in the Euclidean plane, see [BH99, I1.1.1, page 158] for the
precise definition. Since any configuration of four points in a CAT(0)-space has a “subembedding”

into Euclidean space, [BH99, page 164], a CAT(0)-space is Ptolemaic and 2-round.
Corollary 4.3. If (X, d) is a subspace of a CAT(0)-space then Co(X,d) < /2.

Proof. Since a CAT(0)-space is Ptolemaic and 2-round, so is any subspace. The conclusion follows
from Theorem 4.2. 0

Proposition 4.4. Let V be a Euclidean space and d its FEuclidean metric. If dimV > 2 then
C(V,d) = Co(V,d) = V3.

Proof. By Theorem 4.2, Cy(V,d) < V2. Since dim V' > 2, there are orthogonal unit vectors u,v € V.
A calculation using the inner product of V yields A(u,v,0,u + v) = /2 and thus Co(V,d) > /2.
Hence Cy(V,d) = /2. Also, by Corollary 2.10, C(V,d) = Cy(V, d). O

Remarkably, a geodesic metric space that is 2-round is necessarily a CAT(0)-space, [BN08, Sat09]
and so Corollary 4.3 yields the following proposition.

Proposition 4.5. Let (X,d) be a geodesic metric space. If (X,d) is 2-round then Co(X,d) < /2. O

Remark 4.6. Let (X,d) be any metric space. Blumenthal [Blu70, Theorem 52.1] showed that if
0 < a < 1/2 then the a-snowflake (X, d*) has the property that any four points in it can be isomet-
rically embedded into Euclidean space. Hence, in the case 0 < o < 1/2, (X, d®) is Ptolemaic and
2-round and so Theorem 4.2 implies that Co(X,d*) < v/2. An improvement and extension of this

estimate is given by Theorem 6.2.

5. BANACH SPACES

In contrast to a CAT(0)-space, whose quasi-hyperbolicity constant is bounded from above by /2,
the quasi-hyperbolicity constant of a Banach space B of dimension greater that one is bounded from
below by /2 with equality holding, assuming that the dimension of B is at least three, only when B is
a Hilbert space, see Theorem 5.8. This is a consequence of strong results for the James constant of B
due to Gao and Lau, [GL90], and to Komuro, Saito and Tanaka, [KST16]. Enflo [Enf69] introduced
the notion of the roundness of a metric space. We show, Theorem 5.11, that if B is a Banach space
with roundness r(B) then its quasi-hyperbolicity constant is bounded from above by 21/7(B) and use
this to show that the quasi-hyperbolicity constant of a non-trivial LP-space, where 1 < p < oo, is
max{2/7 2171/P1 see Corollary 5.12.
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Let B = (V,||-||) be a real Banach space. The norm of B, || -||, yields a metric d(u,v) = ||u—v|| on
the real vector space V' and we use notation C(B) for C(V,d). Note that by Corollary 2.10 we have
Co(V,d) = C(V,d) = C(B).

Let 1 < p < co. Recall the p-norm on R™, denoted by ||z, for x = (z1,...,2,) € R", is given by

(lzaP + - + |za|?)P if 1< p < o0,

lllp =
max {|z1],...,|zn|}  if p=o0.

We write £;; = (R™, [ - [|,) and dp(u,v) = [[u — v||,. The p-norms on R™ are related by the following
well-known inequality. If 1 < p < ¢ < oo then for all x € R™

(5-1) lzllg < lall, < w2z,

where, by convention, 1/00 = 0.
Note that ¢3 is a Euclidean space and so by Proposition 4.4, C(¢5) = v/2 for n > 2.

Proposition 5.2. For 1 < p < oo, C(£2) = max{2'/?,2171/r}
Proof. If 1 < p < 2 then by (5.1), ||lz]l2 < ||z, < 2/P71/2|z|]2. By Proposition 2.14,
C(z) < 2/P712 () = 2P,

Observe A((—1,1), (1,-1), (=1,—1), (1,1)) = 2"/ and so C({2) > 2'/?. Thus C({2) = 2'/7.

If 2 < p < 0o then by (5.1), 21/7=1/2||z||y < |[jz|, < ||=|2- By Proposition 2.14,

C(2) < 2V res) = 2t e,

Observe A((0,1), (0,—1), (=1,0), (1,0)) =2~/ and so C(£2) > 2'=1/P. Thus C(¢2) = 2'~1/r. [

Proposition 5.2 generalizes to non-trivial L,-spaces, see Corollary 5.12.

The Banach-Mazur distance between two isomorphic Banach spaces E and F' is defined by

dpn (B, F) = inf{||T||||T~Y| | T: E — F is an isomorphism}.

For example, if 1 < p < g <2o0r2<p<q< oo then dem(ly, ) = n'/P=1/4_[TJ89, Proposition
37.6]. Proposition 2.14 yields the following comparison.
Proposition 5.3. If E and F are isomorphic Banach spaces then C(E) < dpm(E, F)C(F). O

Because of Theorem 5.8 below, the inequality of Proposition 5.3 can only give useful information
when dBM(E, F) < \/5
Since, up to a translation, any four points of a Banach space lie in some subspace of dimension at

most three,
(5.4) C(B) =sup{C(V) | V is a subspace of B with dimV < 3}.
A Banach space B is finitely representable in another Banach space B’ if for every finite dimensional

subspace F' of B and every € > 0 there is a subspace F’ of B’ and an isomorphism 7: F' — F’ such
that |T|| [T < 1+e.
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Proposition 5.5. If B is finitely representable in B’ then C(B) < C(B’).

Proof. Let € > 0. Let V be a subspace of B with dim V' < 3. Since B is finitely representable in B’,
there exists a subspace V' of B’ and an isomorphism 7': V' — V' such that ||T|| [T} < 1+e. By
Proposition 2.14, C(V) < (1 +¢)C(V’) and so C(V) < (1 4+ ) C(B’) because C(V') < C(B’). It
follows from (5.4) that C(B) < (1 +¢) C(B’). Since ¢ is arbitrary, we conclude C(B) < C(B’). O

Corollary 5.6. Let B be a Banach space and B** its second dual. Then C(B) = C(B**).

Proof. The canonical map B — B** is an isometric embedding and hence C'(B) < C(B**). In any
Banach space B, the second dual B** is finitely representable in in B, [JLO1, §9], and so by Proposition
5.5, C(B**) < C(B). It follows that C(B) = C(B**). O

The James constant of a Banach space B is defined by:
J(B) = sup{min([lz — ||, |z + y[)) | |zl = llyll = 1}
If [lo]] = [l = 1 then A(z,y,0,z +y) = 5(|z — y|| + | + y||) and thus
(5.7) C(B) = sup{5(|z =yl + = +y) | =]l =yl =1} > J(B)
A Banach space B is said to be non-trivial if dim(B) > 2.

Theorem 5.8. If B is any non-trivial Banach space then C'(B) > V2. Ifdim B > 3 and C(B) = V2
then B is a Hilbert space.

Proof. Gao and Lau, [GL90, Theorem 2.5], show J(B) > /2 for any non-trivial Banach space B.
Furthermore, Komuro, Saito and Tanaka, [KST16], show that dim B > 3 and .J(B) = /2 implies B
is a Hilbert space. The conclusion of the theorem follows from (5.7). O

Definition 5.9 ([Enf69]). Let (X,d) be a metric space and p > 1. The space (X,d) is said to be
p-round if for all z,y,z,w € X, (zy)? + (zw)? < (z2)? + (yw)? + (zw)? + (yz)P. The roundness of
(X,d) is r(X,d) = sup{p | (X,d) is p-round }.

Note that if (X, d) < oo then the supremum is attained. Enflo, [Enf69], observed that r(X,d) > 1
and that if (X, d) has the midpoint property' then r(X,d) < 2. In particular, if B is a Banach space
then 1 < r(B) < 2, where 7(B) is the roundness of B as a metric space.

Lemma 5.10. Let B be a Banach space that is p-round. Then for any vectors e, f € B

(el +1ID? < lle = £I7 + e+ f1I7.

LA metric space (X, d) has the midpoint property if for every z,y € X there exists z € X such that d(z, z) = d(z,y) =
1
zd(z,y).
2 b
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Proof. In the “p-round inequality” of Definition 5.9, letting z = e+ f,y=e— f, w=2¢,and z =0

gives
[12e]|” + 12£11 < 2lle = FIP + 2lle + fI”
and so
271 ([lell” + 1£17) < lle = fIP + lle + fP.
By (5.1), with n. =2, (|le]| + || £IN? < 2P~ (|le]|” + || f||?) from which the conclusion follows. O

Theorem 5.11. If B is a Banach space then C(B) < 2'/7(5),

Proof. Let p = r(B). Then B is p-round. Let z,y,z,w € B. Leta=z—z, b=w—y, c = w — x,
d=y—z,e=y—2x,and f =w—2. Notethat f=a+c=b+dand e=d—a =c—0b. Hence
e+ f=c+dand f —e=a+0b. By Lemma 5.10,

(el +1£1)7 < lle = fIIP + lle + £IIP
lla+ 0l + [|lc +d]||”

< (lall + 161" + (llell + l41)”  (by triangle inequality).
It follows that
lell+ 171 < (Clall + 181 + (lell + laip?) ™"
< 2YPmax(|la] +[[oll, lle| + lldll)  (by (5.1)).
Thus the (2'/7,0)-four-point inequality holds and so C(B) < 21/7. O

Corollary 5.12. Let (Q,%, ) be a separable measure space, that is, the o-algebra 3 is generated by a
countable collection of subsets of Q. Let 1 < p < oo and let L,(, X, 1) be the corresponding L,-space.
If dim L, (Q, %, 1) > 2 then C(L,(Q, %, 1)) = max{2'/?7,21-1/r},

Proof. Denote B = L,(2,%, ). Assume dim B > 2. In the case 1 < p < 2, Enflo, [Enf69], showed that
7(B) = p and so C(B) < 2/? by Theorem 5.11. In the case 2 < p < oo, by [LTW97, Propositionl.4
and Remark 1.5], 7(B) = 1/(1 — 1/p) and so C(B) < 2'~/P by Theorem 5.11. Hence for 1 < p < oo,
C(B) < max{2'/p 21-1/p},

The classification theory of L, spaces (see [JLO1, §4]) gives that, for 1 < p < oo, the space
B = L,(Q,%, 1) is isometric to one of the Banach spaces in the list

(5.13) 0l Ly(0,1), £, @y Ly(0,1), €8 @, Ly(0,1) n=12,...

Here, ¢, denotes the space of sequences (z,,)5%; with >~ | |z,|P < oo and L, (0, 1) denotes the space
of measurable functions (modulo null sets) on the unit interval such that fol |f(z)Pdz < oo, and
@, denotes the £, direct sum, that is, ||a @ b|| = (||a||? + [|b]|?)}/?. Each of the spaces in the list
(5.13) (in the case of £}, assume n > 2) contains a subspace isometric to £2 and so C(B) > C(£2) =
max{2!/? 21=1/P} by Proposition 5.2. Hence C(B) = max{2'/? 2'=1/P}. In the case p = oo note that

B contains a subspace isometric to 2, which implies that C'(B) = 2. O
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Question 5.14. Let (X,d) be a geodesic metric space. Is Co(X,d) < 21/7(X:d)?

By Proposition 4.5, this is true in the case r(X,d) = 2.

6. SNOWFLAKED METRIC SPACES

Recall that if 0 < @ < 1 and (X, d) is any metric space then (X,d*) is also a metric space, called
the a-snowflake of (X, d). We show that Cy(X,d*) < 2%, Theorem 6.2, and give some applications
of this estimate. We determine the quasi-hyperbolicity constant of the a-snowflake of the Euclidean

real line, Theorem 6.6.
Lemma 6.1. Let a;; € R, i,j € {1,2,3,4}, be such that a;j = aj;. Let A > 1. If a;; < Amax{a;x, ax;}

for all i,j,k, then a;; + are < Amax{a;x + ajo, air + aji} for all i, j, k, L.

Note that if L, M and S denote the largest, medium and smallest of the three sums a;; + axe,
a;; + aje and a;e + a;j, for some choice of 4, j,k, ¢ € {1,2,3,4}, then the conclusion of the lemma is
equivalent to L < AM.

Proof. Fix i,7,k, ¢ € {1,2,3,4}. Without loss of generality, assume that L = a;; + axs is the largest

sum and assume that age < a;;. Since a;; < Amax{ax, ax;} and a;; < Amax{ai, ag;}, we have
aij + are < aij + ai; < Amax{agp + aie, Gix + agj, agj + Gie, arj + ag; )
If a;r > ar; and agj > aye then
M = a;, + arj = max{a;x + air, Gix + aej, Grj + Qie, Qrj + agjt
and if a;; < ax; and ag; < aze then
M = ap; + ai = max{a + air, G, + aej, akj + aio, Qg + gt

In both cases, L < AM. Furthermore, if a;; > ax; and ag; < a;e then a;; < Amax{aik, axj} = Aap

and a;; < Amax{ais, arj} = Aaie, and since age < Amax{ag;, as;},
aij + age < a;; + Amax{ag;, arj} = max{a;; + Aagj, a;j + Aag;}
< max{)\aig + Aagj, Aagp + )\agj} = )\max{aig + aj, aik + agj}.
Finally, if a;i < ax; and ag; > aze then
a;; < Amax{aik, ar;} = Aar; and a;; < Amax{a, arj} = Aag;,
and since age < Amax{ag;, a;¢}, we have
aij + age < ai; + Amax{ag;, aie} < Amax{as; + agi, ar; + aiet,

that is, L < AM. OJ

Theorem 6.2. Let 0 < o < 1. For any metric space (X,d), Co(X,d*) < 2%,
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Proof. Let z; € X, i = 1,2,3,4. Tt suffices to show that if 7, j, k,l € {1,2,3,4} then

(xixj)® + (zpa)® < 2% max{(x;zr)® + (z;21), (wiz)® + (zj25)}
Observe that for all 7, j, k triangle inequality implies z;2; < x;zy + z;2, < 2max{x;zy, ;2 }. Hence

(izj)® < 2% max{(z;zi)®, (z;zr)"}.
The conclusion follows from Lemma 6.1 with a;; = (z;2,;)* and A = 2. O
As in §5, d,, where 1 < p < oo, denotes the metric on R" determined by the standard p-norm.
Proposition 6.3. If0 < o <1 andn > 2 then C(R",d%) = 2¢
Proof. By Proposition 6.2, Cy(R"™, d2,) < 2%. Consider following the four points in R™:
z=(0,1,0,...,0), y = (0,—1,0,...,0), z=(—1,0,...,0), w=(1,0,...,0).

A calculation using the metric d2 yields A(xz,y,z,w) = 2% and thus Co(R",d%) > 2% Hence
Co(R™,d%) = 2%. By Corollary 2.10, C(R™,d%) = Co(R"™, d%). O

The same technique gives a non-sharp estimate for C(R"™, d$), where n > 2, as follows.
Proposition 6.4. If0 < a < 1 and n > 2 then 2%/2 < C(R",dg) < 2min{e:1/2},

Proof. By Proposition 6.2, C(R™,d$) < 2%. Schoenberg showed, [Sch37, Theorem 1], that (R™,dS)
isometrically embeds into (infinite dimensional) Hilbert space and hence C(R™,dg) < 2Y/2. Con-
sequently, C'(R",d3) < gmin{a, 1/2} © For the four points z,%,z,w € R™ specified in the proof of
Proposition 6.3, we have A(z,y, z,w) = 2%/?, yielding the lower bound for C'(R",d3). O

Numerical calculations suggest the following exact value for C(R™, d$) when n > 2.
Conjecture 6.5. Let 0 < a < 1. If n > 2 then C(R™,dy) = 2°/2.

The a-snowflakes of the Euclidean line turns out to be of a different nature than the spaces (R™, d9)

with n > 2, as revealed in the following theorem.

Theorem 6.6. Let 0 < a <1 and d%(x,y) = |z —y|*, x,y € R. Let m > 1 be the unique solution to
the equation (m — 1)® + (m +1)® = 2. Then C(R',d%) = m®.

Observe that by Corollary 2.10,
(6.7) C(R',dy) = Co(R',df;) = sup A, y, 2, w),

where
lz —y[* + [z —w[®

A =
(@, 2 w) max{|z — z|* + |y — w|®, |z —w|* + |y — 2|}
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and the supremum in (6.7) is taken over all 2., y, z, w € R, not all identical. Since the map (z,y, z, w) —
A(z,y, z,w) is translation and scale invariant, we may assume that © =0,y =1+s, 2 =1—1t, and
w =2, with (t,s) € D ={(t,s) € [-1,1] x [-1,1] | t+ s> 0}. Then

(I+s)*+(1+1)

(tr,I;)aé(D{(l_t) + (1 —s5)>, (t+ ) 42}

(t,s) — A0,1+s,1—1t,2) =

is continuous on the compact set D and
C(R',d%) = max A(0,1+s,1—1t,2).
(t,s)eD

Furthermore, if F,G: D — R are given by
1+4+1t)” 1 « 14+t~ 1 @

(6.8) Fit,s) = SEDFAH" GG s = LEDT T +s)
(I=t)*+(1—s) (t+s)> + 2

and D1 = {(t,s) € D | F(t,s) < G(t,s)} and Ds = {(t,s) € D | F(t,s) > G(t,s)}, then

)

A0,1—t,1+5,2) = min {F(t,5),G(t,5)} = {F(t, s), (t.s)€ Dy

(t,s)€D G(t,s), (t,s) € Da,
and
6.9 C(R,d}) = F(t,s), G(t,s) ¢ .
(6.9) (R, d3) maX{(t}ggI (1), s G s>}

The following lemma shows that the maximum in (6.9) is attained on Dy = Dy N Ds.

Lemma 6.10. Let 0 < a < 1. Let F,G: D — R be given by (6.8) and let Dy = {(t,s) € D | F(t,s) =
G(t,s)}. Then

C(RY,d%) = F(t,s).
(R, dg) B (t,s)

Proof. We show that F' and G attain their maximum on the boundary of D; and Ds, respectively.
Indeed, the partial derivatives of F,

a4t a1+t + (s 1)
Fy(t,s) = =0+ (190 + (1—=t)r + (1 —5))2

_ a(l+s)2t a((l+1)*+ (1+s))(1—s)* "
Fi(t,s) = A=+ (=90 (1 —t)> 4+ (1 — 5))2

are defined for all (t,s) € (=1,1)*,t4+s > 0 and F; > 0 and F, > 0. Thus max( secp, F(t,s) is
attained on the boundary 90D; = Dy U {(t,s) € D |t + s = 1}. Note that F(t,s) > 1 for (t,s) € D
and F(t,s) =1 if and only if t + s = 1. Hence

6.11 F(t,s) = F(t,s).
(6.11) S (t,s) B (t,s)
The partial derivatives of G
a(l+H)t  a((T+H)+ (1+8)Y)(t +s)> !
Gt(t,s) = — 3
(t+ s)> 42« ((t+ s)> 4 29)
a(l 4 s)* ! a((T+8)%+ (1 +8)*)(t+s)t
Gs(ta S) = -
(t+s)™ + 2 ((t+ s)> 4 2%)2
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are defined for all (t,s) € (—1,1)%,t+s > 0 and Gy = G5 = 0 if and only if t = s = 1. Thus
max(,s)ep, G(t, s) is attained on the boundary 0Dy = Do U {(t,s) € D |t =1} U{(t,s) € D | s = 1}.
Note also that G(t,s) > 1 for (¢,s) € D and G(t,s) =1 if and only if ¢ = 1 or s = 1. Hence

6.12 G(t,s) = G(t, s).
(6.12) Jmax Gt s) = max Gt s)
The conclusion follows from (6.9) together with (6.11) and (6.12). O

The following result shows that max; sep, F(t,s) is attained when ¢ = s.

Lemma 6.13. Let 0 < a < 1. Let F,G: D — R be given by (6.8) and let Dy = {(t,s) € D | F(t,s) =

G(t,s)}. Then
1+a\“
F(t,s)=
(tgl)%)(Do ( ,S) <1 _a) ’

where 0 < a < 1 is the unique solution of F(a,a) = G(a,a).

Proof. Notice that if (¢,s) € Dy then ¢ = —1 if and only if s = 1 and F(—1,1) = 1. By symmetry,
F(1,-1) = 1. Since F(t,s) > 1 on Dy, the maximum of F|p,, the restriction of F' to Dy, is not
attained at (—1,1) or (1,—1). Let (a,b) € Dy, with a # £1. If F attains a local extremum at (a,b)
subject to the constrain F(t,s) = G(t,s), then the level curves {(¢t,s) € D | F(t,s) = F(a,b)} and
{(t,s) € D | F(t,s) — G(t,s) = 0} are both tangent at (a,b). Since Fy(a,b) — Gs(a,b) # 0, by the
Implicit Function Theorem, there exists an open neighbourhood U C (—1,1) of a and a function
w = w(t) such that F(t,w(t)) — G(t,w(t)) = 0 for t € U. Furthermore,

t+w* + 01—t~
(t+w)e T+ (1—w)e1

W(t)=—

for all t € U. Similarly, since Fs(a,b) # 0, there exists an open neighbourhood V' C (—1,1) of a and
a function v = v(t) on V such that F(t,v(t)) = F(a,b) on V. Also, for all t € V,

(1+t)* 1+ F(a,b)(1 —t)*~!

= T Flab i

Hence, a necessary condition for (a,b) to be a point of local extremum for F|p, is that w’(a) = v/(a).
Using that w(a) = v(a) = b, that is,

(a+b)*t+(1-a)t (1+a)* 4+ F(a,b)(1 —a)* !

(a+bet4+(1-=b"t  (1+b)> 1+ F(a,b)(l—b)>t’
equivalently,
(a+0)* " [(1+0)* " +F(a,b)(1—=b)*" = (14+a)* ' = F(a,b)(1 — a)* "]
+(1-a) '+ -1 -b)*t1+a)* ! =0.



20 DRAGOMIR AND NICAS

Using that F(a,b) = EFZ; ISJFIZ;;Q = (1?;_12;&;5)@, the above equality holds if and only if

(a+0)* A+ = (1 +a)* (1 —a)* + (1 = b)*]
HA =0 = (1= a)* N[ +a)* + (1 +)]}
H[(1=a)* ML+ — (L4 ) (1= 5)* Y@+ )" +2°] =0,
equivalently,
2(a 4 b)afl [(1 _ b2)a71 _ (1 _ a2)a71] 4 2a[(1 _ a)o‘fl(l 4 b)afl _ (1 4 a)a71(1 _ b)afl] =0

Factoring out 2(a + b)*~1(1 — b2)*~1 £ 0 yields

1— 11—« 11—« 11—«
1-b 14b atb\1=o | (140 1-b _
(6.14) 1- (1 a) (1%) - (%) [(H—la) - (m) } =
Assume a < b. Since a + b > 0, this implies b > 0 and —b < a < b. In particular, a®> < b%. Let
T = 1—a and y = Hb Then 0 <z <1<y, and 0 < 2y < 1. Note that ‘”b = % We claim that

1
the expression on the left hand side of (6.14) is negative. That is, we clalm,

11—«
1— (zy) > — <1 — Iy) (y'=o —2172) <.

y—x
Indeed, multiplying the above inequality by (1 — zy)*~! > 0 yields
1— (xy)l—a yl—a _ xl—a

— <0,
(I—ay)t=  (y—a)t=

equivalently,
L—(zy)= 11— (z/y)' "
(1 - wy)l‘“ (1 —az/y)t=
which is valid since the function ¢ — W, 0 <t<1,is decreasing and 0 < z/y < zy < 1.
Note that the expression on the left hand side of (6.14) is positive if @ > b. Thus, (6.14) holds
if and only if @ = b. Finally, notice that F'(a,a) = G(a,a) has unique solution 0 < a < 1. Since
F(a,a) =[(1+a)/(1 —a)]* > 1, the conclusion follows. O

<0

Proof of Theorem 6.6. If a = 1, the conclusion holds with m = 1 by Proposition 2.6, since the space
(R, dg) is 0-hyperbolic. Let 0 < a < 1. By Lemmas 6.10 and 6.13

1 gy _ — ( 14a Ot: a
C@R'.dp) = max F(t.s)=Fla.a)= (1) =m

where m = 1+“ > 1 is the unique solution of
1 —(1- ¢ 1 1-— ¢
9 — <%> +<%(a“)> = (m—1)"+ (m+1)° 0

Remark 6.15. Let 0 < o < 1. Tt is not true in general that for any metric space (X, d) the inequality
C(X,d*) < (C(X,d))™ holds. For example, if & = 1/2 then m = 5/4 as in Theorem 6.6 and so

C(RY,d}*) =V5/2 > (C(RY,dp))/? = V1 =1.
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7. DISTANCES ON RIEMANNIAN MANIFOLDS

We show that the restricted quasi-hyperbolicity constant of the metric space associated to a Rie-

mannian manifold of dimension greater than one is bounded from below by /2.

Proposition 7.1. If M is a Riemannian manifold of dimension greater than one and dy; is the
distance on M induced by the given Riemannian metric then Co(M,dp) > V2.

Proof. Let p € M and let exp,,: T, M — M denote the Riemannian exponential map. The Riemannian
metric on M endows the tangent space, 1, M, with an inner product and we write dg for the corre-
sponding Euclidean distance on T}, M. For a vector X € T),M and a scalar ¢, let X; = exp, (tX)e M.
If X,Y € T,M then

(7.2) lim

dy (X, Yy
du(Xe, Ye) =dp(X,Y).
t—0 t

This is a consequence of the fact that in normal coordinates {z'} the components g;;(z) of the
Riemannian metric satisfy the estimate |g;;(z) — d;;] < C||z||* for some C.
For XY, Z,W € T,,M, not all identical,
dy (X, Yy) + dp(Ze, We)

max{dn (X¢, Zt) + dpar (Ye, We), dpg (Xe, We) + dar (Y, Zt) }

- dn (X, Yy) [t + da (Zy, Wh) /1t

- max{dn (X, Zi)/t + dar (Y, Wi) Jt, dar(Xe, We) /t + dar (Ye, Zi) 1}
By (7.2), lim;0 A(Xy, Yy, Z0 , W) = A(X, Y, Z, W), where the second A is with respect to dg.
Since dim M > 1, there are orthogonal unit vectors U,V € T}, M. Since

OO(Mv dM) > A(Utv ‘/tv Otv (U+ V)t)5

A(Xt; }/tv Ztth) =

it follows that
Co(M,dyr) > lim A(UL, Vs, Oy, (U+V)) =AU, V,0,U+V) =12,
—

establishing the conclusion of the proposition. 0

Corollary 7.3. Let M be a simply connected, complete Riemannian manifold of non-positive sectional
curvature with associated distance dyr. Then Co(M,dyr) = /2.

Proof. By [BH99, Chapter II.1, Theorem 1A.6], the metric space (M, dys) is a CAT(0)-space and so
Co(M,dpr) < +/2 by Corollary 4.3. By Proposition 7.1, Co(M,dys) > v/2. Thus Co(M,dys) = /2. O
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